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Abstract: The rapid acquisition of high-resolution spatial distribution of soil organic matter (SOM)
at the field scale is essential for precision agriculture. The UAV imaging hyperspectral technology,
with its high spatial resolution and timeliness, can fill the research gap between ground-based
monitoring and remote sensing. This study aimed to test the feasibility of using UAV hyperspectral
data (400–1000 nm) with a small-sized calibration sample set for mapping SOM at a 1 m resolution
in typical low-relief black soil areas of Northeast China. The experiment was conducted in an
approximately 20 ha field. For calibration, 20 samples were collected using a 100 × 100 m grid
sampling strategy, while 20 samples were randomly collected for independent validation. UAV
captured hyperspectral images with a spatial resolution of 0.05 × 0.05 m. The extracted spectra
within every 1 × 1 m were then averaged to represent the spectra of that grid; this procedure was
also performed across the whole field. Upon applying various spectral pretreatments, including
absorbance conversion, multiple scattering correction, Savitzky–Golay smoothing filtering, and first-
order differentiation, the absolute maximum values of the correlation coefficients of the spectra for
SOM increased from 0.41 to 0.58. Importance analysis from the optimal random forest (RF) model
showed that the characterized bands of SOM were located in the 450–600 and 750–900 nm regions.
When the RF model was used, the UAV hyperspectra data (UAV-RF) were able to successfully predict
SOM, with an R2 of 0.53 and RMSE of 1.48 g kg−1. The prediction accuracy was then compared with
that obtained using ordinary kriging (OK) and the RF model based on proximal sensing (PS-RF) with
the same number of calibration samples. However, the OK method failed to predict the SOM accuracy
(RMSE = 2.17 g kg−1; R2 = 0.02) due to a low sampling density. The semi-covariance function was
unable to describe the spatial variability of SOM effectively. When the sampling density was increased
to 50 × 50 m, OK successfully predicted SOM, with RMSE = 1.37 g kg−1 and R2 = 0.59, and its results
were comparable to those of UAV-RF. The prediction accuracy of PS-RF was generally consistent
with that of UAV-RF, with RMSE values of 1.41 g kg−1 and 1.48 g kg−1 and R2 values of 0.57 and
0.53, respectively, which indicated that SOM prediction based on UAV-RF is feasible. Additionally,
compared with the PS platforms, the UAV hyperspectral technology could simultaneously provide
spectral information of tens or even hundreds of continuous bands and spatial information at the same
time. This study provides a reference for further research and development of UAV hyperspectral
techniques for fine-scale SOM mapping using a small number of samples.

Keywords: UAV hyperspectroscopy; digital soil mapping; soil organic matter; geostatistical analyses;
visible near-infrared spectroscopy
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1. Introduction

Black soil is a valuable soil and agricultural resource [1], but excess chemical fertilizers
and the overuse of farmland results in a slowly thinning the cultivated layer of soil. To
ensure farmland sustainability, it is important to rapidly acquire information about the
topsoil [2]. Soil organic matter (SOM) contains various nutrients and retains water and
fertilizer [3], which is one of the key factors affecting soil fertility. Therefore, the precise
and rapid mapping of SOM is essential for precision agriculture.

The traditional acquisition of soil information is carried out mainly through expensive,
environmentally hazardous, and time-consuming laboratory chemical analysis. With the
development of sensor software and computer technology, researchers have focused on the
measurement of soil properties using fast, pollution-free, non-destructive remote sensing
and proximal sensing technologies [4,5]. Because of the mixed pixels, coarse resolution, and
long revisit period, satellite-based hyperspectral data are difficult to employ in field-scale
precision agriculture. Airplane-based hyperspectrum acquisition requires long planning
times and high costs [6]. Compared with the above-mentioned strategies, the UAV-based
hyperspectral images are easier to access and have a high resolution and low cost. This
technology has been widely used in agricultural and forestry monitoring [7,8]. Visible
and near-infrared (vis–NIR) proximal hyperspectral technology has shown good perfor-
mances for SOM, N, and soil clay content prediction [4,9]. Several studies have compared
the application of UAV-based hyperspectral data with that of satellite-based hyperspec-
tral imaging [10,11]. However, there is limited information available on the comparison
between UAV-based hyperspectral imaging and proximal hyperspectral technologies.

In soil science, UAV hyperspectral data are used for the prediction and mapping of soil
salinity [11,12], soil moisture [13], and soil heavy metals [14,15]. The UAV hyperspectral
technology has shown advantages in digital soil mapping (DSM) for SOM, but its applica-
tion still faces many challenges in terms of spectral processing and cost reduction. First, the
UAV hyperspectrum is affected by the background interference from sensors and the field
environment (soil moisture, surface conditions, particle size, and other factors). Recently,
the absorbance conversion, multiplicative scatter correction (MSC), Savitzky–Golay (SG),
and first derivative (FD) methods have been widely applied in proximal hyperspectral pre-
treatments [16–19]. More practice is needed to explore spectral processing before modeling
in order to achieve high-precision mapping based on UAV hyperspectral images [5].

Soil is a spatially inhomogeneous continuum with high spatial variability. To ascertain
the spatial information of soil, it is necessary to conduct a farmland survey with limited
resources. Soil sampling and laboratory analysis is often a time-consuming and labor-
intensive process. While the use of UAV hyperspectral images in soil science is known
to reduce the cost of hardware, there has been only a little bit of consideration given
to how this technology could also minimize the costs associated with soil sampling. By
exploring the potential of UAV hyperspectral imaging, we may find new ways to streamline
the soil sampling processes and increase the efficiency in the field of soil science. The
UAV hyperspectral technology is based on spectral features for prediction. Compared to
interpolation-based methods, such as ordinary kriging (OK), this technology considers
more information about the synoptic environment factors of soil; therefore, the UAV
hyperspectral technology can obtain the same or even better mapping accuracy with a small
number of sampling points compared to that obtained with interpolation-based methods.

The overall objective of this study was to explore the feasibility of using UAV imaging
hyperspectra for high-precision DSM of SOM by considering a 20 ha low-relief field in the
northeastern black soil area as the study area. The study focused on the following issues:
(1) exploring the best preprocessing algorithms for UAV hyperspectra, (2) analyzing the
characteristic bands of SOM in the UAV hyperspectrum, and (3) evaluating high-resolution
DSM for SOM in a small low-relief field based on UAV hyperspectral data.
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2. Materials and Methods
2.1. Study Sites and Experimental Design

The study region (Figure 1) is located in Lishu County, Jilin Province, China, with an
area of 20 ha. This region has a monsoon climate, with an annual mean precipitation total of
553.5 mm and a mean temperature of 6.5 ◦C. In addition, it is characterized by a flat terrain
and an average elevation of 160 m. Because of these characteristics, the region became one
of three prominent black soil zones with rich SOM in the Northern Hemisphere. The main
crop is soybean.
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Figure 1. Soil sample distribution in the study area.

The spatial distribution of soil characteristics can be precisely determined using grid
sampling [20]. In this study, grid sampling was used to select the sampling sites. The study
area was divided into regular 50 × 50 m squares, and points were taken in the center of
the squares (72 samples). On this basis, we raked the soil evenly to obtain soil samples
with a sampling interval of 100 m and obtained 20 samples. To ensure the independence of
model verification, the other 20 sampling points within the research area were randomly
selected as the test set. On June 15, 2020, soil samples were collected from the surface soil
layer (0–20 cm). After air drying, grinding, and screening them, SOM was determined
using the Walkley–Black (WB) technique [21]. In this study, SOM prediction using UAV
hyperspectroscopy images and proximal sensing data was based on sampling locations
with a sampling interval of 100 m (see Sections 3.2 and 3.3). Only the Kriging interpolation
mentioned in Section 3.4 discusses the performance of the proposed method with fewer
samples using the sample points, with a sampling interval of 50 m.

2.2. Hyperspectroscopy Data
2.2.1. UAV Hyperspectroscopy-Based Image Acquisition

The Resonon-Pika-L airborne imaging spectrometer (Figure 2) from Resonon Company
comprises a hyperspectral imaging spectrometer, six-rotor UAV, GPS, and computer. It was
used to acquire a hyperspectral image covering the entire study area with a pixel size of
0.05 × 0.05 m on 15 June 2020. The spectra extracted from the hyperspectral image ranged
from 400 to 1000 nm, with a spectral resolution of 2.1 nm. Two UAV flight missions were
conducted at 11:20 am, with a flight height of 100 m and a speed of 3 m/s. The image field
of view (FOV) was 17.6◦, and the instantaneous field of view (IFOV) was 0.88 mrad.



Remote Sens. 2023, 15, 1433 4 of 13

Remote Sens. 2023, 14, x FOR PEER REVIEW 4 of 13 
 

 

a speed of 3 m/s. The image field of view (FOV) was 17.6°, and the instantaneous field of 
view (IFOV) was 0.88 mrad.  

 
Figure 2. Resonon-Pika-L airborne imaging spectrometer. 

2.2.2. UAV Hyperspectral Image Processing 

Image Processing 
The position and orientation system (POS) data were imported into the SBGcenter 

software, and geometric correction of each hyperspectral image was performed using 
the POS post-less differencing technique. Radiation calibration was performed according 
to the calibration file. After the geographical registration of hyperspectral images along 
each route in the “Georeferencing” module in ArcGIS 10.2, multiple hyperspectral 
images of the study area were stitched together in the “map-matching georeferenced” 
module in ENVI 5.3. 

Soil Spectral Extraction 
After radiation and geometric corrections, we obtained True Color Images and 

extracted the spectra of typical objects. Because the UAV image has mixed pixels of 
vegetation and soil, the difference vegetation index (DVI) was calculated using the ENVI 
software to differentiate between the two types [22,23]. The average spectral reflectance 
of the soil pixels (0.05 × 0.05 m) in the range of 1 m2 (20 pixels× × 20 pixels) was selected as 
the soil spectrum of a sampling point. 

2.2.3. Visible Near-Infrared (NIR) Spectra Acquisition 
After the acquisition of the UAV hyperspectral image, visible near-infrared spectra 

in situ were collected immediately. The spectra were measured using a Quality Spec Trek 
portable spectrometer (ASD Inc., Boulder, CO, USA) under clear and low-wind weather 
conditions. The instrument has a spectral range of 350–2500 nm with spectral resolutions 
of 3 nm at 350–700 nm, 9.8 nm at 700–1400 nm, and 8.1 nm at 1400–2100 nm. The 
resampling interval was set to 1 nm. At each soil sample point, a whiteboard calibration 
of the spectrometer was performed before spectrum measurement. The spectrometer 
probe was oriented vertically downward, and spectral curves were collected from four 
directions (the angle between adjacent directions was 90°) for each sample point. The in 
situ spectrum of the soil sample was determined by calculating the average of the four 
spectra. The spectral collection time was consistent with the soil sample collection time on 
June 15, 2020. To exclude the effect of spectra larger than the 1000 nm band, we used 
visible NIR hyperspectral data in the same band range of 420–900 nm as that for UAV. 

2.2.4. Spectral Preprocessing 
The spectral preprocessing approach may effectively attenuate the spectral noise and 

minimize the noise generated by background interference from sensors or other devices 

Figure 2. Resonon-Pika-L airborne imaging spectrometer.

2.2.2. UAV Hyperspectral Image Processing
Image Processing

The position and orientation system (POS) data were imported into the SBGcenter
software, and geometric correction of each hyperspectral image was performed using the
POS post-less differencing technique. Radiation calibration was performed according to
the calibration file. After the geographical registration of hyperspectral images along each
route in the “Georeferencing” module in ArcGIS 10.2, multiple hyperspectral images of
the study area were stitched together in the “map-matching georeferenced” module in
ENVI 5.3.

Soil Spectral Extraction

After radiation and geometric corrections, we obtained True Color Images and ex-
tracted the spectra of typical objects. Because the UAV image has mixed pixels of vegetation
and soil, the difference vegetation index (DVI) was calculated using the ENVI software
to differentiate between the two types [22,23]. The average spectral reflectance of the soil
pixels (0.05 × 0.05 m) in the range of 1 m2 (20 pixels × 20 pixels) was selected as the soil
spectrum of a sampling point.

2.2.3. Visible Near-Infrared (NIR) Spectra Acquisition

After the acquisition of the UAV hyperspectral image, visible near-infrared spectra
in situ were collected immediately. The spectra were measured using a Quality Spec Trek
portable spectrometer (ASD Inc., Boulder, CO, USA) under clear and low-wind weather
conditions. The instrument has a spectral range of 350–2500 nm with spectral resolutions of
3 nm at 350–700 nm, 9.8 nm at 700–1400 nm, and 8.1 nm at 1400–2100 nm. The resampling
interval was set to 1 nm. At each soil sample point, a whiteboard calibration of the
spectrometer was performed before spectrum measurement. The spectrometer probe was
oriented vertically downward, and spectral curves were collected from four directions (the
angle between adjacent directions was 90◦) for each sample point. The in situ spectrum
of the soil sample was determined by calculating the average of the four spectra. The
spectral collection time was consistent with the soil sample collection time on June 15,
2020. To exclude the effect of spectra larger than the 1000 nm band, we used visible NIR
hyperspectral data in the same band range of 420–900 nm as that for UAV.

2.2.4. Spectral Preprocessing

The spectral preprocessing approach may effectively attenuate the spectral noise and
minimize the noise generated by background interference from sensors or other devices [24].
Therefore, in this study, the UAV hyperspectral and visible near-infrared spectra were
processed by removing the spectrum noise, differentiating the remaining spectral reflectance
of bands, and converting them to absorbance. Baseline drift and spectral background noise
were then removed using a combination of MSC [25], SG [26], and FD [27] techniques.
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2.3. SOM Mapping Using Random Forest (RF) and Hyperspectroscopy Data

RF [25] is an ensemble learning method that has been widely and successfully applied
for the prediction and classification of soil characteristics. It generates subsample sets
from the training set by bootstrap sampling. Each subsample set was a training set for
a tree, and the other data were used to test the model of the tree. The parameters of the
model include the maximum number of features used for a node (max_features) and the
estimated number of trees (n_estimate). In this study, the random forest regressor package
in Python 3.5 was used to construct the RF model. n_estimate was set to a range of 10–500,
with an interval of 10, and max_features was set to a range of 1–12, with an interval of 1.
The GridSearchCV method in Sklearn was used to obtain the best parameters using the
root-mean-square error (RMSE) as the evaluation index. The average predicted SOM value
of multiple trees in the RF was used as the final result. In addition, sensitive spectra were
obtained by determining the importance of each feature in the RF model.

2.4. Reference DSM Method for Comparison
2.4.1. Semi-Variance Analysis

The geostatistical method [28] uses a semi-variance function to estimate the spatial
variability of regionalized variables.

γ(h) =
1

2× n
×

n

∑
k=1

[Z(xk)− Z(xk + h)]2 (1)

where n represents the number of observation pairs that are within the lag distance of h;
Z(xk) and Z(xk + h) represent the values of the regionalized variable Z(x) at locations xk
and xk + h, respectively; γ(h) represents the semi-variance function value at a distance of h
between two points.

The semi-variance function can be fitted using a fitted model (Gaussian, exponential,
and spherical). During this process, the parameters mainly include the sill, nugget, range,
and partial sill. The sill is the maximum value of the semi-variance function, reflecting the
maximum spatial variability of the variable. When the spatial lag distance h is near zero,
the semi-variance value is a nugget, which represents the spatial variation on the minimum
sampling scale. Strong, moderate, and light spatial autocorrelations are represented by
Nugget/Sill values of 0.00–0.25, 0.25, 0.75, and 0.75–1.00, respectively [26]. The range
indicates the maximum distance in the spatial correlation.

In this study, GS + 7.0 software was used to obtain the best model of semi-covariance
function with the best fitting parameters. To plot the fitted curves and calculate the accuracy
of the test set, these parameters were introduced in the PyKrige package in Python 3.7.

2.4.2. OK

The Kriging interpolation obtains the predicted value by weighting the sum of the
measured values. Based on an unbiased and optimal estimation, OK considers the sum of
the weights of the variables to be one.

var[Z∗(x0)− Z(x0)] = E
[
{Z∗(x0)− Z(x0)}2

]
=

i

∑
n=1

λiγ(xi, x0)−
i

∑
n=1

λiλjγ
(
xi, xj

)
(2)

where Z∗(x0) and Z(x0) represent the measured and predicted values, respectively. λi
represents the weight of the known point.

Based on the modeling set of samples with intervals of 50 and 100 m, this study
determined the semi-covariance function and weights of the known points. The validation
position estimates were then computed and compared with the measured values.
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2.5. Model Evaluation

In this study, the performance of the models was assessed using R2, residual predictive
deviation (RPD), and RMSE. The computational formulae for the three indicators are
as follows:

R2 =

(
∑n

i=1
(
Yi − X

)(
Xi − X

))2

∑n
i=1
(
Yi −Y

)2
∑n

i=1
(
Xi − X

)2 (3)

RMSE =

√
∑n

i=1(Yi − Xi)

n
(4)

RPD =
∑n

i=1
(
Xi − X

)2

RMSE
(5)

where Xi represents the observed value, Yi represents the predicted value, X represents the
average observation value, Y represents the average prediction value, and n represents the
sample size.

Large R2 and RPD values and small RMSE values indicate a high level of model
accuracy. If the RPD is below 1.4, then the model cannot be used for estimation; if it is
between 1.4 and 2, then the model may be used for estimation, and it requires improvement;
if it is greater than 2, then the model has a great predictive capacity [27].

3. Results
3.1. Basic Statistics

The SOM content in the entire dataset (Table 1) ranged from 12.0 to 26.5 g kg−1 or
between 1% and 3%. In the study region, SOM concentration was found to belong to
the medium and high levels according to the third national land survey’s cultivated land
quality classification (>20 g kg−1 high, 10–20 g kg−1 medium, and <10 g kg−1 low). We
found that SOM distribution was close to normal in each dataset. In addition, the variation
coefficients (CV) of SOM were all less than one, indicating moderate variation [29].

Table 1. Descriptive statistics of soil organic matter (SOM) (g kg−1).

Sample Set N Mean Min Max SD CV (%) Kurtosis Skewness

The entire dataset 92 18.13 11.95 26.45 2.72 0.15 3.85 0.34

Calibration (50 m) 72 18.12 11.95 26.45 2.86 0.16 0.88 0.5

Calibration (100 m) 20 17.7 12.83 25.82 2.74 0.15 2.98 0.98

Validation 20 18.16 12.59 21.35 2.15 0.12 0.95 −1.06

Note: N is the number of sampling points, CV is the coefficient of variation, and SD is the standard deviation.

3.2. Spectral Pretreatment Methods for UAV Hyperspectral Data Analysis

The performance of the pretreatment methods was evaluated based on the absolute
value of the Pearson correlation coefficient to select the optimal combination of pretreatment
methods. As shown in Figure 3, after MSC based on absorbance conversion, the minimum
correlation coefficient value changed (−0.4–0.6 at 450–500 nm), the overall correlation coef-
ficient increased at 600–700 nm, the maximum absolute value of the correlation coefficient
increased at 700–800 nm, and the correlation coefficient changed (−0.35–0.3 to −0.5–0.3 at
800–900 nm). Overall, MSC amplifies the shape characteristics of the peaks and troughs,
expands the range of correlation coefficients, and improves the correlation. Subsequently,
after SG, the waveform was essentially unchanged, and the correlation coefficient increased
in the 650–700 and 800–900 nm regions. After FD, the curve underwent major changes, with
large fluctuations and alternating positive and negative transformations. This is because the
original spectral waveform changed significantly after the FD. In summary, the correction
between the spectrum and SOM increased after the UAV hyperspectral data were processed
by absorbance conversion, MSC, SG (the window size was five and the number of fits was
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two), and FD, and the strong correlation mainly occurred in the regions of 450–600 nm
and 750–900 nm. Subsequently, the spectrum obtained after the combination of these four
pretreatment methods was used to construct the model.
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after (a) absorbance conversion, (b) multiplicative scatter correction, (c) Savitzky–Golay (the window
size is 5, and the number of fits is 2), and (d) first derivative methods.

3.3. Performance of the RF Model Using UAV Hyperspectral Data (UAV-RF) in SOM Prediction

Based on the above-mentioned results, the optimal spectral pretreatment method was
obtained for RF modeling (R2 = 0.53, RMSE = 1.48 g kg−1, and RPD = 1.46) (Table 2). This
study used the relative importance of the spectrum at each wavelength obtained from the
optimal RF model. The results show that 500–550 nm, 730 nm, 790 nm, 800 nm, 850 nm,
and 900 nm are the characteristic bands of SOM (Figure 4a). According to the results shown
in Section 3.2, the bands with the highest SOM spectrum correlation are located near 522
and 492 nm, which is consistent with the response bands derived using the RF algorithm.
This finding confirms that the correlation between the bands and soil properties is related
to the importance of these bands in the prediction model. The spatial distribution of SOM
(Figure 4b) obtained by RF shows that the SOM values are low in the southwest and high
in the north-east, with a highest value of 22.28 g kg−1. In the southeastern part of the
study area, some light yellow spots have localized low values; in the northeastern part,
most of the high-value spots contain some medium values. Overall, the distribution of
SOM was characterized by a patchy and aggregated distribution accompanied by localized
maximum values.
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Table 2. Performance of the random forest model with UAV hyperspectral data (UAV-RF) on
validation data.

Method Dataset RMSE (g kg−1) R2 RPD

UAV-RF Validation 1.48 0.53 1.46
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3.4. Performance of OK in SOM Prediction

Using a 100 × 100 m grid sampling strategy, the SOM semi variance function had a
poor fit, with an R2 of approximately 0.5 (Table 3), due to significant deviation of certain
points from the fitted curve. The optimally fitted parameters are shown in Figure 5a—
Nugget = 0.01; Sill = 8.03; Range = 222.57 m. Based on these parameters, the study obtained
an OK model with R2 = 0.02 and RPD = 0.99. Figure 5b shows the SOM spatial distribution
obtained using OK. The spatial distribution pattern showed that the high values were
mainly located in the north of the study area, and the low values were mainly located in
the south-west.

Table 3. Performance of OK on validation data.

Method Dataset RMSE (g kg−1) R2 RPD

OK (100 m × 100 m) Validation 2.17 0.02 0.99
OK (50 m × 50 m) Validation 1.37 0.59 1.57
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Using the 50 × 50 m grid sampling strategy, the semi-variance function of SOM fitted
well, with an R2 above 0.8. Only when the lag distance exceeded the range (283.02 m),
the semi-variance function of the SOM could not be fitted and had no spatial correlation
(Figure 6a). The optimally fitted parameters are shown in Figure 6a: Nugget = 5.09;
Sill = 10.52; Range = 283.02 m. Based on these parameters, the study obtained an OK model
with R2 = 0.59 and RPD = 1.57 (Table 3). The SOM content decreased from the north-east to
the south-west, according to the spatial distribution pattern (Figure 6b).
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3.5. Performance of the RF Model Using Proximal Sensing (PS-RF) in SOM Prediction

Initially, the study investigated the preprocessing algorithms for visible near-infrared
spectroscopy and determined that the optimal preprocessing combination involved re-
moving the spectrum noise, and subsequently converting it to absorbance. The baseline
drift and spectral background noise were then removed using a combination of the MSC,
SG, and FD techniques. Then, a resampling transformation with a window size of four
was used to reduce data redundancy. Finally, a first-order differential was used to amplify
the features of the spectrum. A comparison of the data in Tables 2 and 4 showed that the
RMSE (1.48 g kg−1) and R2 (0.53) of the UAV-RF were closer to those (RMSE = 1.41 g kg−1;
R2 = 0.57) of the model based on PS-RF.

Table 4. Performance of the random forest with proximal sensing (PS-RF) on validation data.

Method Dataset RMSE (g kg−1) R2 RPD

PS-RF Validation 1.41 0.57 1.51

4. Discussion
4.1. Spectral Pretreatment Methods

The original spectrum is affected by soil moisture, light, and the instrument itself in
the sampling environment; therefore, some details are not obvious or are even disturbed by
the noise in the original spectrum. Therefore, it is necessary to use spectral enhancement,
denoising, and smoothing techniques to enhance the spectral feature bands. The correlation
between the spectrum and soil properties was used as an evaluation index for the spectral
prediction model. Previous studies have established that this correlation can determine the
characteristic bands of SOM [12]. In the current study, we observed that the absolute value
of the correlation coefficient between the spectral transform values and OM increased from
0.41 to 0.58 after absorbance conversion, MSC, SG, and FD processing, which indicates the
effectiveness of these four treatments in spectral processing. Consistent with our results,
previous studies proposed that logarithmic, first-order differential, MSC, and SG could be
effective spectral pretreatments [18,29]. This research provides a spectral pre-processing
method for UAV hyperspectral data.
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4.2. Characteristic Bands of SOM

The vis-NIR spectra of a material depend on the absorption of light radiation energy
by the constituents present in the material; therefore, different substances have various
characteristic bands. The results show that 500–600 nm, 730 nm, 790 nm, 800 nm, 850 nm,
and 900 nm are the characteristic bands of SOM attributable to the O-H, C-H, and N-
H functional groups [30]. Consistent with our results, Lu et al. (2007) discovered that
the sensitive band of black soil in north-east China was near 550–830 nm [31] through a
correlation analysis between the SOM content and the original spectral reflectance of soil
affected by the O-H, C-H, and N-H functional groups; the main response bands of SOM
were in the region of 610–2350 nm [32]. This study summarized the characteristic bands of
SOM from the previous study findings shown in Table 5 and found that the characteristic
bands of SOM vary in the vis-NIR region owing to the influence of the sensors, soil type,
water content, and other factors. However, SOM has a strong response characteristic at
approximately 700 nm.

Table 5. Soil organic matter (SOM) response bands in previous studies.

Response Bands References

400–700, 700–2500 nm [33]
545–738 nm [31]

450, 700–800, 850–1100 nm [34]
600–800 nm [35]

940 nm [36]
610–2350 nm [32]

4.3. Comparison of the Effectiveness of UAV-RF, PS-RF, and Geostatistical Interpolation for
SOM Prediction

Using the 100× 100 m grid sampling design, the UAV-RF could successfully predict the
SOM content, with an R2 of 0.53 and RMSE of 1.48 g kg−1, while OK performed poorly, with
an R2 of 0.02 and RMSE of 2.17 g kg−1. When the number of sampling points was increased
to 72 (sampling strategy: 50 × 50 m), OK successfully predicted the SOM with an accuracy
comparable to that of UAV-RF with 20 sampling points (R2 = 0.59 and RMSE = 1.37 g kg−1).
This is because the ability of the semi-variance function to extract SOM spatial variability is
enhanced with an increasing sampling density (Figures 5a and 6a), resulting in a substantial
increase in prediction accuracy. The geostatistical method is significantly affected by the
sampling density [37,38]. When the sampling density is too low, it is difficult to guarantee
accuracy. Tsui et al. (2016) analyzed and predicted the spatial variability of soil organic
carbon density using four methods—OK, empirical Bayesian kriging (EBK), and inverse
distance weighting with four sample subsets (N = 7388, 1168, 370, or 77)—and found that
the prediction accuracy decreased with decreasing sampling density [39]. Our findings
were similar to those of previous investigations [37,40].

Conversely, the spatial distribution patterns of the SOM generated using the UAV-RF
with the 100 × 100 m grid sampling strategy (Figure 4b) and OK with the 50 × 50 m grid
sampling strategy (Figure 6b) were generally similar, with the both decreasing from the
north-west to the south-east. However, they were different from the spatial distribution
patterns obtained from OK with the 100 × 100 m grid sampling strategy (Figure 5b).
The high SOM values in the central and southern regions disappeared after reducing the
sampling density, which was probably because the information was lost after reducing
the sampling points in the central and southern regions of the study area. These findings
indicate that the DSM of SOM using OK requires a high sampling density, which causes
data redundancy and wastes resources.

Nevertheless, the DSM method based on UAV hyperspectral data using the 100 × 100 m
grid sampling strategy can learn the spectral characteristics of SOM through machine learn-
ing, which is less affected when it is using the sampling density using grid sampling.
In terms of mapping, Figures 4b and 6b show that the SOM content distribution maps
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based on UAV hyperspectral data contain striped high-value distributions, whereas the
interpolated map from OK transitions smoothly. This difference may be because the UAV
hyperspectrum provided fine-scale information, and thus reflected more detailed SOM vari-
ation. Thus, the UAV hyperspectral data-based DSM provides more detailed information
than the interpolation result does.

Using visible and near-infrared (vis–NIR) proximal hyperspectral technology, the
prediction results of OM were generally consistent with those of the UAV sensing platform,
with RMSE of 1.41 g kg−1 and 1.48 g kg−1 and R2 of 0.57 and 0.53, respectively, which
indicated that SOM prediction based on the UAV hyperspectral platform was feasible.
Additionally, proximal sensing platforms cannot provide continuous spectral features in
a specific area. In contrast, UAV hyperspectral technology can acquire dense spectra in a
specific area using line array scanning or surface array scanning imaging, which is no longer
a single-point-scale manual acquisition method. The acquired UAV hyperspectral images
have high-dimensional characteristics, and each image element records spectral information
of tens or even hundreds of continuous bands and spatial information simultaneously.

5. Conclusions

This study compared the OK technique for SOM prediction on a field scale using UAV
hyperspectral data, observed soil data, and an RF model.

The results were as follows: (1) Absorbance conversion, MSC, SG, and FD techniques
were efficient for predicting the SOM. Following these pretreatments, the absolute max-
imum correlation coefficient between the spectra and SOM increased from 0.41 to 0.58.
(2) The characterized bands of the SOM were located at 450–600 nm and 750–900 nm,
which might be due to O–H, C–H, and N–H functional group vibrations. (3) Using the
100 m × 100 m grid sampling design, UAV-RF predicted the SOM with an R2 of 0.53 and
RMSE of 1.48 g kg−1, whereas OK with the same sampling strategy failed to predict the
SOM (RMSE = 2.17 g kg−1; R2 = 0.02). The poor prediction accuracy was because the
low sample density weakened the ability of the semi-covariance function to describe the
spatial variability of the SOM. The SOM can be successfully predicted using OK only when
the sampling density increases, and the products from OK are comparable to those from
UAV-RF. (4) The prediction results of SOM based on the PS-RF were generally consistent
with those based on the UAV-RF, yielding RMSE values of 1.41 g kg−1 and 1.48 g kg−1,
and R2 values of 0.57 and 0.53, respectively. These findings provide a reference for future
research and the development of UAV hyperspectral techniques for SOM prediction with a
reduced sample size.
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