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Abstract: Are interactions with unrelated and even unknown individuals a by-product 

of modern life in megacities? Here we argue instead that social ties among non-kin 

are a crucial human adaptation. By deploying a new portable wireless sensing 

technology (motes), we mapped social networks in Agta and BaYaka hunter-gatherers 

in unprecedented detail. We show that strong friendships with non-kin optimize the 

global efficiency of their social networks thereby facilitating cultural exchange, and 

that the adaptation for forming friendship ties appears early in development. The 

ability to extend networks and form strong non-kin ties may explain some human 

distinctive characteristics such as hypersociality and cumulative culture, and the 

tendency to exchange ideas with unrelated and unknown individuals in megacities and 

online social networks. 

 

One Sentence Summary: Social networks of two hunter-gatherer groups in Congo 

and the Philippines reveal that friendships are an ancestral adaptation for the 

exchange of information and culture. 
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Main Text:  

 

Humans regularly interact with unrelated and even unknown individuals in 

large urban centres and megacities
 1
. This pattern may be a by-product of 

socioeconomic factors such as economic opportunities or group augmentation 
2
. An 

alternative option is that living and interacting with unrelated individuals evolved as a 

human ancestral adaptation for the general exchange of knowledge, resources, 

cooperative actions 
3, 4

 and cumulative culture 
5, 6

. If strong friendships with unrelated 

individuals are an ancestral adaptation, they should play a prominent role in 

structuring social networks in extant hunter-gatherer populations, which represent the 

best models to human social organisation before the advent of agriculture. We 

deployed a new portable wireless sensing technology (motes) to record all dyadic 

interactions within a radius of approximately 3 meters at 2-minute intervals for 15 

hours a day (05:00-20:00) over a week, in six Agta camps in the Philippines (200 

individuals, 7210 recoded dyadic interactions) and three BaYaka camps in Congo 

(132 individuals, 3397 dyadic interactions; see Table S1 for descriptive statistics for 

all camp networks). This allowed us to build high-resolution proximity networks 

mapping the totality of close-range interactions within each camp. In hunter-gatherers 

(who lack technology-aided communication), close proximity is an indicator of joint 

activities such as foraging 
7
 parental care 

8
 and information exchange

9
 among others. 

Proximity maps therefore provide a detailed summary of all direct social interactions 

in the two forager populations at a level of detail never previously recorded.  

The diversity and complexity of human cumulative culture suggests that the 

diffusion of information in human groups occurs through optimised social networks
10

 

rather than randomly. Contemporary societies provide many examples of optimised or 
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‘small-world’ networks
 11

, such as online communities
12

 and the World Wide Web
 10, 

13 
shown to maximise the overall efficiency of information and resource flows. In the 

following, we argue that optimised network structures were necessary for the 

evolution of cumulative culture and hypercooperation in humans and hence are also 

observed in small-scale hunter-gatherer populations. We show that hunter-gatherer 

social networks are optimised by extensive interactions with unrelated individuals, 

that such interactions are not randomly distributed but concentrated among a small 

number of ‘best friends’ that help connect family units, and finally that the tendency 

to form friendships beyond kin is manifested early in ontogeny, suggesting a 

developmental adaptation for hypersociality and cultural exchange. 

Interactions with unrelated people optimise network efficiency. Our 

analyses show that interactions with unrelated people optimise network efficiency. 

We used motes data from Agta and BaYaka camps to build weighted social networks 

reflecting the frequency of close-range interactions between individuals (number of 

times individuals were recorded at close-proximity every 2 minutes) (Fig.1A and 

Supplementary Fig. 1). We divided the social networks into decreasing levels of 

relatedness, starting from individual’s close kin (parents, children, siblings, partners), 

extended family (grandparents, grandchildren, aunt, uncle, niece, nephew, first 

cousins, parents-in-law, siblings-in-law) and non-kin (all other individuals; see 

Methods for details of kin categorisation). We have then calculated the contribution of 

each level of relatedness to network global efficiency, a measure of how well the 

structure of the network can facilitate information flow. Results indicate that global 

efficiency is optimised by the links between unrelated individuals. The pattern of 

interactions among close kin and extended family do not affect the global efficiency 

of real hunter-gatherer networks relative to comparable randomised networks (see 
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Methods for randomisations procedure). In contrast, randomisation of non-kin 

relationships drastically reduces global network efficiency (Fig. 1B, and 

Supplementary Fig. 2 for other camps). This is true for all camps both in Congo and 

the Philippines (Fig. 1C). Our results suggest that the efficiency of hunter-gatherer 

networks relies on non-kin interactions, which establish an infrastructure for 

information exchanges amongst unrelated families.  

Efficient networks require a few ‘best friends’. The frequency distribution 

of links among unrelated individuals in camps shows a skewed pattern. As a rule, 

individuals exhibit a pattern of a few intense interactions (close friends) and weaker 

connections with a large number of non-kin. Across all camps and age groups in both 

the Agta and BaYaka, people have one to four ‘best friends’ with whom they interact 

as strongly as with close kin (Fig. 2). In addition, measures of inequality in 

distribution of link weights are consistently higher among non-kin than among either 

close kin or extended family members. For instance, we found Gini coefficients of 

0.69, 0.72 and 0.85 for close kin, extended family and non kin respectively for 

Dinipan, and 0.35, 0.63 and 0.92 for Ibamba (see Supplementary Table 1 for Gini 

coefficients in all camps). Randomisation of non-kin links, which have the effect of 

homogenising the strength of connections between unrelated individuals, eliminates 

strong friendships from networks, and significantly reduces global network efficiency. 

This indicates that social network optimisation does not result from a large number of 

random or homogeneously distributed links with all possible unrelated camp mates, 

but from investing in a few strong ‘best friends’ in addition to an extended net of 

social acquaintances. 

Human life history is adapted to the development of non-kin 

relationships.  If non-kin interactions and investment in a few strong friends explain 
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network global efficiency and human hypersociality, we should expect non-kin 

interactions to develop very early in human ontogeny as an important human life 

history adaptation. Children exhibit from an early age cognitive tendencies that 

predispose them to social norm acquisition, learning and cooperation
14, 15

, such as 

imitation
16

 and shared intentionality
17

. Those tendencies are extended to interactions 

with unrelated peers
 18

, with potential effects on the development of cooperative 

networks
 3
 and cultural transmission

5
. Among the Agta, 27% of interactions of 

children between the ages of 3 and 7 occurred with non-kin (Fig. 3), compared to 32% 

of interactions with siblings, 13% with mothers, and less than 1% with their 

grandmothers. Among BaYaka, 30% of interactions of post-weaning children aged 2 

to 7 were with non-kin (Fig. 3), 30% with siblings, 17% with mothers, and 5% with 

grandmothers. Between ages 8 and 12, interactions with non-kin increase to 39% in 

the Agta and 35% in the BaYaka. Overall, non-kin interactions among children aged 

between 2 and 12 years show significant age-assortativity (Philippines: β=26.6, P < 

0.001, 95% CI = [14.6, 38.67]; Congo: β=29.3, P < 0.001, 95% CI [18.7, 38.8]; see 

Methods). The high frequency of non-kin relations at early ages has many potential 

implications, allowing a unique involvement of unrelated individuals in allocare, 

creating opportunities for social learning
 19

 and learning through simulation of adult 

behaviours in child-only play groups (see Supplementary Video 1), in addition to 

laying the foundations for adult social networks
 20

. 

Discussion.The early developmental origin of human socio-cognitive abilities 

to establish links with non-kin has important implications for our understanding of 

human life history. Surprisingly, in both Agta and BaYaka around 30% of recorded 

interactions of children aged 2 and 7 were with non-kin. We argue that the human 

unique slow life history and delayed maturation are not only a consequence of high 
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energetic offspring costs
 21

 and intergenerational transfers
 22

, but also an adaptation 

that facilitates social learning through cultural diffusion in play groups, where 

children are frequently looked after by older children, learn through playing and 

imitation of role models (see Supplementary Video 1), cooperate with same-aged 

children
 19

, attempt innovations and acquire sociocultural information from unrelated 

children
 23

. 

In Agta and BaYaka play groups children also establish their first friendships, 

which accomplish an important role in adult life. We show that across age groups 

people have at any given time on average one to four ‘best friends’, and a large 

number of less intense links with other unrelated individuals. These friendships are 

likely to be one of the conditions for the high between-camp mobility that characterise 

hunter-gatherers
 24

, who encounter around ten times more individuals over a lifetime 

than chimpanzees
 25, 26

. We propose that the continuous movement of friends may 

create an infrastructure of networks across multiple camps, facilitating cultural flows 

and assortment on the basis of genetic or behavioural cues such as the tendency to 

cooperate
 3
. 

Non-kin ties are also central to the optimisation of information flow across 

human networks. Given the practical impossibility of cultivating strong social bonds 

with all unrelated individuals, hunter-gatherers focus on a few important friendships 

among a large number of acquaintances. Our results show that the global efficiency of 

hunter-gatherer networks depends on a combination of weak
27 

and strong non-kin ties, 

and is drastically reduced in randomised networks which lack strong interactions with 

‘best friends’. It is important to notice that efficient networks may also have 

disadvantageous consequences, such as the spread of infectious diseases, which might 

have devastating consequences for hunter-gatherers due to their often low population 
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sizes. However, real-world networks are known to be dynamic and adapt to the state 

of particular nodes by breaking ties and temporarily reducing efficiency when 

required
 28

. In highly mobile hunter-gatherers such as the Agta, we observed an 

example of adaptive rewiring of proximity networks in one camp, which broke down 

into two smaller units that moved away from each other during an outbreak of 

measles. 

Optimised network efficiency in human groups may have been fundamental 

for the evolution of human unique characteristics, such as the sharing of food, 

technology and ideas, group-level cooperative actions and especially the evolution of 

cumulative culture. In hunter-gatherers, extreme camp fluidity, multilocality and the 

egalitarian socio-political structure allow households to frequently move camps, 

resulting in co-residence with a large number of unrelated individuals
 29,30

. 

Establishing non-kin links may be therefore a condition for information to be shared 

and accumulated more widely across camps. As social groups evolved from small 

hunter-gatherer camps into larger groupings with the advent of agriculture, and later 

into our present megacities, the opportunities for people to extend their social 

networks and increase links with unrelated individuals also expanded. We have 

shown that the developmental and behavioural adaptations which make this possible 

had already been established in small-scale, nomadic societies. We propose that such 

adaptations explain why people are keen to socialise, cooperate and exchange 

information with unknown individuals in megacities and even in global-scale social 

networks on the World Wide Web. 
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 Methods 

  

1. Sample. We studied two populations of hunter-gatherers: the Agta from the 

Philippines, and the Mbedjele BaYaka pygmies from Congo between March and 

September 2014. 

1.1. Agta. The Agta are hunter-gatherers from the Philippines who subsist on 

terrestrial, river and costal marine resources. They live in North East Luzon, within 

the Northern Sierra Madre Natural Park, Municipality of Palanan, Isabela and speak 

Agta Paranan (an Austronesian Language). The Agta population is estimated to be 

around 1000 individuals in the Palanan region. We studied 200 individuals of all ages 

from six camps. They live in small bands of 49±22 people an average. There is a 

range of mobility within the population as some camps are comprised of semi-

permanent houses and others are more fluid, with some households moving between 

camps more regularly than others. The Agta trade some of their fish and forest 

products for rice and occasionally engage in cash labour. 

1.2. Mbendjele BaYaka. The Mbendjele are a subgroup of the BaYaka Pygmy hunter-

gatherers who speak Mbendjele (a Bantu language). Their residence spans across the 

forests of Congo-Brazzaville and Central African Republic, and the total population 

in that region is estimated in 30,000. The study population lives in the marsh 

rainforests of the Sangha and Likuoala regions. BaYaka subsistence techniques 

include hunting, trapping, fishing, gathering and honey collecting. The BaYaka live in 

langos—multi-family camps consisting of a number of fumas (huts) in which nuclear 

families reside. Camp size tends to vary from 10 to 60 individuals, with an average of 

44±24 people. We studied 132 Mbendjele of all ages distributed in three camps. The 

study population trade some of their meat and forest products for farmer products and 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 19, 2016. ; https://doi.org/10.1101/040154doi: bioRxiv preprint 

https://doi.org/10.1101/040154


occasionally engage in cash labour. They live in the forest or near the mud roads 

opened by logging companies and move between camps opportunistically depending 

on food resources and trade opportunities.  

  

2. Portable wireless sensing technology (motes). 

2.1. The motes. Recent progress in embedded electronics has led to compact (50 

mm*35 mm*15 mm with casing) and affordable wearable devices with sensors. For 

this study, we considered many solutions before selecting devices supporting TinyOS, 

an operating system developed at the University of California, Berkeley. Our selected 

device is based on the UCMote Mini with some custom modifications. It comprises of 

a main processor, a wireless communication module, a memory storage unit and a 

battery which allows the devices to run for up to four weeks in one charge once the 

software is optimised for low energy consumption (see Supplementary Fig. 3). We 

deployed 200 motes in the Philippines and 200 in Congo. 

2.2. The software. We wrote the embedded software in C and nesC following an 

iterative process with many testing phases to adjust the parameters (frequency of 

beacons, strength of wireless communications, and length of sleep phases) to their 

optimum values. In our application, each device sends beacons at a frequency of 2 

minutes, receiving beacons from all other devices within a 3-meter range and storing 

them in long-term memory. At the end of the experiment device’s memory was 

downloaded via a PC side application written in JAVA. 

2.3. Range and calibration. The radio links were adjusted to allow a mote to record 

all other radio signals within a radius of approximately 3 meters. A specific radio 

transmission technique (low power listening) was used to reduce battery usage whilst 
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assuring a good delivery of all messages. We calibrated radio links by testing devices 

on a range of situations and environments, in the UK and in the field. 

2.4. Motes utilisation in the field. After waterproofed with cling film motes were 

sealed into wristbands or armbands (for babies). We studied one camp at a time in the 

Philippines and Congo. After explanation methods and discussing data anonymity 

through presentations and posters in their local languages, we gave one mote to each 

participant who agreed to take part in the experiment and signed informed consent 

forms. Each mote was labelled with a unique number and identified with a coloured 

string. All individuals within a camp (from newborns to elderly individuals) wore 

their motes from four to nine days depending on the camp. Although motes were 

worn throughout the night, only data collected between 05:00 and 20:00 were 

analysed. If individual arrived at camp during the experiment they were promptly 

given a mote, and entry time was recorded. Similarly, if individual left camp at any 

time before the end of the experiment the time they returned the mote was recorded. 

A small compensation (usually a thermal bottle or cooking utensils) was given to each 

participant when the mote was returned at the end of the experiment. To ensure swaps 

did not occur individuals were regularly (often during interviews) asked to check they 

were wearing the correct armband. Mote numbers were also checked when motes 

were returned to ensure they had not been swapped. Any alterations were recorded 

and adjusted in the final data processing. 

2.5. Ethical approval. This research and fieldwork was approved by UCL Ethics 

Committee (UCL Ethics code 3086/003) and carried out  after informed consent was 

obtained from all participants. 

2.6. Data recovery. Raw data were run through a stringent data processing system 

written in Python to leverage the filtering power of MySQL databases. The procedure 
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ensured that the used data were free from corruption due to device damage. Once the 

basic checks were passed, data were matched with individual IDs number (protecting 

the real names) and with start and stop times of each mote. The next step was to 

combine all data in a database. The result was a matrix containing the number of 

recorded beacons for all possible dyads (i.e. the frequency of close-range interactions 

between pairs of individuals) for each camp. For dyads involving individuals 

receiving motes after the experiment had started, a correction proportional to the 

duration of their participation was applied. 

2.6. Motes validation. To establish whether or not the motes were in fact recording 

proximity within a three-meter range, we compared data from motes to observational 

data from eight children aged between 3 and 5 years old. We conducted ‘focal 

follows’ of a child for a total of nine hours over three non-constitutive days, observing 

and recording all individuals present within three meters of the child every 30 

seconds
31

. This produces 1080 observational points per child over three days (one 

every 30 seconds), compared to an average of 3150 emitted motes points over one 

week (1 every 2 minutes).  However, since multiple ties are captured with each 

observation or every two minutes with the motes, respectively, there is on average 

3850 mote points captured compared to 3080 observational points per child. Focal 

follows are a much more invasive and intensive form of data collection and do not 

provide the full range of interaction of the whole population. 

To compare motes and focal follows data, we produced averages for the 

proportion of time eight infants spent with specific kin categories. The differences 

between the averages of interactions for a week (motes) and observations for a day of 

focal follows are minimal, and the distribution of observations with specific kin types 

is not significantly altered between the two methods. For instance, for the eight 
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children with ages between 3 and 5 years old, the motes recorded an average 34% of 

time spent with mothers, 11% with fathers, 24% with siblings and 6%, 7% and 23% 

for grandparents, other kin (0.125< r < 0.25) and non-kin (r < 0.125), respectively.  

These same children were observed during the focal follows to spend 37% of time 

within three-meters of their mothers, 19% with fathers, 24 % with siblings and 2 %, 

7% and 24% of their time with grandparents, other kin and non-kin, respectively. 

Therefore, the two types of data collection produce remarkably similar pictures of 

proximity. The small differences are most likely caused by motes data representing a 

full week, while focal follows represent only nine hours of data. Overall, the 

consistency between the observational and motes data lead us to conclude motes have 

a high reliability and represent proximity at approximately three meters. Note that the 

total proportions do not add up to 100% as multiple people can be found 

simultaneously within the three-meter range.  

 

3. Genealogical data and kin definition. We collected genealogies over three 

generations for all individuals in the study, and built matrices of relatedness based on 

kin categories (mother, father, son, daughter, spouse, brother, sister, uncle, aunt, 

niece, nephew, cousin, grandparents, grandchildren, parents-in-law, children-in-law, 

brother/sister-in law, other kin, other affines, and unrelated individuals). 

For the network analyses we defined ‘primary kin’ as parents, children, 

siblings and partners. ‘Extended family’ included distant kin (grandparents, 

grandchildren, aunt, uncle, niece, nephew, first cousins, parents-in-law, siblings-in-

law). ‘Unrelated individuals’ include all other individuals. 
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4. Multi-level modelling of age assortativity. We tested for age assortativity in 

dyadic interactions using multilevel analysis implemented as a mixed-effects model. 

To control for pseudoreplication we defined dyad, ego ID and camp as hierarchically 

structured random effects, and ‘same age’ as a binary (yes/no) fixed effect. To create 

this variable, each individual was allocated an age group: infant (under 2 years old); 

child (2-12 years); teenager (13-18 years); reproductive adults (18-45 years); and 

post-reproductive adults (46 and over). 

  

5. Social Network Analysis. We used proximity data to build ten undirected 

weighted graphs G describing the social interaction networks for each of the ten 

studied camps. The N nodes of each network represent the individuals in the camp, 

while the undirected link (i,j) between node i and j indicates the presence of proximity 

interactions between individual i and individual j. The weight wij of link (i,j) was 

defined by the frequency of interaction between two individuals, measured by the 

number of recorded interactions (beacons) between the two corresponding motes. The 

weights range from the smallest possible non-zero value of wij=238 to wij=20,876 

beacons (i.e. time units of 2 minutes each). The graphs are described by the number of 

nodes N, and by the N x N symmetric and weighted adjacency matrix W={wij}, with 

i,j=1,2,…,N. Entry wij is equal to zero if individuals i and j had no close-range social 

contacts, and by definition also when i=j. For each graph, an unweighted adjacency 

matrix A={aij}, with i,j=1,2,…,N, can be defined by setting aij=1 if wij is different 

from zero, and aij=0 otherwise. The total number of links in the graph is equal to 

𝐾 =
!

!
𝑎!"

!

!!!
!

!!! . The degree ki of a node i is defined as ki= 𝑎!"
!

!!! , and is equal 

to the number of its first neighbours, while its strength si is equal to the sum of node 

weights si=   𝑤!"
!

!!! . Finally, the average node degree is <ki>=2K/N. 
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5.1. Link weight distribution and Gini coefficient. The heterogeneity in the 

distribution of weights among the links of a graph can be quantified by means of the 

Gini coefficient. The Gini coefficient g is an index used in economics and ecology to 

measure inequalities of a given resource among the individuals of a population
32

. It is 

obtained by comparing the Lorenz curve of a ranked empirical distribution, i.e. a 

curve that shows, for the bottom x% of individuals, the cumulative percentage y% of 

the total size which they have, with the line of perfect equality. In our case, we obtain 

the Lorenz curve by plotting the percentage y% of the total weights held by the x% of 

links considered, sorted in increasing value of weights. The Gini coefficient g ranges 

from a minimum value of zero, when all individuals are equal, to a theoretical 

maximum value of 1 in a population in which every individual except one has a size 

of zero. 

5.2. Calculating network efficiency Network global efficiency of graph G was 

calculated as follows. First, weighted shortest paths were computed for each couple of 

nodes in G, assuming that the length lij of an existing link (i,j) is equal to the inverse 

of the weight wij, and using standard algorithms to solve the all-shortest-path problem 

in weighted graphs. The distance dij between nodes i and j is defined as the sum of the 

link lengths over the shortest path connecting i and j. The efficiency εij in the  

communication from i to j over the graph is, then, assumed to be inversely 

proportional to the shortest path length, i.e. εij=1/dij. When there is no path linking i to 

j we have dij=+∞ and, consistently, the efficiency in the communication between i and 

j is set equal to 0. The global efficiency of graph G is defined as the average of εij 

over all couples of nodes:       
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In the case of unweighted graphs, the efficiency E assumes values from 0 to 1, 

while in weighted graphs the values of E(G) depend on the typical weights associated 

to the links. It is therefore very useful to compare the efficiency found for a given 

weighted network to the efficiency of a properly randomised version of the network. 

5.3. Network randomisation. We have constructed randomisations for each of the nine 

undirected weighted graphs G describing their social interaction network. The main 

idea is to randomize each graph by maintaining some of its original properties, such 

as the total number of links, the sum of all the weights (corresponding to the sum of 

the durations of all contacts in the network), and the degree of each node, and then 

randomising the links and nodes at each level of relatedness. To that purpose we 

divided the ties into close kin, extended family, and lastly non-kin. Then, for each 

camp, we considered first a network with only close-kin links, and we compared it to 

its randomised versions. The randomisation procedure consists in the following two 

stages. 

Stage A: changing the adjacency matrix of close-kin ties 

1) Take a node i and one of its ki close-kin neighbours, let us say node j.   

2) Choose with uniform probability node l among all the nodes in close-kin relation 

with node i (excluding node j), and node m in the close-kin neighbourhood of node l.  

3) If there are no links already between node i and node m, and between node j and 

node l while, at the same time, nodes i and m are close kin, and node j and l are close 

kin, swap the two links by connecting node i to node m and node j to node l.  

4) If any of the conditions in point 3 are not verified, repeat the search in point 2 with 

another couple of nodes l and m, up to M times. If after M times the conditions have 

not been fulfilled, the link between node i and node j is left unaltered.  

Stage B: redistributing weights to the new adjacency matrix 
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5) Each node i has a total number of beacons equal to its strength si (the sum of the 

weights of all its links). Each of these beacons is randomly reallocated with uniform 

probability to one of the ki new neighbours.  

Steps (1-5) are repeated for each node and for each of its links.  

Second, we considered the network with close kin and extended family links, 

and then randomised only extended family links according to the procedure above. 

Finally, we considered the network with close kin, extended family and non-kin links, 

and randomised only non-kin links. For each of the three cases, we used M=100 

iterations and we created an ensemble of 1000 randomised graphs. The average value 

of efficiency obtained for the ensemble of randomised graphs was then compared 

with that of the real networks at the three relatedness levels for each camp and each 

type of link. 
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Figure 1. Global network efficiency depends on non-kin ties. (A) Diagrams of 

networks for two camps in the Philippines (top: Dinipan, N=33 people) and Congo 

(bottom: Ibamba, N=47 people). Nodes: individuals. Node colours: households. Red 

ties represent close kin or extended family, and blue ties connect unrelated 

individuals. Tie thickness: intensity of relationship (number of recorded close-range 

interactions). Graphs display the 60% strongest links. (B) Global network efficiency 

was compared in real (solid circles) and randomised networks of the same size and 

properties (open circles; see Materials and Methods for randomisation procedure). 

Randomisation of non-kin ties in real networks causes dramatic reduction in global 

efficiency, in contrast to randomisation of close kin and extended family ties. We 

considered averages over 1000 different randomisations. Error bars for 

randomisations represent standard error of mean, but are small and imperceptible. (C) 

Global efficiency of networks from all camps in the Philippines (top six) and Congo 
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(bottom three). Grey bars: global efficiencies calculated from real networks. Black 

boxes: global efficiencies of networks with randomised non-kin ties. Error bars in 

black boxes: standard errors of means. In all populations, global efficiency is 

significantly higher in real networks than in networks with randomised ties between 

non-kin.  
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Figure 2. Frequency of close-range interactions with close kin and unrelated 

individuals. Top row, Philippines (all camps); bottom row, Congo (all camps). (A) 

children (2-12 years), (B) teenagers (13-17) (C) reproductive adults (18-45), (D) post-

reproductive adults (46 or over). Red bars: from left to right, proportion of 

interactions with mother, father and siblings (A and B); or sons, daughters and 

siblings (C and D). Blue bars: proportion of interactions with unrelated individuals 

ranked from left to right by frequency of interactions, up to the 10
th

 strongest 

relationship. Spouses and affines were excluded. Shaded area represents the range of 

frequency of interactions with close kin. In all plots, error bars represent plus and 

minus one standard deviation. In both camps and across all age groups, people 

interact with from one to four unrelated individuals as closely as with their close kin. 
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Figure 3. Proportion of interactions by age group and relatedness category. Colours 

represent relatedness categories (close kin: mother, father, siblings, spouse, offspring; 

extended family: grandparents, grandchildren, aunt, uncle, niece, nephew, first 

cousins, parents-in-law, siblings-in-law; non-kin: all other individuals). (A) 

Philippines, all camps. (B) Congo, all camps. From an early age, weaned children 

(aged 2-7) exhibit a large frequency of interactions with unrelated individuals in play 

groups (see main text). 
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Supplementary Figs. 1-3 
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Supplementary Figure 1. Diagrams of networks for the remaining camps in the 

Philippines (top 5) and Congo (bottom 2). Nodes represent individuals, node colours 

represent households. Red ties represent close kin and extended family, and blue ties 

connect unrelated individuals. Tie thickness represents intensity of relationship as 

measured by number of recorded close-range interactions over a week, revealing 

strong non-kin ties between individuals from different households. Graphs display 

approximately the 60% strongest links.  
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Supplementary Figure  2 Global network efficiency in real network (solid circles) 

and randomised networks (open circles) for the remaining camps in the Philippines (i-

v) and Congo (vi-vii). Randomisation of ties between close kin and extended family 

has minimal effect on global efficiency of networks. In contrast, randomisation of ties 

between non-kin in real networks causes dramatic reduction in global efficiency. In 

all comparisons, we considered averages over 1000 different randomisations. Error 

bars for randomisations represent standard error of mean, but are small and 

imperceptible. 
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Supplementary Figure 3. Pictures of motes (a), and of the Agta wearing them in 

armbands in the Philippines (b). Credit: Rodolph Schlaepfer and Sylvain Viguier 

 

Supplementary Video 1. The video shows BaYaka Pygmies from Congo Brazzaville 

performing a forest spirits ritual called “Bobe” that lasts for hours during the night. 

Women sing polyphonic music and play drums with children. After some time, 

adult men believed to be possessed by forest spirits are attracted by the singing and 

come into the camp to dance. The ritual is believed to be important for group 

cohesion. Later the video shows children mimicking the adult performance of the 

forest spirits ritual in an unsupervised play group. Video footage was shot by 

Gul Deniz Salali between March and July 2014. Video was edited by Rodolph 

Schlaepfer.  (RKSmedia).  
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