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Abstract

An emerging branch of geocomputing involves the modelling of spatial processes. A variety
of techniques are being used, the most important being traditional regionalized system

dynamics approaches, multi-agent systems, and cellular automata (CA). The techniques are
frequently combined to model processes operating at di�erent spatial scales. Urban and
regional models based on CA give good representations of the spatial dynamics of land use.
In a current application, a cellular model of The Netherlands at 500 m resolution is driven by

a macro-scale dynamical spatial interaction model de®ned on 40 economic regions; this model
is in turn driven by national planning projections and policy goals. Given the national totals,
the macro-scale model generates regional demands for population and a number of economic

activities. These demands are translated into demands for cell space, which the CA then
attempts to locate. In turn, information on conditions at the cellular level, such as the quan-
tity and quality of land available to various activities and actual densities at the cellular scale,

are returned to the regional model to modify parameter values there. Linking the two models
operating at the two scales improves the performance of both. The results of high-resolution
modelling of spatial dynamics raise several methodological issues. One of the most pressing

concerns evaluation of the results. Another issue concerns predictability. To the extent that
these models capture the evolving nature of real cities and regions, they cannot be strictly
predictive. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most geocomputation currently deals with the processing of spatial data in order
to show us the world as it is; but of course the world can be seen from many points
of view, and one of the great strengths of geographical information systems (GIS) is
that it allows us continually to recon®gure the data in the ways that are most
appropriate for our changing needs and points of view. Spatial statistics by and
large tend to perform the same sort of task, but in a more abstract way, allowing us
to make generalizations about what we see in the data, to extract hypotheses from it,
or, ®nally, to use it to test hypotheses.
But the data that is stored and processed in a GIS contains, so to speak, the seeds

of its own destruction. The patterns of land cover and land use, and of social, eco-
nomic, and demographic characteristics, constantly change, both because the spatial
structures are themselves inherently unstable, and because they are typically exposed
to external phenomena that also force change. This problem is dealt with by pro-
grammes for periodic data collection and updating, but such a response is not su�-
cient for all purposes, since at best it gives us only a regularly updated picture of
current conditions. Planners and decision makers need to know not only the current
state of a�airs, they also require some idea of future conditions. Ideally they would
like to be able to see the possible consequences of the plans and policies they may
have under consideration. These considerations point to another class of geo-
computation techniques Ð speci®cally, predictive computational models. To the
extent that these models embody dynamics capturing the endogenous instabilities of
existing spatial con®gurations, they can be thought of as dynamical GIS.
The favoured techniques for implementing high-resolution models of spatial

dynamics are cellular automata (CA) and multi-agent systems (MA). CA are
attractive for a number of reasons:

1. they are inherently spatial; typically they are de®ned on a raster cell space and
are thus compatible, or can be made compatible, with most spatial data sets;

2. they are dynamic, and can thus represent spatial processes in a direct way;
3. they are highly adaptable Ð they can be set up to represent a very wide range

of situations and processes;
4. they are rule based, and can thus capture a wide variety of spatial behaviours;
5. they are simple, and thus computationally e�cient; and
6. in spite of their simplicity, they can exhibit extraordinarily rich behaviour;

some simple CA have been shown to be formally equivalent to a Turing
machine, i.e. these CA can represent and execute any possible algorithm.

MA systems also have attractive features:

1. they provide a straightforward way to represent spatial entities or actors hav-
ing relatively complex properties or behaviours;

2. they provide inheritance of properties from class to subclass, so that they
represent hierarchical systems in a natural way; and
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3. they capture directly the interactive properties of many natural and human
systems, as well as the complex system behaviour that emerges from this
interaction.

The two approaches overlap to some degree; indeed, CA are occasionally con-
sidered to be a type of MA system. In the context of geocomputation, MAs are most
commonly used together with CA to represent, for example, individuals moving
around in a cell space endowed with its own CA dynamics (Benenson, 1998; Portu-
gali & Benenson, 1997), or to represent clusters of cells which may be generated by
the dynamics of a CA, and which as a cluster maybe acquire emergent properties.
However, MAs can be used on their own, e.g. to model the dynamics of an urban
system containing a variety of types of urban centres (Bura, Guerin-Pace, Mathian,
Pumain & Sanders, 1996; Sanders, Pumain & Mathian, 1997).
In this paper we focus on CA. Tobler (1979) was the ®rst to suggest the use of CA

in geographical modelling. He was followed by Phipps (1989, 1992), who focused on
theoretical problems of cluster formation, and Couclelis (1985, 1988, 1989), who in
this early work used the technique to explore theoretical issues such as complexity
and structure formation. In more recent work, both (Couclelis, 1997; Phipps &
Langlois, 1997) have continued to pursue theoretical problems associated with CA
representations of geographical systems. Cecchini and Viola (1990) were also among
the ®rst to adopt CA for spatial modelling, and have continued to work in this area
(Cecchini, 1996). Papini and Rabino (1997) have used CA to model urban form.
Since CA can be considered an extension of GIS, in which a dynamics is imposed on
the data structures, the link between the two has attracted a certain amount of
attention: Itami (1994), Wagner (1997), White and Engelen (1994), and Wu (1998b)
have all considered this issue. Theobald and Gross (1994) have gone further and
discussed the integration of GIS, CA, and System Dynamics techniques (Stella);
they thus support the approach taken in this paper, which emphasizes integrated
modelling using all three types of approaches.
More recently, there have been a number of applications of CA that are aimed at

developing the technique as one which can be applied to practical problems in such
areas as land use planning, social policy, and impact assessment. Clarke, Hoppen
and Gaydos (1997) used a CA to model the historical development of urbanization
in the San Francisco Bay area. Batty and Xie (1994, 1996) and Xie (1996) developed
several urban models, one of which was applied to the development of a residential
area on the fringe of Bu�alo, USA. The work of Wu (1998b) is also directed at
developing planning applications. Portugali and Benenson (1995, 1997) and Portu-
gali, Benenson and Omer (1994, 1997) have emphasized empirical realism in highly
detailed models which combine land use dynamics with models of socio-economic
and ethnic group formation; these are applied in Tel Aviv, Israel. Finally, Engelen,
White and Uljee (1997), Englelen, Uljee and White (1997), Engelen, White, Uljee
and Wargnies (1996), Uljee, Engelen and White (1996), White and Engelen (1993,
1997a, b), and White, Engelen and Uljee (1997, 1999) have developed several CA
and CA-based integrated models designed as prototypes of Spatial Decision-
Support Systems for urban and regional planning and impact analysis (fully functional
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demos of several of these models can be downloaded from www.riks.nl/RiksGeo/
freestu�.htm).
The cumulative e�ect of this work is to demonstrate that CA are remarkably

e�ective at generating realistic simulations of both land use patterns and other spa-
tial structures. Unlike conventional System Dynamics techniques, they have proven
able to handle high-resolution applications easily, and thus to combine the precision
of high-quality data sets typically resident in GIS with the realism of dynamics to
yield convincing predictions of the future states of spatial systems.

2. Characteristics of CA

CA are perhaps the simplest type of dynamic spatial model. Essentially, they
consist of:

1. a grid or raster space;
2. a set of states which characterize the grid cells;
3. a de®nition of the neighbourhood of a cell;
4. a set of transition rules that determine the state transitions of each cell as a

function of the states of neighbouring cells; and
5. a sequence of discrete time steps, with all cells updated simultaneously.

The most basic CA, like Game of Life and the one-dimensional CA used for fun-
damental research in the properties of dynamical systems, embody these character-
istics in a straightforward way. In Game of Life, for example, the cell space is a two-
dimensional rectilinear grid, there are two possible cell states, alive and dead, and the
transition rules are simple, e.g. if a dead cell has exactly three live cells in its eight-cell
neighbourhood, then at the next iteration it changes state to alive. But the CA that
have been developed to model geographical systems typically are much more com-
plex, and relax these de®ning characteristics in a number of ways in order to come as
close as possible to a faithful representation of the system being modelled. Thus, it is
worthwhile to examine some of these variations on the CA theme and the reasons
why they are useful in a geocomputational setting.

2.1. The grid space

Grid space is typically assumed to be two dimensional, rectilinear, and homo-
geneous; but these assumptions are frequently dropped. While it is clear that for
most geographical applications involving land use and land cover it is natural to use
a two-dimensional grid, for some applications it may be more straightforward to
use grids with other dimensions. Some of the most advanced urban tra�c models,
for example (Nagel, Rasmussen & Barrett, 1997), have been developed using one-
dimensional CA, although in these models the linear CA are concatenated in order
to represent the network structure of the road system. Similarly, it might be useful to
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model dense, multi-story urban areas with three-dimensional CA, although to date
this has not been done.
Rectilinear grid systems have obvious advantages both in terms of compatibility

with raster-based data systems and in terms of computational e�ciency. However,
the regular structure in principle may introduce artifacts into the spatial structures
generated by the CA, and so some authors have proposed using a hexagonal tiling
or even randomizing the grid coordinates in order to minimize or eliminate the
macroscopic asymmetries that characterize a square lattice. So far there seem to be
no geographical applications that make use of such a randomization procedure.
There are other reasons to depart from a regular grid. In current applications, cell

sizes range from 500 m down to tens of metres. If the space to be modelled is already
subdivided into functionally relevant units that approximate the scale of the grid,
then these units will provide a better representation of the space than will grid cells.
For example, if land use modelling is to be carried out at a resolution approximating
the scale of cadastral or land ownership units, then using cadastral units rather than
grid cells will result in a better conformation of model results to actual land use
boundaries, although there will of course be a loss of computational e�ciency, as
well as a complication of the de®nition of the `cell' neighbourhood. Batty and Xie
(1994) have employed cadastral units in a model of land use changes in a suburban
area of Bu�alo, USA.
For typical geographical applications, the most important grid space assumption

to relax is that of homogeneity. Realistically, the space on which the state dynamics
is played out is far from homogeneous. If the states represent land use, then it is
clear that a number of factors other than the land use of neighbouring cells Ð fac-
tors such as slope, soil quality, and zoning regulations Ð may be important deter-
minants of land use change. Such factors can be thought of as characterizing the cell
space itself. In this view, then, each cell is characterized by an intrinsic suitability for
each particular land use, or state, which acts in addition to the standard cellular
neighbourhood e�ect in determining the cell state transitions. These suitabilities may
also include non-local factors that are not represented in the cell space neighbour-
hood, such as accessibility to a transportation network or to key points in the region
like a city centre or an airport.
A number of CA models have been developed in which the cell space is inhomo-

geneous (Engelen, White & Uljee, 1993; White & Engelen, 1997a; White, Engelen &
Uljee, 1997). The idea of including suitabilities in the characterization of the cell
space emphasizes the importance of the link between CA modelling and GIS, since
the suitabilities are typically calculated within a GIS and imported into the cellular
model. However, when suitabilities consist of weighted sums of cell characteristics, it
is frequently the case that the proper values of the weights are not known. In this
case determination of the precise values of the weights becomes part of the calibra-
tion process of the CA, and it is convenient to have a software tool that sits between
the GIS and the CA and facilitates the process of calibrating the weights. In any
case, the weights, or more accurately, the suitabilities determined by them, form part
of the boundary conditions of the CA, i.e. they are read in during the initialization
of the model and remain ®xed during execution. In principle the weights might also
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be altered dynamically within a CA-based model, although apparently no such
model has yet been implemented.

2.2. The cell states

Cell states most commonly represent land cover and land use, but may be used to
represent any spatially distributed variable for the purpose of modelling its spatial
dynamics. For example, cell states may be used to represent population density
levels (Wu, 1998a). In this approach the transition rules add population to cells so
that each cell is characterized by a population count that changes with each itera-
tion. Since cell sizes are uniform, the cell values in fact represent population density.
Cell states may also consist of vectors representing a number of features. Portugali
and Benenson (1995), for example, use cell state vectors to represent ethnic and
socio-economic status, demographic attributes, and attitudes towards other groups
in their model of neighbourhood and attitude formation. In CA models of natural
systems, cell states are used to represent such factors as sediment load in seawater,
groundwater levels, and soil moisture. We mention these to emphasize the compat-
ibility between CA models of human and natural systems.

2.3. The neighbourhood

In keeping with the spirit of simplicity of CA, applications most often adopt either
the Von Neumann neighbourhood (consisting of the four cells adjacent to the sides
of the cell) or the Moore neighbourhood (the eight adjacent cells). For most physical
systems, these are clearly the most appropriate de®nitions, since such systems typi-
cally have only local causation (e.g. groundwater must ®rst ¯ow through adjacent
cells before it can reach more distant ones). However, in the case of human systems,
the idea of locality may be much larger, since people and institutions are aware of
their surroundings in a wider space. Thus, it is desirable to de®ne a neighbourhood
large enough to capture the operational range of the local processes being modelled
by the CA. In the case of land use changes, local or neighbourhood e�ects may
extend to a distance of a kilometre or more. Hence, in some models (e.g. Uljee,
Engelen & White, 1996) the neighbourhood is de®ned as all cells within a radius of
eight cells, an area containing 196 cells. Of course, if the logic of the problem
requires, it would be possible to de®ne non-local neighbourhoods, e.g. the neigh-
bourhood might be de®ned as consisting of cells with which the given cell was linked
in some functional sense, without regard to the distance of the cells. Kau�man (1989)
has used this kind of neighbourhood in his work with random Boolean networks,
which may be regarded as CA with non-local, randomly de®ned neighbourhoods.

2.4. The transition rules

The transition rules are the heart of a CA. They represent the logic of the process
which is being modelled, and thus determine the spatial dynamics which result. Since
they are as various as the processes they represent, it is di�cult to generalize about
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them. They may be simple, as in Game of Life or spatial voting models (a cell takes
the state of the majority state in its neighbourhood), or complex; in the limit the
`rule' may consist of an entire sub-model. Rules developed to apply to neighbour-
hoods with a large cell radius will typically represent local spatial processes that
include a distance-decay e�ect. For example, a rule relating the future land use of a
cell to the actual land uses within an eight-cell radius will represent the attraction
and repulsion e�ects of the various land uses in the neighbourhood, but with an
attenuation of the e�ect of the more distant cells. In models of human systems it is
usually appropriate, or even necessary, to introduce a stochastic element into the
transition process in order to capture the e�ects of imperfect information and dif-
ferences among individuals.

2.5. The time step

In CA models time is normally discrete, with a simultaneous updating of all cell
states after the rules have been applied to each cell using the current con®guration.
For many applications the appropriate time step is a matter of convenience; e.g.
iterations representing 1 year may be adequate in a model of land use change,
whereas a model of tra�c ¯ow would require time steps of seconds or minutes. One
of the most promising roles for CA is in integrated modelling, where several models
are linked dynamically and run as one; in these cases the time steps must be de®ned
in such a way as to be compatible. For practical purposes, this requires nested time
scales, with each discrete time scale being an integral multiple of the next slower
scale.
It is also possible to substitute sequential for simultaneous updating. This is

desirable when the process being modelled has relatively few discrete events per time
step, as, for example, in the case of a high-resolution model of an urban land mar-
ket, where individual parcels are put on the market, bid for, and sold (Dong, 2000).
In the case of constrained CA, discussed below, sequential updating may also have
the advantage of simplifying the problem of attaining appropriate numbers of cells
in the various states. This is the primary motivation for using a sequentially updated
version of a Boltzman probability transition rule in an urban land use model being
developed at Los Alamos National Laboratories. However, sequential updating is
clearly only feasible when it is possible to ®nd an appropriate means for selecting
the cells to be updated, one that is in accord with the nature of the process being
modelled.

3. Constrained CA and integrated modelling

In a pure CA the number of cells in a particular state is determined endogenously
by the cellular dynamics. However, this is not realistic for many geographical
applications, since usually the number of cells is determined by the level of demand
for the activity which is carried out on the cells. Consequently, for most applica-
tions, in order to achieve a realistic representation of the system, the cellular model
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is constrained to generate particular numbers of cells in each state, with the target
cell numbers determined exogenously, often by another model.
Introducing constraints requires two problems to be solved:

1. numerical values for the constraints must be acquired or generated; and
2. the constraints must be incorporated into the transition rules in such a way as

to ensure that they are satis®ed without violating the logic of the local pro-
cesses modelled by the CA.

The second problem is in many ways the more di�cult, but it is technical in nature,
and its solution depends largely on the details of the particular model; we will not
discuss it further here. The ®rst problem, however, is really an opportunity for
integrated modelling. For many applications, constraints may simply be supplied as
a ®le to be read during execution time, e.g. the required number of cells of each land
use type or the total urban population may be read in at each iteration. However,
the constraints may also be generated during run time by one or more linked mod-
els. In this case the linked models are usually of interest in their own right, and if the
links between them and the CA are two-way, then the constraining models are in
turn constrained or modi®ed by input from the cellular-level model.
The constraint models may themselves be regionalized, so that they have their

own macro-scale spatial dynamics and provide regionalized constraints to the CA.
In an integrated land-use model of The Netherlands, for example, a regionalized
economic±demographic model provides demands for cell space for each activity in
each of 40 regions, at each iteration. The CA then attempts to achieve these desired
totals for the various cell states in each region. But the more desirable a region is, the
more di�cult it is to satisfy the cell demands. In this case, densities in the region
increase, and as higher densities are associated with higher land prices, the
region becomes relatively less attractive; speci®cally, the higher densities are
returned to the demographic±economic model where they lower the attractivity of
the region in the macro-scale dynamics. As a result of these links, the macro-scale
model e�ectively incorporates high-resolution suitability and land use data resident
at the cellular level. This model is discussed in greater detail in the next section.
In general, the possibilities for fully integrated modelling are particularly promis-

ing in the area of human±natural systems, where to date there has been very little
progress in integrating socio-economic models of human systems with models of
natural systems. Most economic and demographic models are either completely
aspatial, or are regionalized to relatively large spatial units like provinces. Models of
natural systems, on the other hand, e.g. groundwater, soil loss, or ecosystem models,
typically are fully spatial, and often of relatively high resolution. There is thus a
basic spatial incompatibility between the two types of model. On the ground, the
interactions between the two types of systems tend to be place-speci®c: the popula-
tion of a province may grow by a certain amount, but the additional people will live
in housing built on speci®c sites and thus modify or destroy particular habitat.
Inserting a constrained CA-based model as a link between the two types of model
provides the necessary compatibility of spatial scales. This integrating function is
potentially one of the most valuable aspects of cellular modelling.
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Several CA-based integrated models are currently under development. One of
these, the Urban Security project at Los Alamos National Laboratories (USA) is
integrating several existing models, including a high-resolution earthquake destruc-
tiveness simulator, using a CA-based urban land use model in order to simulate both
the short run impacts of earthquake events and subsequent urban regrowth.
Another, the MODULUS project, sponsored by the Science, Research and

Development Directorate (DG-XII) of the European Commission, has as its objec-
tive the integration of a number of models that were developed in previous EC-
funded research projects. The individual models include a rainfall and solar radia-
tion simulator, a hydrology and soil moisture model, natural vegetation and crop
growth models, aquifer and groundwater pumping models, socio-economic scenar-
ios, and an agricultural decision-making model. Some of these, like the rainfall,
solar radiation, hydrology and crop growth cluster, were developed as linked mod-
els, but others were developed by groups working at several di�erent institutions
and were not designed for compatibility. Now they are being linked, so that, for
example, the hydrology and aquifer models provide input into the groundwater
pumping model, which in turn is linked via an irrigation model back to the hydrol-
ogy. However, the links between the socio-economic and decision-making modules
on the one hand, and the environmental and vegetation models on the other are
through a CA-based land use/land cover model. The result is expected to be a spatial
decision-support system that will be used by local decision makers in the two Med-
iterranean regions being modelled.
Finally, the same generic CA land use model used in MODULUS is the basis of

an integrated model developed by the Research Institute for Knowledge Systems for
RIVM, the environmental research institution of the Dutch government (Engelen,
White & Uljee, 1998; RIVM, 1998). Because this is likely to be the ®rst CA-based
integrated model actually to be used by planners and policy makers, we describe it in
more detail in the following section.

4. A CA-based integrated model for land use policy development

The LeefOmgevingsVerkenner (Environment Explorer) is an integrated model of
both land use and the regional distribution of population and economic activity in
The Netherlands. It integrates a CA land use model with a regionalized, spatial-
interaction based economic±demographic location model. The model covers the
whole of The Netherlands; the CA has a resolution of 500 m, while the macro-scale
model operates on 40 urban-centred economic regions, or COROPs. The model is
driven by national projections for population and sectoral economic activity; there
are three sets of projections corresponding to three scenarios regarding the future
structure of the European and global economies. The projections corresponding to
the desired scenario are input into the macro-scale model which at each iteration
allocates new activity to the COROPs and re-allocates existing activity on the basis
of the relative competitiveness of the regions. The regional estimates are then con-
verted via productivity functions into regional demands for cell space for the land
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uses corresponding to each activity (housing, industry, woodland, etc.); these
demands constitute the constraints for the CA, which then determines the actual
land use patterns. Information on regional densities and suitabilities is then returned
from the CA to the macro-scale model, where it in¯uences the cell demands gener-
ated in the next iteration.
The primary purpose of the model from the end user's point of view is to provide

a tool for exploring the e�ects of alternative policy options on the quality of the
environment. Since The Netherlands is a very densely populated country, environ-
mental policies are as much concerned with the quality of the living environment of
the people, e.g. access to green areas, nature reserves, and recreational areas, as it is
with more traditional concerns such as preservation of species diversity. National
policies concerning growth, development, and land use all have implications at the
most local level, which is where many of the decisions that are most important in
shaping the lived environment are taken. The integrated CA-based model thus
functions to reveal the likely local consequences of the national policies, both in
terms of land use as such, and also as shown by a number of economic, social, and
ecological indicators that are calculated from the model output. Various policy
options can be examined in this way, and the results used as the basis of discussions
leading to policy formation.

4.1. The CA land use model

The CA component of the integrated model is de®ned on a grid of 351,000
500�500 m cells. Sixteen land use and land cover categories are used in the cellular
model Ð or occasionally more for certain applications. These are divided into three
categories in terms of the way they are handled in the CA. Active land use categories
are those for which the dynamics are fully modelled; their dynamics are driven by
targets for cell totals supplied at each iteration by the regional model. Passive land
use categories are those which are not driven by targets, so their dynamical behav-
iour is a residual of the dynamics of the active categories. Active and passive land
uses together total some 132,000 cells. Finally, some land covers and land uses, like
water and airports, are ®xed. These feature cell states can only be changed by an
intervention that is exogenous to the CA dynamics.
At each iteration, a vector of transition potentials is calculated for each cell in the

array that is not in a state representing a ®xed feature. These potentials represent
the relative attractiveness of the cell for each of the non-feature land uses. More
speci®cally, they re¯ect the attraction and repulsion e�ects of other land uses in the
neighbourhood of the cell, as well as the e�ects of the accessibility of the cell to
the road and rail networks (Fig. 1c), the suitability of the land for the particular use
(Fig. 1a), and the land use zoning regulations (Fig. 1b). Transition potentials for
each cell are calculated as follows:

Pj � vAjSjZjNj �Hj; �1�
where Pj=the potential of the cell for land use j; v=a scalable random perturbation
term; Aj=accessibility of the cell to the road network; Sj=the intrinsic suitability of
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the cell for land use j; Zj=the zoning status of the cell for land use j; Nj=the
neighbourhood e�ect on the cell for land use j; and Hj=an inertia e�ect; Hj > 0 if
the current state is j; otherwise, Hj=0.
The neighbourhood e�ect is calculated over all cells within an eight-cell radius.

Within this radius there are 30 discrete distance values, d. Cells within the neigh-
bourhood are weighted according to their land use and their distance from the cell
for which the potential is being calculated:

Nj � SxSdwkxdIxd; �2�
where wkxd=the weighting parameter applied to land use k at position x in distance
zone d of the neighbourhood; and Ixd=the Dirac delta function: Ixd=1 if the cell is
occupied by land use k; otherwise, Ixd=0.

Fig. 1. Examples of input data for the LeefOmgevingsVerkenner model: (a) suitability for low density

housing; (b) zoning map for low density housing; (c) accessibility values for low density housing; and (d)

the 40 economic regions (COROPs).
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The network of major highways is represented by cell-centred vectors and appears
superimposed on the cell grid. Accessibilities are calculated as a function of distance
from the cell to the nearest point on the network:

Aj � �1�D=aj�ÿ1; �3�

where D=the Euclidean distance from the cell to the nearest cell through which the
network passes; and aj=a coe�cient representing the importance of accessibility to
the network for land use j.
Once the vector of potentials has been calculated for all non-feature cells, state

transitions are determined. First, the number of cells in each state for each region is
determined from the regional model. Then, in each region in which the cell demands
can be accommodated, each cell is assigned the state for which it has the highest
potential as determined by Eq. (1), with cells being assigned states in the order of the
ranked potentials, starting with the highest. However, once the target number of
cells for a given land use has been attained, potentials for that state are ignored
when determining the state of subsequent cells. If all cell demands within a region
cannot be satis®ed, the productivity function relating activity level to cell demand
(e.g. population to housing cells required) increases the densities in that region, thus
reducing cell demand. If that is still not su�cient, then the excess cells that cannot be
accommodated in the region are added to the cell demands of other regions where
adequate space is available.

4.2. The linked regional model

The model which generates activity levels for the various economic sectors as well
as population in each of the 40 COROPs (Fig. 1d) is based on classical spatial
interaction equations, supplemented by terms which capture the e�ect of densities,
average suitability levels, and average cellular potential levels within the regions. We
show here one equation to illustrate the nature of the model and display the features
relevant to integration with the CA.
First, the model allocates to the COROPs new activity due to national growth,

and reallocates some portion of the existing activity among the regions in order to
represent the e�ect of competition among the regions. For example, migration of
activity K into region i from all other regions j is given by:

tDI ki �
X
j6�i

tÿ1X0Kj
tXpi=d

n
ij

tVPj

� ��K1 tJi=d
n
ij

tVJj

� ��K2 tXKi=d
n
ij

tVKj

� ��K3 tW0Kj
tW0Ki

� ��K4"

potKih i
potKj

 � !�K6

suitKih i
suitKj

 � !�K7

35; �4�

where tDIKi=demand for migration of activity K into region i at time t; XKj=le-
vel of activity K in region j and XPj=population in region j; Ji=jobs in region j;
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dij= distance between regions i and j; VKj=the potential at region j, a measure of
the accessibility of region j to activity K in all regions, calculated as:

tVKi �
XR
j�1

tXKj

d n
ij

 !

and similarly for Vp and VJ ; WKj=the density of activity K per cell in region
j; hpotKji=the mean cellular potential for the land use corresponding to activity K in
region j; hsuitKji=the mean suitability for the land use corresponding to activity K
in region j; and �Ki=parameters to be calibrated.
A similar equation represents ¯ows out of the region, and so the net desired

change in activity K in the region is given by the di�erence of the two quantities,
plus the regional allocation of new activity. It is worth emphasizing that these are
only demands for the location of activity, since the actual relocation of activity can
only take place to the extent that space is available in the region, and that is deter-
mined in the cellular model.
The most signi®cant feature of Eq. (4) in terms of integrated modelling is the

inclusion of the three terms representing cellular-level features. The densities are
cellular densities, and thus a good measure of actual crowding in the region. If
density were to be measured as simply the amount of activity in a region divided
by the area of the region, the result in many cases would be seriously to misrepresent
the actual situation. By such a measure, for example, a dense urban region with a
small amount of industry would show a low density of industry; but the industry
actually located there would be experiencing the disadvantages of congestion and
high land prices associated with high densities. Similarly, the cellular potential term
captures the desirability of the land actually occupied by the activity in region j
relative to that in region i; this measure summarizes the neighbourhood e�ect as well
as accessibility, suitability, and zoning, and is a good indication of the quality of
location that new activity moving into the region could expect. The suitability term
is primarily applicable to the agricultural sectors; for other activities, �K7 is set to
zero. In sum, then, including the cellular-level terms in the regional model allows the
macro-scale model to take into account the particular, very local conditions that are
actually experienced by the individual actors who make locational decisions, and
that in aggregate constitute the various activity sectors.
Having established demands for activity levels in each region, these must be

translated into demands for land that can be used as constraints in the CA. At each
iteration, the productivities or densities, WKj, are adjusted in function of the demand
for each activity relative to the current level of activity, as well as the trends in
potentials and suitabilities. Thus, higher demands for activity tend to increase land
productivities, and declining mean potentials and suitabilities tend to decrease them.
The new productivities are then used to establish the cell demands, which are passed
to the CA. If the CA cannot satisfy the cell demand in a region, it reallocates por-
tions of the cell demands for some land uses to other regions. Land uses with lower
potentials have a higher priority for reallocation to other regions. Destination
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regions for each activity for which reallocation is necessary are chosen on the basis
of demand relative to current level of activity, with cell demands reallocated ®rst to
those regions with the highest relative demand for the activity. Finally, the actual
new activity levels in the regional model are calculated as the products of the new
regional cell totals and the new productivities. Thus, the CA is in a sense incorpo-
rated into the regional model, and vice versa, so that the integration is complete.
The full model has been calibrated to 1989 data, and run to 1993. Since both land

use data and COROP populations are available for the latter year, it is possible to
test the performance of the model with respect to these aspects. In one set of
experiments, the regional model was run decoupled from the CA to produce
COROP population estimates. Comparing these runs with the results of the fully
integrated model, it is found that linking the CA component improves COROP
population estimates by between 65 and 70%. Attempts to assess the quality of the
land use predictions have been delayed due to problems with the 1993 data set,
which are now being corrected. The initial land use map (1989) and the land use for
the ®nal year of the full simulation (2029) are shown in Fig. 2.

5. General issues raised by high-resolution integrated modelling

The very power and realism of CA-based models raise other, very general issues
which are only beginning to be recognized. One immediate problem is how to assess
the output of these models. A good CA-based model produces results which have all
the patterned complexity of the real system. In order to test such a model, it is

Fig. 2. Initial and ®nal land uses: (a) actual land use, 1989; and (b) simulated land use, 2029.
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necessary to compare the simulation results with the actual data. But immediately
we are faced with the problem of how to compare the two maps. One approach is to
use very general measures, such as the various fractal dimensions that have been
found to characterize certain geographical structures, most notably cities (Fran-
khauser, 1994; White & Engelen, 1993). While these sorts of measures are extremely
useful for certain purposes, they are not in themselves su�cient. First, they have not
been shown to be applicable to non-urban situations. More importantly, they are
extremely abstract measures: e.g. two maps which appear completely di�erent may
have identical fractal dimensions; thus they tell us very little about how similar the
two maps may be in terms of their local con®gurations.
At the other extreme are pixel-by-pixel map comparisons and the general meas-

ures based on them, like the Kappa index. A pixel-by-pixel approach is appropriate
for most standard data quality problems: e.g. every pixel of a classi®ed satellite
image should match the ground truth. But it is mistaken to expect the output of a
CA model to match the actual data cell by cell, even in principle. Most realistic CA
include a stochastic element in order to capture the inherent stochasticity of both
natural and human systems. Thus, not only is any particular simulation result only
one of a large number that are possible with the same initial conditions and a given
parameterization, but also the actual data set with which the result is being com-
pared represents only one of an in®nite number of possible con®gurations, although
most of these are presumably highly similar. Thus, many disagreements between the
two maps represent simply the stochasticity in the two systems being compared.
Furthermore, since spatial con®gurations have functional signi®cance in geo-

graphical systems, a more relevant question is whether the patterns of the two maps
are similar. One way to approach this issue is to use a polygon-by-polygon com-
parison, in which various characteristics of the polygons can be compared, starting
with the extent to which polygons on one map coincide with those on the other, but
also including other measures of polygon similarity such as size and compactness. A
polygon-based technique can produce as a ®rst output a map showing levels of
agreement between the maps being compared, and thus indicate areas or features
which cause di�culties for the model; it is also possible to generate a global simi-
larity measure. A polygon-based approach using fuzzy set techniques has been
implemented by Power, Simms and White (2000) with good results, but the map
comparison problem remains a large and open issue. The ®eld of pattern recognition
is likely to be a source of further developments in this area.
A related but much more fundamental issue concerns the nature of predictability

in geographical systems. It is well understood that these systems are highly complex
in their behaviour, characterized not only by stochasticity, but also deterministic
non-linear dynamics which can mimic stochasticity. Furthermore, like all self-
organizing systems, they undergo continual structural evolution, an evolution typi-
cally characterized by periods of slow, continuous change punctuated by episodes of
dramatic change when the system passes through a bifurcation point. At a bifurca-
tion, the probability distribution of system states becomes strongly bi-modal, and as
the system moves beyond the bifurcation it will become locked into one or another
of the two bundles of possible trajectories. In other words, each time the system
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passes through a bifurcation point it must choose one or another of two quite
di�erent futures. Thus, geographical systems, despite being governed by largely
deterministic processes, have open, undetermined futures. The phenomenon is
increasingly well understood at a theoretical level, and some modelling techniques
address it directly. But the methodological standards and procedures for hypothesis
testing and theory and model validation are still based on the older, much simpler
view of determinism, and lag far behind.
Current models are far from capturing all of these levels of behaviour. CA-based

integrated models represent dynamics and stochasticity explicitly, and with proper
sensitivity analysis can give some insight into the possibility and consequences of
future structural evolutionary changes in the system, although these are not modelled
directly. But since the systems being modelled are dynamic, evolving, creative, with a
future that is open, an appropriate model should also have these characteristics. Then
the question is to what extent the bundle of possible outcomes of the model coincides
with the possible futures of the real system. The traditional hypothesis-testing meth-
odology is not entirely useful in this situation, and more appropriate methodologies
are yet to be worked out. This is a problem that is attracting increasing attention in a
number of ®elds, most notably physics and biology.

6. Conclusion

CA were originally developed to investigate the behaviour of dynamical systems,
and many geographical applications still emphasize primarily theoretical issues. Such
work is necessary, because there remains much to learn about the dynamics of spatial
systems. Increasingly, however, CA are being developed which demonstrate a cap-
acity for modelling real geographical systems with precision and realism. These
applications suggest that in the next decade CA-based models may begin to ®nd a
place as practical policy and planning tools. Nevertheless, the world is a complex mix
of predictability, uncertainty, and novelty. The integrated CA modelling approach
begins to capture this, but at the same time it implies a di�erent kind of science for
which the methodology and standards have not yet been fully worked out.
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