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ABSTRACT

Weather and climate variability strongly influence the people, infrastructure, and economy of Alaska.

However, the sparse observational network in Alaska limits our understanding of meteorological variability,

particularly of precipitation processes that influence the hydrologic cycle. Here, a new 14-yr (September

2002–August 2016) dataset for Alaska with 4-km grid spacing is described and evaluated. The dataset, gen-

erated with the Weather Research and Forecasting (WRF) Model, is useful for gaining insight into meteo-

rological and hydrologic processes, and provides a baseline against which to measure future environmental

change. The WRF fields are evaluated at annual, seasonal, and daily time scales against observation-based

gridded and station records of 2-m air temperature, precipitation, and snowfall. Pattern correlations between

annual mean WRF and observation-based gridded fields are r 5 0.89 for 2-m temperature, r 5 0.75 for

precipitation, r5 0.82 for snow-day fraction, r5 0.55 for first snow day of the season, and r5 0.71 for last snow

day of the season. A shortcoming of theWRF dataset is that spring snowmelt occurs too early over a majority

of the state, due partly to positive 2-m temperature biases in winter and spring. Strengths include an improved

representation of the interannual variability of 2-m temperature and precipitation and accurately simulated

(relative to regional station observations) winter and summer precipitation maxima. This initial evaluation

suggests that the 4-kmWRF climate dataset robustly simulates meteorological processes and recent climatic

variability in Alaska. The dataset may be particularly useful for applications that require high-temporal-

frequency weather fields, such as driving hydrologic or glacier models. Future studies will provide further

insight on its ability to represent other aspects of Alaska’s climate.

1. Introduction

Weather and climate variability strongly influence the

environment and people of Alaska. Examples include

modulation of boreal wildfire dynamics by summer

temperatures (Balshi et al. 2009), tree damage from

heavy snowfall (Sampson and Wurtz 1994), shifts in the

greening of spring vegetation linked to cloud variability

(Bieniek et al. 2015), the contribution of storm fre-

quency to coastal erosion (Barnhart et al. 2014), the

sensitivity of glacier mass balance to meteorological

forcing (Beamer et al. 2016), variations in growing-season

length as a function of temperature (Park et al. 2016),

infrastructure damage due to temperature-driven per-

mafrost degradation (Brubaker et al. 2011), and fluctua-

tions in subsistence hunting and herding seasons due to

temperature and snowfall variability (Rattenbury et al.

2009). In turn, Alaska and the Arctic are experiencing

among the highest rates of climate change globally

(Walsh 2014; Walsh et al. 2017). Major shifts in temper-

ature, precipitation, snow cover, snowmelt, and stream-

flow have been documented in recent decades (Stafford

et al. 2000; Stone et al. 2002; Wendler and Shulski 2009;

Derksen and Brown 2012; Bieniek et al. 2014; Bennett

et al. 2015). These changes have had widespread impacts
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on the environment and people of Alaska that are pro-

jected to continue into the future (Hinzman et al. 2005;

Markon et al. 2012; Melvin et al. 2017).

Despite the importance of climate variability and

change for Alaska, historical meteorological observa-

tions are sparse, limiting our understanding of regional

variability and change (Fleming et al. 2000; Kane and

Stuefer 2015). Additionally, existing meteorological re-

cords have variable quality, continuity, and length,

hindering quantification of historical trends (McAfee

et al. 2013; Bieniek et al. 2014). To address these issues,

numerous observation-based, empirically derived grid-

ded climate datasets have been developed for Alaska,

facilitated by advancements in satellite-observing plat-

forms and increasingly sophisticated spatial statisti-

cal approaches. Examples include ;1–2-km monthly

mean temperature and precipitation (Fleming et al.

2000; Simpson et al. 2002; Hill et al. 2015; SNAP 2016),

;1-km monthly decadal mean snow/rain partitioning

(McAfee et al. 2014b), and 500-m annual snow cover

characteristics (Lindsay et al. 2015).

While empirically derived gridded observational data-

sets have greatly enhanced our knowledge of Alaska cli-

mate characteristics, they are still subject to data and

methodological uncertainty, limiting their utility for

assessing temporal variability and trends (e.g., McAfee

et al. 2014a). Additionally, such datasets are usually re-

stricted to time steps of months or longer and, thus, cannot

typically be used to identify the underlying meteorological

processes that drive variability. Therefore, global and re-

gional meteorological model datasets, which have higher

temporal resolution, have also been employed in recent

years to investigate Alaska weather and climate. Global

model reanalysis datasets, which assimilate historical sat-

ellite and surface-based observations, have been beneficial

for gaining insight on synoptic-scale processes in Alaska

(e.g., Shulski et al. 2010; E. Cassano et al. 2011, 2016;

J. Cassano et al. 2016), but relatively coarse grid spacing

($0.58) has limited their value for understanding local-

scale processes in areas of complex topography (Lader

et al. 2016). For these finer scales, regional model data-

sets—generated by dynamically downscaling a global re-

analysis (or global climate model) with a limited-area

meteorological (or coupled earth systems) model—have

been used. Examples of long-term regional model simu-

lations that focused on Alaska or the Arctic in the past

decade include a 10-yr, 30-km simulation over Alaska,

nested to 10km over the Alaska Range for use in glacier

mass balance modeling (Zhang et al. 2007); a 31-yr, 10-km

simulation using data assimilation over northern Alaska

and the Chukchi–Beaufort Seas for understanding envi-

ronmental changes, particularly to surface winds, in the

region (X. Zhang et al. 2013; Liu et al. 2014); a 13-yr, 10km

(nested from 30km) regional reanalysis over the circum-

polar Arctic, including Alaska, for advancing high-latitude

data assimilation and improving depiction of Arctic cli-

mate variability (Bromwich et al. 2016); a 19-yr, 50-km

atmospheric simulation, a component of the Regional

Arctic System Model, for resolving high-latitude land–

atmosphere–sea ice–ocean coupling (Glisan et al. 2016;

DuVivier et al. 2016); and a 35-yr, 20-km simulation over

Alaska for assessing historical temperature and pre-

cipitation variability, and eventually future change

(Bieniek et al. 2016).

Validation of empirical- and model-based datasets for

Alaska remains a challenge, in part because the process

employs most or all of the observational data that exist

(leaving little independent data against which to evalu-

ate products), and in part because there are expanses of

the state where observations are virtually nonexistent

(Kane and Stuefer 2015). Additionally, the station ob-

servations that do exist are skewed toward low eleva-

tions and thus high-elevation measurements are

underrepresented; for example, of the 164 stations used

for validation in this study, 122 are below 500m, 37 are

between 500 and 1000m, and only 7 are above 1000m.

Therefore, an ‘‘ensemble’’ approach using numerous

gridded climate datasets that employ different meth-

odologies and data sources can be a useful means of

understanding and quantifying uncertainty regarding

aspects of Alaska’s climate. Here, we introduce a new

regional model dataset generated with the Weather

Research and Forecasting (WRF) Model that comple-

ments the existing empirical- and model-based datasets

described above. Unique aspects of the new WRF

dataset include its combination of fine grid spacing

(4 km) over a relatively long period (14 yr) and the ready

availability of key model outputs at hourly temporal

resolution (dataset available via Monaghan et al. 2016),

enabling its use for driving downstream models (e.g.,

hydrologic or glacial) or for evaluating aspects of di-

urnally varying processes. Annual, seasonal, and daily

meteorological fields from the new WRF dataset are

evaluated by comparison to station records and empir-

ically derived gridded products. The methods and data

for generating and evaluating the new WRF dataset are

described in section 2, the results of the model evalua-

tion are presented in section 3, and a discussion and

conclusions are provided in section 4.

2. Methods and data

a. Atmospheric model configuration

Meteorological simulations over Alaska were per-

formed with version 3.7.1 of the Advanced Research
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WRF (Skamarock et al. 2008). WRF is a fully com-

pressible conservative-form nonhydrostatic atmospheric

model suitable for both research and weather prediction

applications at a variety of spatial and temporal scales

(Klemp et al. 2007; Skamarock and Klemp 2008). WRF

has multiple options for physical parameterizations of

radiation, cloud microphysics, cumulus clouds, surface

and planetary boundary layer turbulence, and inland

lake dynamics that are specified by the user depending

on the application. Here, WRF is coupled to the Noah

multiparameterization land surface model (Noah-MP;

Niu et al. 2011) in order to simulate two-way land–

atmosphere interactions. Noah-MP provides WRF with

fluxes of energy and moisture from the land surface and

maintains stores of water and energy in four soil layers

to a depth of 2m.

WRF and Noah-MP parameterizations used for the

simulations are summarized in Table 1. The parame-

terizations were selected by running year-long simula-

tions with various model configurations based on WRF

configurations used in prior applications over Alaska,

the Arctic, or midlatitude mountain regions (J. Cassano

et al. 2011; Rasmussen et al. 2011; Gong et al. 2013;

Bieniek et al. 2016; Bromwich et al. 2016). Results from

the different simulations were compared to tempera-

ture, precipitation, and snow water equivalent (SWE)

observations at Snowpack Telemetry (SNOTEL) sites

across Alaska (SNOTEL observations are described

below). Parameters from those simulations most accu-

rately simulating the SNOTEL variables were then

combined iteratively in subsequent simulations to arrive

at the optimal WRF parameter set described in Table 1.

A number of modifications were made to the Noah-MP

parameter file MPTABLE.TBL to improve treatment of

seasonal snowpack evolution and, particularly, to alleviate

an early melt bias in the year-long test simulations during

springtime. First, the parameter determining the snow

depth to snow cover relationship (MFSNO)was decreased

to 1.0 from the default of 2.5 for all land-use types to allow

greater snow cover fraction at the beginning and end of

winter season when snow is patchy and may be melting.

Niu and Yang (2007) noted that MFSNO is scale de-

pendent and should be lower for finer spatial resolutions.

Second, the liquid water holding capacity for snowpack

(SSI) was increased to 0.06m3m23 from the default of

0.03m3m23 to allow the snow to ripen for a longer period

before melt runoff occurs. Third, the canopy wind ab-

sorption coefficient (CWPVT) was changed from a con-

stant value of 0.18 for all land-use types to a variable

ranging from 0.18 up to 5.00 [with rougher surfaces having

the highest values; Goudriaan (1985)]. This change more

realistically represents the heterogeneity among vegeta-

tion types and acts to reduce below-canopywind speed and

turbulent exchanges and generally decrease melt. Finally,

the monthly varying LAI values for woody savannah and

savannah land-use types were modified to better represent

the characteristics of evergreen needleleaf trees charac-

teristic of Alaska. In the default model the savannah land-

use types are based on midlatitude deciduous trees that

have no foliage during the cold season.

TABLE 1. WRF and Noah-MP parameterization options selected.

Parameterization name Option Option No.

WRF parameterizations

Cloud microphysics Thompson 8

Longwave radiation RRTMG 4

Shortwave radiation RRTMG 4

Surface layer MM5 similarity 91

Surface Noah-MP 4

Lake FLake 1

Planetary boundary layer Yonsei University (YSU) 1

Cumulus Off 0

Noah-MP parameterizations

Dynamic vegetation (dveg) Off 4

Stomatal resistance (opt_crs) Ball–Berry 1

Surface layer drag coefficient (opt_sfc) Monin–Obukhov 1

Soil moisture factor for stomatal resistance (opt_btr) Noah 1

Runoff (opt_run) Original surface/subsurface runoff 3

Supercooled liquid water (opt_frz) No iteration 1

Soil permeability (opt_inf) Linear effect 1

Radiative transfer (opt_rad) Two-stream method applied to vegetated fraction 3

Ground surface albedo (opt_alb) Canadian Land Surface Scheme 2

Precipitation (snow/rain) partitioning (opt_snf) Snow when SFCTMP , TFRZ 3

Soil temperature lower boundary (opt_tbot) Zero heat flux 1

Soil/snow temperature time scheme (opt_stc) T_ground weighted using snow fraction 3
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Two bugs were also discovered and fixed, and both

fixes have since been implemented in the official release

of WRF, version 3.8. First, a bug was fixed in the opt_stc

option of Noah-MP that effectively caused opt_stc 5 3

to reproduce opt_stc5 1 results. Second, a bug was fixed

in the radiation driver module that caused excessive

cloud estimates when Thompson microphysics, Rapid

Radiative Transfer Model for GCMs (RRTMG) radia-

tion, and (icloud 5 3) were used in combination. The

icloud 5 3 option follows Sundqvist et al. (1989) and

was a new addition as of WRF, version 3.7, intended to

alleviate the persistent tendency toward binary cloud

fraction values (0 or 1) when using the icloud5 1 option.

A one-domain 4-kmWRF configuration was employed

(Fig. 1). A grid spacing of 4km was chosen based on

previous work by Prein et al. (2013) demonstrating that

4-km WRF simulations had markedly improved spatial

patterns of heavy precipitation in complex topography

compared to coarser (12 and 36km) grid spacings; simi-

larly, Rasmussen et al. (2011) showed that snowfall

was best represented at WRF grid spacing ,6km.

Static data inputs included terrain elevation from the

U.S. Geological Survey (USGS) 30 arc-s GTOPO30

dataset (Gesch and Greenlee 1999) and the 20-category

land-use information from the Moderate Resolution

Imaging Sprectroradiometer (MODIS) IGBP dataset

(Friedl et al. 2002). There were 49 vertical levels from

the surface to 30 hPa, with 7 levels in the lowest 1000m.

Initial and boundary conditions were provided by the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) interim reanalysis (ERA-Interim; Dee

et al. 2011). ERA-Interim is considered one of the most

accurate global atmospheric reanalyses presently avail-

able (see, e.g., Lorenz and Kunstmann 2012). More di-

rectly relevant for this study, ERA-Interim is among the

top-performing reanalyses over the Arctic compared to

observations of surface temperatures, radiative fluxes,

precipitation, and wind speed (Lindsay et al. 2014).

When considered for all of Alaska, ERA-Interim has

relatively low biases and root-mean-square errors for

temperature and precipitation as compared to other

reanalyses for Alaska (Lader et al. 2016). Daily updated

0.018 (resampled to 0.048) sea surface temperature (SST)

and sea ice concentration (SIC) data for the oceans were

specified with version 4.1 of the Multiscale Ultrahigh

Resolution (MUR) SST analysis (NASA JPL 2015).

Inland lake temperatures and lake ice coverage were

simulated using the Freshwater Lake (FLake) model

available in WRF (Mallard et al. 2014).

To spin up the land surface state, the WRF simula-

tions were run for a 14.5-month period from 1 June 2002

to 15 August 2003. The resulting spun-up land-surface

fields (subsurface temperature, soil moisture, canopy

water, and skin temperature) were then used to initialize

the final simulation, which was run continuously from

15 August 2002 through 31 August 2016. Throughout

the simulation the WRF lateral boundaries were upda-

ted every 6h with the ERA-Interim 3D temperature,

humidity, wind, and geopotential fields; the lower

boundary was updated daily with theMURSST and SIC

fields described above. The latter half of August 2002

was discarded to allow about 2 weeks for spinup of the

hydrologic cycle. Hence, the final simulation analyzed

here spans 1 September 2002–31 August 2016, a 14-yr

period. The beginning year of the period 2002 was

chosen because this is the first year the MUR SST and

SIC fields became available. The first day of September,

rather than the first day of the calendar year, was chosen

to optimally resolve the hydrologic year, which encom-

passes one complete cycle of autumn and winter snow-

fall accumulation followed by spring and summer

snowfall ablation. Key meteorological outputs were

saved at 1-hourly intervals for analysis.

b. Data and methods for WRF evaluation

1) GRIDDED TEMPERATURE AND PRECIPITATION

FIELDS (SNAP)

To evaluate the spatial distribution of the 2-m air

temperature and precipitation amount in WRF, histori-

cal monthly temperature and precipitation fields for

2002–09 on a 2-km grid covering Alaska were obtained

from the Scenarios Network for Arctic and Alaska

Planning (SNAP) dataset (SNAP 2016). The historical

SNAP data were generated by calculating monthly

anomaly fields versus a 30-yr baseline period (1971–2000)

from 0.58 Climatic Research Unit (CRU) v3.1 gridded

monthly temperature and precipitation observations

(Harris et al. 2014), and then employing a delta approach

(e.g., Jones 1994) to downscale these 0.58 anomaly fields

using 2-km monthly fields from the Parameter-Elevation

Regression on Independent Slopes Model (PRISM) cli-

matology averaged for the same 30-yr baseline period

(Daly et al. 1994; Simpson et al. 2002, 2005). An addi-

tional product available in the SNAP database, mean

snow-day fraction for 2000–09 (McAfee et al. 2014b), was

employed to evaluate the precipitation phase (snow–rain

partitioning) in WRF. The SNAP snow-day fraction was

diagnosed as a function of monthly average tempera-

ture based on observational data, and then gridded by

applying the diagnostic fits to CRU and PRISM fields.

Additional information on methods and uncertainty for

the SNAP fields may be found in McAfee et al. (2014b)

and SNAP (2016).

The total all-type grid-scale precipitation (RAINNC)

and 2-m temperature (T2) fromWRF were compared to
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FIG. 1. WRF (a) terrain height and (b) land-use categories. Station

data used for model evaluation are indicated by color-filled circles. The

13Alaska climate divisions (Bieniek et al. 2012) are delineated by black

lines: 1, North Slope (NSP); 2, west coast (WCO); 3, central interior

(CIN); 4, northeast interior (NIN); 5, southeast interior (SIN); 6,

Aleutians (ALT); 7, Bristol Bay (BBA); 8, northwest gulf (NWG); 9,

Cook Inlet (COI); 10, northeast gulf (NEG); 11, north panhandle

(NPA); 12, central panhandle (CPA); and 13, south panhandle (SPA).
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the SNAP precipitation and temperature fields (note that

the convective parameterization in WRF was turned off

because convection is explicitly simulated as grid-scale

precipitation at 4-km grid spacing, so it was unnecessary

to use theRAINC variable). TheWRF snow-day fraction

field (SDF) was developed using Eq. (1) from McAfee

et al. (2014b), in which the numbers of snowy days (nsd),

mixed precipitation days (nmd), and wet days (nwd) were

calculated for each year y and month m, and then the

snow-day fraction was calculated as

SDF
m,y

5 (nsd
m,y

2 nmd
m,y

)/nwd
m,y

, (1)

that is, after removing themixed precipitation days from

consideration, the monthly SDF was the ratio of snow-

only days to all-type precipitation days. For WRF a

snowy day had snowfall . 0.1mm water equivalent

(weq). A mixed precipitation day had both snowfall .

0.1mm weq and rainfall . 0.1mm weq. A wet day had

any type of precipitation . 0.1mm weq. A cutoff value

of 0.1mm was used because McAfee et al. (2014b) used

cutoff values of 0.1mm for rain and 1mm for snow

depth; because WRF snowfall units are in mm weq,

not mm depth, we used a cutoff of 0.1mm for snow,

assuming the density of fresh snow is about 10% of

water, or 100 kgm23 (Kienzle 2008). Results are nearly

identical when testing the algorithm using a cutoff of

1mm weq. Monthly results were aggregated into long-

term annual and seasonal means for 2003–12 for com-

parison to the 2000–09 snow-day product of McAfee

et al. (2014b); 2003–12 was the 10-yr period in the WRF

output nearest to 2000–09. For direct comparison with

WRF, all SNAP data were bilinearly interpolated to the

4-km WRF domain.

2) MODIS SNOW COVER METRICS (GINA)

To spatially evaluate WRF annual snow cover char-

acteristics, the 500-m MODIS-derived snow cover

metrics (Lindsay et al. 2015) were obtained from the

Geographic InformationNetwork ofAlaska for 2002–16

(GINA 2016). The MODIS-derived snow cover metrics

(henceforth referred to as GINA), developed by the

U.S. Department of the Interior/National Park Service,

were compiled from the MODIS Terra Snow Cover

Daily L3 Global 500-m Grid dataset (MOD10A1), in-

filled to account for clouds and polar darkness (Lindsay

et al. 2015). WRF outputs were compared to two met-

rics: the first snow day of the full season (FSD) and the

last snow day of the full season (LSD). Compared to

in situ SNOTEL observations, there is an early bias in

GINA for the first day of the snow season of about 11–

22 days depending on land-use type (Lindsay et al.

2015). The bias for the last day of the snow season is

about 1–4 days early; more discussion of this bias

appears below.

The snow cover fraction variable (SNOWC) was used

to generate theWRFmetrics for comparison toGINA. If

SNOWC. 0.0 at the end of any day for a given grid box,

it was considered a snow day (SD). The results were

similar when testing using a threshold of SNOWC$ 0.5.

TheWRFFSDwas the first SD of the given ‘‘snow year,’’

which spans 1 August–31 July, following Lindsay et al.

(2015). Similarly, theWRFLSDwas the last SDof a snow

year. For comparison with WRF, all GINA data were

bilinearly interpolated to the 4-km WRF domain.

3) STATION DATA FROM SNOTELGHCN-D AND

GSOD

Station observations were used to evaluate WRF

fields at sites acrossAlaska at annual, seasonal, and daily

time scales (Fig. 1). Daily historical near-surface air

temperature, precipitation, and SWE measurements for

2002–16 from the SNOTEL network (Schaefer and

Paetzold 2000) were obtained from the Natural Re-

sources Conservation Service (NRCS) of the U.S. De-

partment of Agriculture (NRCS 2016). Daily historical

near-surface air temperature and precipitation mea-

surements for the same period were obtained from

the Global Historical Climatology Network – Daily

(GHCN-D) database housed at the National Oceanic

and Atmospheric Administration’s (NOAA) National

Centers for Environmental Information (Menne et al.

2012a,b), and the Global Surface Summary of the Day

(GSOD) database (NOAA/NCEI 2016).

The SNOTEL sites employ snow pillow pressure

transducers to measure SWE, sonic sensors for snow

depth, and standard 12-in.-orifice shielded all-season

gauges for precipitation amount. Air temperature is

measured with shielded thermistors. SNOTEL data are

quality controlled by comparingmanuallymeasured and

telemetered readings during regularly scheduled main-

tenance surveys, and values beyond specified limits are

examined and edited to maintain a high quality record

(NRCS 2017). The accuracy of SWEmeasurements may

be lower for periods of rapid melting, melting of thin

snow, and rapid snow settlement (Johnson et al. 2007).

Undercatch can affect precipitation amount (particu-

larly snowfall) measurements and is related to wind

speed (Yang et al. 1998). The GHCN-D and GSOD

records come from various types of stations and in-

struments (Menne et al. 2012b). Extensive quality as-

surance checks for GHCN-D and GSOD were applied

by NOAA prior to distribution via the method of Durre

et al. (2010), which incorporates 19 tests that detect

duplicates, outliers, and internal, spatial, and temporal

inconsistencies. These data were not adjusted to account
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for artifacts associated with changes in instrumentation

or reporting practices. No additional quality control of

the precipitation and SWE fields (where available) from

the SNOTEL, GHCN-D, and GSOD observations was

performed for the present analysis. However, visual in-

spection indicated the presence of occasional erroneous

values of daily average near-surface air temperature at

some stations; these values were removed if they dif-

fered by .208C from the WRF 2-m air temperature

value (bilinearly interpolated to the site coordinates) for

the same day (spurious points removed by this method

represent ,1% of the dataset).

WRF 2-m temperature, rainfall and snowfall, snow

cover, and SWE fields were bilinearly interpolated to the

location of each SNOTEL,GHCN-D, andGSOD station

for comparison over the 2002–16 period (henceforth we

refer to the station observations collectively as OBS).

Comparisons between WRF and OBS were only made

for days on which observations were available; for ex-

ample, if only 27 days of OBS were available for a given

month, the WRF monthly mean was computed based on

those 27 days. Monthly means were only calculated if .

25 days of data were available. Likewise, seasonal and

annual means were only calculated if all monthly means

were available for a given period. Seasonal means were

calculated for winter [December–February (DJF)] and

summer [June–August (JJA)]. Long-term average values

were computed if at least 5 yr of annual or seasonal values

were available for a given station (this was done to allow

for the robust calculation of standard deviations and bias

statistics, whichwere based on the computedmeans). The

SDF was computed from the OBS, but because mixed

precipitation could not be distinguished for stations that

do not measure both rainfall and snowfall following the

methodology described above for SNAP and that used in

McAfee et al. (2014b), SDF was estimated as the ratio of

all snowfall days to all precipitation days for a given year

or season. A day was considered a snowfall day if pre-

cipitation occurred and the mean 2-m temperature on

that day was ,08C (see Dai 2008 and references within).

This temperature thresholdmethod was used because the

OBS do not distinguish between rainfall and snowfall.

For direct comparison, WRF snow-day fraction was

computed in the same manner. While this method is im-

perfect, it is noteworthy that SDF biases for WRF com-

pared to OBS are similar to those computed for WRF

compared to SNAP (shown below in section 3).

c. Overview of study region

Alaska has numerous mountain ranges with primarily

east–west orientations (Fig. 1a). The Brooks Range is

farthest north and separates the North Slope from the

interior. The Alaska Range lies to the south of the

Brooks Range and largely separates the interior from

southern Alaska. South of the Alaska Range, the Pacific

Coast Ranges bound the southeastern and south-central

reaches of the state and include the Chugach, Wrangell,

St. Elias, and Coast Mountains. The Aleutian Range

forms the backbone of the Alaska Peninsula and Aleu-

tian Islands in southwestern Alaska. Mountains play a

first-order role in defining the climate zones of Alaska

(Bieniek et al. 2012), as noted in the results presented

below. Vegetation is characterized by temperate rain

forests in southeastern Alaska, glaciers throughout the

coastal mountains and Alaska Range, evergreen forests

in the interior, and open shrublands and tundra in the

western and northern reaches of the state (Fig. 1b).

3. Results

a. Evaluation of annual and seasonal 2-m

temperature

WRF simulates the broad spatial patterns of annual,

winter (DJF), and summer (JJA) mean 2-m temperature

compared to SNAP (Fig. 2), with Spearman rank-order

correlation coefficients between WRF and SNAP pat-

terns of 0.89, 0.89, and 0.80 for the three respective pe-

riods (Table 2). Temperatures generally increase from

north to south; an exception is during summer, when the

interior of Alaska has the highest temperatures because

of its continentality (Fleming et al. 2000). Annually,

temperature differences between WRF and SNAP are

generally 628C; differences of less than ;18C are not

statistically significant (the statistical significances of all

differences calculated in this paper are assessed using the

Student’s t test). During winter, WRF is warmer than

SNAP by up to 58C across the Brooks Range and

throughout much of the interior and south-central por-

tions of the state east of the Kenai Peninsula. In summer,

WRF is generally colder than SNAP across most of

Alaska. In western and southeastern Alaska, WRF is

colder than SNAP annually and in winter and summer.

Grid-averaged differences between WRF and SNAP

are20.738C (annual),10.878C (DJF) and21.788C (JJA)

(Table 2). When WRF is compared to OBS, the spatial

patterns and magnitude of the temperature differences

are similar to those for WRF versus SNAP, though many

of the differences are not statistically significant. Some

biases, particularly in regions of complex topography, are

partly due to elevation differences between WRF and

OBS (this topic is addressed further in section 4).

WRF and SNAP have somewhat different patterns of

interannual variability of annual, winter, and summer 2-m

temperature, as indicated by the standard deviation

(Fig. 3), and comparatively lower pattern correlations

MARCH 2018 MONAGHAN ET AL . 715



(Table 2). While annual patterns are broadly similar (r5

0.63) and indicate lower variability in the north, and

higher variability in western–southwestern Alaska, the

winter and summer patterns are less similar. The spatial

patterns of interannual temperature variability in SNAP

appear to be associated with proximity to the station data

that provide constraint; for example, in winter, there is a

‘‘bull’s eye’’ emanating from Barrow (the northernmost

FIG. 2. Comparison ofmean 2-m air temperature betweenWRF, SNAP, andOBS. Shown are (a),(e),(i)WRF 2002–09means, (b),(f),(j)

SNAP 2002–09 means, (c),(g),(k) WRF minus SNAP, and (d),(h),(l WRF minus OBS for (left) annual, (center) DJF, and (right) JJA

results. The results for WRF and SNAP are compared for 2002–09 whereas those for WRF and OBS are compared for 2002–16. Sta-

tistically significant differences (p , 0.05) between WRF and SNAP are outlined in thin gray contours in (c), (g), and (k). Statistically

significant differences between WRF and OBS are indicated by boldface-outlined circles in (d), (h), and (l).
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point in Alaska), as well as from near Dawson City (in

Yukon, Canada, just east of the interior Alaska border).

By contrast, the spatial patterns of interannual variability

in WRF appear to be more closely associated with geo-

graphic features such as mountains and oceans. When

averaged over the grid, WRF and SNAP have similar

interannual variabilities of 2-m temperature annually and

in winter; however, theWRF standard deviation is10.62

higher than SNAP on average during summer (Table 2)

and is also higher compared to most JJA OBS.

b. Evaluation of annual and seasonal precipitation

WRF simulates the broad spatial patterns of annual,

winter, and summer mean precipitation compared to

SNAP (Fig. 4), with Spearman rank-order correlation

coefficients between WRF and SNAP patterns of 0.75,

0.74, and 0.62 for the three respective periods (Table 2).

Annual precipitationmaxima in excess of 5000mmweqyr21

occur in many regions of the Pacific Coast Ranges in south-

central and southeast Alaska. WRF is drier than SNAP

throughout this coastal region, though compared to the

OBS it has both wet and dry biases that are partly

related to elevation differences between stations

and WRF grid points (this issue is elaborated upon in

section 4). Annual precipitation minima below 300mm

weqyr21 occur along the northern coast and in the in-

terior to the south and east of the BrooksRange.WRF is

wetter than SNAP in these regions and is wetter com-

pared to the OBS as well. WRF is generally wetter than

SNAP throughout interior Alaska, whereas it is drier

than SNAP throughout much of western Alaska, except

in coastal regions where it is wetter. Similarly, compared

to OBS the mean annual precipitation in WRF is gen-

erally wetter in interior and coastal western Alaska

(though it is not statistically significantly different from

OBS at any interior sites). Seasonally, in both WRF and

SNAP the southern coastal mountains receive more

precipitation in winter compared to summer, whereas

interior, northern, and western Alaska receive more

precipitation in summer. Compared to both SNAP and

OBS, the spatial patterns of differences with WRF in

both summer and winter are similar to the annual dif-

ferences. Grid-averaged differences between WRF and

SNAP are 258mm weq (annual), 24mm weq (DJF),

and 229mm weq (JJA) (Table 2); the lower values in

WRF are primarily attributable to lower precipitation in

the southern coastal mountains.

WRF and SNAP have markedly different patterns of

interannual variability of annual, winter, and summer

mean precipitation (Fig. 5), which (because of the large

spatial variability in precipitation magnitude) is measured

using the coefficient of variation (COV). The COV is de-

fined as the standard deviation expressed as a percentage

of the mean. Low Spearman rank-order correlations of

0.10 (annual), 0.08 (DJF), and 0.18 (JJA) confirm the dif-

ferences. As was the case for 2-m temperature, the pat-

terns of interannual precipitation variability in SNAP

appear to be associated with the proximity to the station

data that provide constraint. The grid-averaged differ-

ences of COV (21.61%, annual; 20.29%, DJF; and

10.32%, JJA) appear to largely reflect differences that

arise due to the SNAP interpolation methodology. Com-

pared to OBS, WRF has both positive and negative COV

differences, though most WRF COVs are lower. An in-

teresting area of comparatively high interannual winter

precipitation variability is evident in WRF on the lee side

of the Wrangell and St. Elias Mountains (the dark blue

area in Fig. 5e). Inspection of the differences between

WRF and OBS in this region (Fig. 5h) indicates that, if

anything, WRF underestimates the interannual variability

here. While this is an area of low total winter precipitation

that may make the COV more sensitive to small year-to-

year changes (Fig. 4e suggests mean winter precipitation

is ,50mm weq), there are other regions in interior

and northern Alaska with similar magnitudes of winter

precipitation, but much lower COVs. The causality of

TABLE 2. Gridwide differences and Spearman rank-order correlation coefficients for WRF compared with SNAP (Figs. 2–6) and GINA

(Figs. 7 and 8). Statistically significant values (p , 0.001) are set in boldface. Insignificant values (p . 0.05) are set in italics.

Difference (WRF minus SNAP or GINA) Spearman rank-order correlation

Variable Units Annual DJF JJA Annual DJF JJA

Mean 2-m temperature (Fig. 2) 8C 20.73 0.87 21.78 0.89 0.89 0.80

Std dev of 2-m temperature (Fig. 3) 8C 0.07 20.18 0.62 0.63 0.55 0.35

Mean precipitation (Fig. 4) mm weq 258.28 23.98 229.27 0.75 0.74 0.62

COV of precipitation (Fig. 5) % 21.61 20.29 0.32 0.10 0.08 0.18

Mean SDF (Fig. 6) % 25.45 20.12 22.08 0.82 0.76 0.59

Mean FSD (Fig. 7) Day of year 4.90 — — 0.55 — —

Std dev of FSD (Fig. 8) Days 25.07 — — 0.07 — —

Mean LSD (Fig. 7) Day of year 29.17 — — 0.71 — —

Std dev of LSD (Fig. 8) Days 25.67 — — 0.12 — —
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anomalously high interannual winter precipitation vari-

ability in this region will be investigated in the future.

c. Evaluation of annual and seasonal snow–rain

partitioning

WRF simulates the broad spatial patterns of annual,

winter, and summer mean SDF compared to SNAP

(Fig. 6), with Spearman rank order-correlation co-

efficients between WRF and SNAP patterns of 0.82,

0.76, and 0.59 for the three respective periods (Table 2).

Annually, SDF is highest in northernAlaska (precipitation

falls as snow on .55% of days) and in the mountains;

SDF is lowest in the lower-elevation coastal regions in

southwest, south-central, and southeast Alaska. In winter

FIG. 3. Comparison of the standard deviation of mean 2-m air temperature betweenWRF, SNAP, andOBS. Conventions are as in Fig. 2,

with the exception that the statistical significance of differences cannot be computed sincemanymultiyear samples (i.e., an ensemble ofWRF

simulations) would be required to do so.

718 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



precipitation falls as snowonnearly all days in the northern

and interior regions; however, in the coastal south-

western, south-central, and southeast regions pre-

cipitation falls as snow on ,75% of days. During the

summer, precipitation falls as snow occasionally in

the mountains and along the northern coast. Com-

pared to SNAP, WRF generally has lower SDF in lower

accumulation areas in interior, northern, and western

Alaska, and higher SDF in the high accumulation re-

gions of southern Alaska (though coastal areas

of southeast Alaska have lower SDF in WRF). Grid-

averaged differences between WRF and SNAP

are 25.45% (annual), 20.12% (DJF), and 22.08%

(JJA), with the difference for winter being statistically

insignificant (Table 2); the lower overall SDF in WRF is

driven by negative differences betweenWRF and SNAP

FIG. 4. Comparison of mean precipitation amounts between WRF, SNAP, and OBS. Conventions are as in Fig. 2.
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in southwest Alaska and coastal southeast Alaska.

Compared to OBS, WRF generally has differences ,

5% at many sites; most of the larger differences in-

dicate that WRF has higher-than-observed SDF. At

the few sites available in southwestern Alaska, a re-

gion where WRF has lower SDF than SNAP, WRF

differs from OBS by ,5%, or has higher SDF than

OBS, suggesting the WRF results are more accurate

than SNAP in this region. A ‘‘rainy’’ bias in SNAP

SDF in southwestern Alaska was also noted by

McAfee et al. (2014b) and was attributed to the

elevated sensitivity of snow-day estimates to small

temperature changes for the range of temperatures

encountered there.

FIG. 5. Comparison of the COV of mean precipitation amount between WRF, SNAP, and OBS. Conventions are as in Fig. 2, with the

exception that the statistical significance of differences cannot be computed.
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d. Evaluation of annual first and last days of snow

cover

WRF simulates the broad spatial patterns of annual

FSD and LSD compared to GINA (Fig. 7), with

Spearman rank-order correlation coefficients between

WRF and GINA patterns of 0.55 (FSD) and 0.71 (LSD)

(Table 2). Inspection of the differences indicates that, on

average, WRF has a later FSD and earlier LSD than

GINA, and therefore a shorter snowfall season in gen-

eral. Grid-averaged differences between WRF and

GINA confirm this: WRF FSD is 4.90 days later on av-

erage, andWRF LSD is 9.17 days sooner. The later FSD

FIG. 6. Comparison of mean SDF between WRF, SNAP, and OBS. Conventions are as in Fig. 2, with the exception that the WRF

results are for 2002–12 and the SNAP results are for 2000–09.
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in WRF appears to be more consistent with OBS (which

indicate no statistically significant difference fromWRF

except at two coastal sites), and with the assessment of

Lindsay et al. (2015), who found that the GINA data

were biased early compared to in situ observations.

However, the earlier LSD in WRF appears to be

anomalous, as both OBS and GINA indicate that the

WRF snow cover melts too early in general, except in

high snowfall accumulation areas in the mountains.

Possible reasons for the early snowmelt bias inWRF are

explored in section 4.

WRF and GINA visually have broadly similar pat-

terns of interannual variability for FSD and LSD

(measured as the standard deviation of FSD and LSD

across 13 yr; Fig. 8), indicating the highest interannual

variability for both FSD and LSD occurs in nonglaciated

mountain regions. However, low Spearman rank-order

correlations of 0.07 (FSD) and 0.12 (LSD) indicate that

the patterns are not as similar as they appear (Table 2).

This dissimilarity may be partly due to the noisier spatial

patterns in the GINA data, which has an original grid

spacing of 500m (i.e., 64 GINA grid cells for everyWRF

grid cell). Interpolating 500-m GINA data to the 4-km

WRF domain using a bilinear method may not have

adequately smoothed the GINA dataset for a quanti-

tative comparison. Regardless, the results clearly show

that over most regions WRF has lower interannual

variability than GINA for both FSD and LSD. Grid-

averaged standard deviations in WRF are smaller

by 25.07 days for FSD and 25.67 days for LSD

(Table 2). Compared to OBS, the results are more

mixed: WRF has both positive and negative differences

with the OBS, though the lower variability in interior

Alaska appears to be consistent.

e. Evaluation of distributions of daily temperature,

precipitation, and SWE

WRF resolves the regional variations of daily 2-m

temperature distributions for winter and summer com-

pared to OBS (Figs. 9a,b). Median winter temperatures

are colder in northern, western, and interior Alaska

(regions 1–5) compared to the southern regions (6–13).

Likewise, the highest summer temperatures, in the

central and southern interior (regions 3 and 5) are sim-

ulated by WRF. Focusing in the interquartile range

(IQR), WRF resolves the broader 2-m temperature

distributions (higher daily variability) observed in win-

ter compared to summer (note the different scales for

winter versus summer 2-m temperature plots; if they

were plotted on the same scales, the winter 2-m tem-

perature ranges would appear even larger). WRF gen-

erally underestimates the overall maximum 2-m

temperature in both seasons as indicated by the

uppermost values of the distributions, which are the

extreme values for each region over the entire 2002–16

record. In winter this extreme bias is modest (less than a

few degrees Celsius) except in some southern coastal

regions (8, 9, and 13), where the maximum 2-m tem-

perature is underestimated by ;108C. In summer,

maximum 2-m temperatures are underestimated more

widely. WRF accurately simulates the overall minimum

winter 2-m temperature in the colder northern, western,

and interior regions (1–5), but generally underestimates

minima (i.e., is too warm) in the warmer southern

coastal regions (7–12). WRF reasonably simulates

summerminimum 2-m temperatures in general, with the

exception of regions 7 and 8, where they are under-

estimated by .108C. Given that median temperatures

between WRF and OBS compare reasonably (suggest-

ing no significant biases), without conducting specific

case studies of extreme events (beyond the scope of this

study), it is not presently clear why the overall 2-m

temperature maxima and minima are underestimated in

numerous regions. It may be partly due to influences of

microclimate, elevation, and underlying land surface

characteristics that are not resolved by the 16km2 grid

cells inWRF. It is also possible that nuanced differences

in the position and intensity of the storms that drive

extremes (e.g., J. Cassano et al. 2016), and their in-

teractions with local topography, lead to underestimates

of their effects in WRF. Additionally, underestimated

winter minima in the southern coastal regions may be

related to a limited representation in WRF of tem-

perature inversions in complex terrain (H. Zhang

et al. 2013).

Prior to discussing the daily precipitation results in

Figs. 9c,d, OBS and WRF precipitation days are com-

pared across all Alaska sites for winter and summer

(Table 3).WRF simulates precipitation for most days on

which it is observed (83% in DJF and 87% in JJA). This

result indicates that the choice to plot precipitation

distributions in Figs. 9c,d only for days on which pre-

cipitation occurs in both OBS and WRF provides a

representative distribution of observed precipitation

(this choice was made because otherwise the pre-

cipitation results in both distributions are strongly

skewed toward values of 0, obscuring key features).

Table 3 also shows thatWRF simulates about 70%–80%

more precipitation days than are observed during both

seasons. This issue of excessive simulated precipitation

days is reduced to 8%–19% if only days on which

precipitation . 1mm are considered (not shown), in-

dicating that the problem is largely due to WRF simu-

lating trace amounts of precipitation (between 0 and

1mm) on many days for which none is measured. This

‘‘drizzle’’ issue has been well documented across
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numerous models (e.g., Sun et al. 2006). It may be partly

related to the larger areal representation of the WRF

grid cell (16 km2) compared to a point-based observa-

tion, and to the inability of precipitation gauges to detect

trace amounts of precipitation (Yang et al. 1998).

WRF broadly resolves the observed and simulated re-

gional distributions of daily precipitation in winter and

summer, as shown in Figs. 9c,d. The lowest winter pre-

cipitation amounts in both WRF and OBS occur in

northern and interior Alaska (regions 1, 3, and 4) and the

highest amounts in south-central and southeast Alaska

(regions 10–13). Summer precipitation follows similar

regional patterns in both WRF and OBS (Fig. 9d). In-

terestingly, in two adjacent regions in southeast Alaska—

region 11 (the north panhandle) and region 12 (the cen-

tral panhandle)—the observed precipitation amounts

differ in terms of their seasonality. The precipitation is

higher in winter than summer in the central panhandle,

FIG. 7. Comparison of mean snow characteristics betweenWRF,GINA, andOBS. Shown are (a),(e)WRF 2004–

16means, (b),(f)GINA2004–16means, (c),(g)WRFminusGINA, and (d),(h)WRFminusOBS for themean (left)

FSD and (right) LSD. Statistically significant differences (p, 0.05) between WRF and GINA are outlined in thin

gray contours in (c) and (g). Statistically significant differences betweenWRF and OBS are indicated by boldface-

outlined circles in (d) and (h). The days of the snow season follow the convention used by Lindsay et al. (2015) and

as described in the text.
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whereas it is higher in summer than winter in the north

panhandle; WRF resolves these observed differences. A

winter low bias in median precipitation of approximately

0.5–3.0mmday21 is evident in northern, western and in-

terior Alaska (regions 1–5), whereas in the higher-

precipitation regions in south-central and southeastern

Alaska (regions 10–13) themedian precipitation is similar

to observed. During summer there is a low bias inmedian

precipitation in 12 of the 13 regions, although it is

,1mmday21 in 7 of those regions. Possible reasons for

precipitation biases are explored in section 4. Perhaps the

most noteworthy result from Fig. 9 is that WRF accu-

rately simulates the magnitude of the observed pre-

cipitation maxima in nearly every region during both

seasons. This is a particularly important aspect because a

major motivation for generating the WRF dataset is to

investigate precipitation extremes.

To assess the annual cycle inWRF, weekly distributions

of daily 2-m temperature, cumulative precipitation,

and SWE were assessed along a north-to-south transect

FIG. 8. Comparison of the standard deviation of mean snow characteristics between WRF, GINA, and OBS.

Conventions are as in Fig. 7, with the exception that the statistical significance of differences cannot be computed.
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FIG. 9. WRF vs OBS daily (a),(b) 2-m air temperature and (c),(d) precipitation distributions for DJF and JJA,

respectively, by Alaska climate region as indicated in the inset map. The plot was constructed by binning all available

daily data from 2002 to 2016 by region and season and then calculating the minimum, 25th-percentile, median, 75th-

percentile, andmaximumvalues. Precipitation distributions are shown for days onwhich precipitation occurred in both

OBS (black) and WRF (red). Days with no precipitation are not included.
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of SNOTEL sites (Fig. 10). Site selection was based on

balancing the quality and completeness of observed

SWE records with geographical representativeness; for

instance, Bettles is the most northerly site in Alaska for

which there is a reliable SNOTEL SWE record. WRF

simulates the broad distributions of daily 2-m temperature,

for example the higher-amplitude annual cycle at the two

northern sites.Winter warmbiases on the order of 58–108C

is evident at Bettles and of up to 58C at Fairbanks, which

persist into the spring months at both sites. While it is

possible that winter cloud cover may play a role in biasing

the longwave radiation balance at these sites, precipitation

is accurately simulated, suggesting the simulated cloud

cover is reasonable. Strong temperature inversions are

common in interior Alaska (e.g., Malingowski et al. 2014),

and it is more probable that WRF has a limited ability to

simulate the strong temperature inversions that occur at

both sites. This issue has contributed to warm biases in

previous WRF studies over interior Alaska (Mölders and

Kramm 2010; Hines et al. 2011). Additionally, positive

incoming shortwave radiation biases may partially con-

tribute to the warm biases during late winter and spring

(see section 4). Maxima and minima of 2-m temperature

are generally simulated accurately at the four sites, with

the exception of winter at Bettles (where bothmaxima and

minima are too warm), and winter at Cooper Lake (where

maxima are too cold). Thewinter cold bias at CooperLake

is also evident for median temperatures and may be par-

tially due to the site being located at an elevation;100m

higher in WRF. The weekly distributions of cumulative

daily precipitation are simulated accurately in general,

with WRF able to simulate maxima at the relatively low-

precipitation sites of Bettles and Fairbanks. Maxima are

overestimated at the two southern sites, and spring and

summer precipitation is overestimated at Tokositna. The

timing and magnitude of the annual cycle of SWE is sim-

ulated accurately at the interior sites, and the timing of the

SWE cycle is simulated accurately at the southern sites,

though themagnitudes are variable compared toOBS. An

exception is that spring melt occurs too soon at all four

sites, by about 2–4 weeks. This result is consistent with

those presented above for WRF versus GINA, indicating

that LSD inWRF occurs too early, and possible causes are

discussed below.

4. Discussion and conclusions

Here, a new 14-yr (September 2002–August 2016)

dataset for Alaska with 4-km grid spacing is described

and evaluated. WRF 2-m air temperature, precipitation,

and snowfall variables are evaluated at annual, sea-

sonal, and daily time scales versus station records and

observation-based, empirically derived gridded climate

datasets that have similar grid spacing. The spatial pat-

terns of the WRF fields compare well in nearly all cases

to those in the gridded climate datasets; for example, the

pattern correlations between annual mean WRF and

observation-based gridded fields are r 5 0.89 for 2-m

temperature, r5 0.75 for precipitation, r5 0.82 for SDF,

r5 0.55 for first snow day of the season, and r5 0.71 for

last snow day of the season. TheWRF dataset appears to

have a more physically based representation of the in-

terannual variability of 2-m temperature and pre-

cipitation compared to the observation-based gridded

datasets, as shown in the analyses presented in Figs. 3

and 5. This may be expected, given that the gridded

monthly meteorological anomaly fields in the CRU v3.1

dataset that SNAP is based on were computed from

station observations using a triangular linear interpola-

tion method (Harris et al. 2014), which may not fully

depict geographically driven variability (e.g., due to

orography and water bodies) when observational net-

works are sparse, as they are in Alaska. An additional

strength of the WRF dataset is that it accurately de-

picts the magnitude of winter and summer precipitation

maxima in regions throughout the state compared to

station observations. This aspect bodes well for the

subsequent use of the dataset for studies of precipitation

extremes, a major motivation for conducting the simu-

lations. The WRF dataset has a number of weaknesses,

which are discussed below.

Perhaps the most important shortcoming of the WRF

dataset is that spring snowmelt occurs too early over the

majority of the state, due partly to positive 2-m tem-

perature biases in winter that extend into the spring. The

positive temperature biases may be linked to a number

of issues, including 1) elevation differences between

WRF and the evaluation datasets, 2) biases inherited

from the ERA-Interim forcing dataset, 3) clear-sky in-

coming shortwave and longwave radiation biases (e.g.,

Hines and Bromwich 2008), 4) excessive cloudiness

during winter (or conversely not enough clouds dur-

ing spring when incoming shortwave radiation is sub-

stantial), or 5) other factors that might affect the energy

balance such as the limited ability of WRF to handle

extremely stable boundary layer conditions, which may

in turn diminish simulations of temperature inversions

(Mölders and Kramm 2010) [inadequate representation

of inversions was also put forth by Bieniek et al. (2016)

for 20-km WRF Alaska simulations]. While an exhaus-

tive investigation of these possible factors is beyond

the scope of this study, the first three factors are

briefly addressed below. Factors 4 and 5 are explored in

section3 (see the discussion of Fig. 10).

The first factor (elevation differences between WRF

and evaluation datasets) is important at specific sites or
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locally, particularly in the mountainous coastal areas, but

tends to cancel out over larger regions. For example, the

elevation difference between WRF and the station ob-

servations for the 164 sites analyzed ranges from 2606

to1508m, but themean difference is only120m and the

mean absolute difference is 98m. The approximate

temperature bias introduced by these elevation differ-

ences assuming a standard lapse rate (6.498Ckm21)

would be 20.138C for the mean difference and 60.638C

for the mean absolute difference. These values are

noteworthy but are not adequate to substantially alter

conclusions regarding the positive winter and spring

temperature biases. Additionally, use of the standard

lapse rate may provide a conservatively large estimate of

bias introduced by elevation differences in high-latitude

mountain regions (Marshall et al. 2007).

The second factor (inherited biases from ERA-Interim)

does not appear to be a strong contributor to the WRF

biases overall. Lader et al. (2016) compute the biases for

ERA-Interim temperature versus the Hill et al. (2015)

gridded observation-based dataset, which is similar to the

SNAP dataset with which WRF is compared in Fig. 2.

Their results indicate that the ERA-Interim 2-m temper-

ature biases are not similar to those for WRF in Fig. 2 for

eitherwinter or summer.Notably, ERA-Interimhas a cold

bias overmuch of theBrooksRange and interiorAlaska in

winter, whereas WRF has a warm bias.

The third factor (the possibility of clear-sky radia-

tion biases in WRF) was investigated by Hines and

Bromwich (2008) for June 2001 over Greenland. They

found that a polar-optimized version of WRF with the

RRTM longwave scheme (which is used in this study)

and the Goddard shortwave scheme simulated clear-sky

incoming longwave radiation for the Summit station

with minimal bias, suggesting excessive clear-sky long-

wave radiation may not be an issue in our simulations.

However, they found a positive bias in incoming short-

wave radiation. We investigated the possibility of a pos-

itive incoming shortwave radiation bias at radiation

measurement sites in northern and interiorAlaska using a

WRF simulation that was conducted for 1yr (September

2002–August 2003) as a precursor to the final 14-yr WRF

simulation evaluated here. The precursor and final simu-

lations had nearly identical model configurations. The re-

sults of the comparison (not shown) indicate that WRF

incoming shortwave radiation along the North Slope

(Barrow, Sagwon, Kuparuk, and Ivotuk) is nearly identical

to OBS from February through April; in May, an impor-

tant melt month, the incoming shortwave radiation in

WRF is actually lower than observed. This is consistent

with the 2-m temperature biases in that particular region,

which are negative in WRF. However, at the interior site

near Fairbanks, where there are strong positive 2-m tem-

perature biases in winter and spring (Figs. 2 and 10), in-

coming shortwave radiation biases are positive in WRF

from February through August. They are too large by

;30–40Wm22 in the key melt months of April and May.

It is thus possible that excessive incoming shortwave ra-

diation during late winter and early spring contributes to

warm biases during those seasons in interiorAlaska, which

in turn contribute to earlier-than-observed melt in WRF

(Fig. 10). During sensitivity simulations in preparation for

our production runs we attempted to mitigate the early

melt bias by optimizing Noah-MP to retain snowpack

during warm periods (see section 2); however this effort

appears to have been only partially successful.

An additional shortcoming of the WRF dataset is the

existence of positive precipitation biases over the lower-

elevation regions of interior and northern Alaska, and

negative precipitation biases over the Pacific Coast

Ranges in southern Alaska, in both winter and summer.

This conclusion is primarily based on comparison to the

SNAP precipitation fields, and is not as pronounced in

comparison to the few precipitation observations that

exist (Fig. 4). Therefore, the differences may be partially

attributed to biases in SNAP. SNAP employs PRISM

precipitation fields to inform its background state. In turn,

the lapse rates that are used in the PRISM interpolation

method may be uncertain in areas where there are few

measurements to provide constraint (Daly et al. 1994),

particularly in complex terrain (Henn et al. 2017). It is

also noteworthy that the 20-km WRF simulations evalu-

ated by Bieniek et al. (2016) were subject to these same

bias patterns. They posited that the positive biases might

be partly due to observational uncertainty, particularly

gauge undercatch during winter. They also noted that the

quality and magnitude of precipitation in mountainous

areas is difficult to assess because most observation sites

are located at low elevations. Moreover, in some areas

point-based observations may not be representative of

the 16km2 WRF grid cells. Finally, Bieniek et al. (2016)

noted that ERA-Interim, which they also used for the

boundary conditions for WRF, has overall positive pre-

cipitation biases compared to observations (Lader et al.

TABLE 3. Contingency table comparing the number of station

days on which precipitation . 0mm was observed (OBS) and

simulated (WRF). Station-day statistics are aggregated across all

Alaska stations for days on which data are nonmissing between

September 2002 and August 2016.

Event observed in OBS?

DJF JJA

Yes No Yes No

Event simulated

by WRF?

Yes 20 027 21 329 23 862 25 367

No 4176 28 028 3635 22 238
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FIG. 10. WRF vs SNOTEL annual cycle of 2-m air temperature, cumulative precipitation, and SWE at four sites along the north-to-

south transect indicated in the inset map. The plot was constructed by binning all available daily data from 2002 to 2016 by week of year

and then calculating the minimum, 25th-percentile, median, 75th-percentile, and maximum values.
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2016), raising the possibility that excessive moisture may

be propagated through the WRF boundaries.

Despite the limitations noted above, this initial eval-

uation suggests the 4-km WRF climate dataset robustly

simulates meteorological processes and recent climatic

variability in Alaska. Future studies will provide further

insight on its ability to represent specific aspects of

Alaska climate. The new dataset should be viewed as an

additional resource for the community that, when used

in conjunction with other data sources, can enhance our

understanding of the spatiotemporal variability of

Alaska’s weather and climate. The ability of the dataset to

resolve year-to-year meteorological variability and pre-

cipitation maxima at comparatively high spatial resolu-

tionmake it particularly well suited for studies of extreme

events and the processes that drive them, in addition to its

potential utility for driving other models (e.g., hydrologic

or glacier models), or studying the diurnal cycle. The

WRF fields may also be useful for informing the back-

ground spatial and temporal variability for the creation of

new observation-based, empirically derived gridded cli-

mate products. Selected meteorological fields from the

WRF dataset are presently available to the community

at a variety of time scales (Monaghan et al. 2016).
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