High Resolution Imaging for Inspection of Laser Beam Melting Systems

Joschka zur Jacobsmühlen^{a)}, Stefan Kleszczynski^{b)}, Dorian Schneider^{a)}, and Gerd Witt^{b)}

- a) Institute of Imaging and Computer Vision RWTH Aachen University Aachen, Germany
- b) Institute for Product Engineering University of Duisburg-Essen Duisburg, Germany

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
- Applications in Quality Control

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
- Applications in Quality Control

What is Laser Beam Melting? An Introduction

- "3D printing"
- Layer-based, iterative (additive manufacturing)

What is Laser Beam Melting? Build Process

1. Powder Deposition 2. Layer Creation X-Y Scanner X-Y Scanner **LASER Inert Gas** laser window recoater powder powder created overflow reservoir part reservoir lowerable building platform 3. Lowering

What is Laser Beam Melting? Parts

High density metal parts with excellent mechanical properties

Quality Control for Laser Beam Melting Processes

Non-destructive inspection difficult

Can't X-ray thick metal parts!

Inspect each layer after creation

Quality Control for LBM Processes: the Idea

all layers correct?

Inspect each layer after creation

- What is Laser Beam Melting? An Introduction
- Our Imaging System
 - Setup
 - Resolution Measurement
- Sample Build Images
- Applications in Quality Control

Image Acquisition Setup

LBM machine: EOS EOSINT M 270

Camera

- 29 megapixels, large sensor (36 mm x 24 mm)
 - Usable pixels
- Tilt and shift lens to reduce perspective distortion

Hartblei Macro 4/120 TS Superrotator

SVS-VISTEK SVCam-hr29050

Resolution Measurement

Assess properties of optical system Resolution sufficient for small details?

➤ Use modulation transfer function (MTF): resulting contrast for spatial frequency

Modulation Transfer Function

Magnitude of complex optical transfer function (OTF)

$$psf(\mathbf{x}) \xrightarrow{DFT} OTF(\mathbf{f}) = MTF(\mathbf{f}) \cdot \theta(\mathbf{f})$$

(point spread function)

Compute by slanted-edge method [Burns2000, ISO12233]

Resolution Measurement: Target

Light from left side causes shadows

(neither dark nor bright regions are saturated in full-scale image.)

Resolution Measurement: Result

limiting resolution at least $\xi_0 = 50$ lp/mm [90 lp/mm] (on sensor) for FOV 180 mm x 120 mm able to resolve details of 50 μ m [28 μ m]

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
 - Documentation Format
 - Images
- Applications in Quality Control

Documentation Format

Many images and associated metadata

Hierarchical Data Format (HDF5)

Documentation of entire process in one file

[www.hdfgroup.org]

Sample Build

Laser scan velocity

Laser power

Hatch distance

: Increased energy input

: Decreased energy input

Sample Build: Hatch Distance

Sample Build: Elevation of Contour Regions

Power +40 % Power -40 %

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
- Applications in Quality Control

Applications in Quality Control

Process documentation

Applications in Quality Control

Detect non-optimal parameter values

Laser power -40 %

Laser power +40 %

Applications in Quality Control

Link surface images to mechanical part properties

- What is Laser Beam Melting? An Introduction
- Our Imaging System
- Sample Build Images
- Applications in Quality Control
- Summary

Summary

- What is Laser Beam Melting? An Introduction
 - "print" complex metal parts
 - no complete process documentation, yet
- Our Imaging System
 - MTF for resolution measurement
 - resolution at least 50 μm [28 μm]
- Sample Build Images
 - different surface quality visible in images
- Applications in Quality Control
 - documentation
 - flaw detection: energy input, elevated regions

Lehrstuhl

aufgrund eines Beschlusses des Deutschen Bundestages

High Resolution Imaging for Inspection of Laser Beam Melting Systems

Joschka zur Jacobsmühlen¹⁾, Stefan Kleszczynski²⁾, Dorian Schneider¹⁾, and Gerd Witt²⁾

- 1) Institute of Imaging and Computer Vision RWTH Aachen University Aachen, Germany
- 2) Institute for Product Engineering University of Duisburg-Essen Duisburg, Germany

References

- Berumen, S.; Bechmann, F.; Lindner, S.; Kruth, J.-P. & Craeghs, T., "Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies", in Physics Procedia, 5, pp. 617–622, 2010
- Berumen, S.; Bechmann, F. & Craeghs, T., "Quality control for the coating process in laser- and powder bed-based additive manufacturing technologies", in Fraunhofer Direct Digital Manufacturing Conference, 2012
- P. Burns, "Slanted-edge MTF for digital camera and scanner analysis," in IS AND TS PICS CONFERENCE. SOCIETY FOR IMAGING SCIENCE & TECHNOLOGY, 2000, pp. 135–138.
- T. Craeghs, S. Clijsters, E. Yasa, and J.-P. Kruth, "Online Quality Control of Selective Laser Melting," in Proc. of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 2011.
- M. Doubenskaia, M. Pavlov, and Y. Chivel, "Optical System for On-Line Monitoring and Temperature Control in Selective Laser Melting Technology," Key Engineering Materials, vol. 437, pp. 458–461, 2010.
- J.-P. Kruth, P. Mercelis, J. Van Vaerenbergh, and T. Craeghs, "Feedback control of selective laser melting," in Proc. 3rd Int. Conf. on Adv. Research in Virtual and Rapid Prototyping, 2007, pp. 521–527.
- P. Lott, H. Schleifenbaum, W. Meiners, K. Wissenbach, C. Hinke, and J. Bültmann, "Design of an Optical system for the In Situ Process Monitoring of Selective Laser Melting (SLM)," Physics Procedia, vol. 12, Part A, pp. 683 –pp. 690, 2011.

