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Abstract

We present a new approach to capture video at high spa-

tial and spectral resolutions using a hybrid camera system.

Composed of an RGB video camera, a grayscale video cam-

era and several optical elements, the hybrid camera system

simultaneously records two video streams: an RGB video

with high spatial resolution, and a multispectral video with

low spatial resolution. After registration of the two video

streams, our system propagates the multispectral informa-

tion into the RGB video to produce a video with both high

spectral and spatial resolution. This propagation between

videos is guided by color similarity of pixels in the spectral

domain, proximity in the spatial domain, and the consis-

tent color of each scene point in the temporal domain. The

propagation algorithm is designed for rapid computation to

allow real-time video generation at the original frame rate,

and can thus facilitate real-time video analysis tasks such

as tracking and surveillance. Hardware implementation de-

tails and design tradeoffs are discussed.

We evaluate the proposed system using both simulations

with ground truth data and on real-world scenes. The utility

of this high resolution multispectral video data is demon-

strated in dynamic white balance adjustment and tracking.

1. Introduction

Within the human eye, light from the real world is sensed

in color. The human eye perceives color from three types of

cone cells sensitive to different parts of the light spectrum,

namely those corresponding to red, green, and blue (RGB).

Conventional cameras record RGB measurements that ade-

quately replicate colors for human viewing, but in fact the

spectrum of visible light may contain a profusion of de-

tail that is lost in the coarse three-channel sensing of RGB.

These spectral details can reveal much about the objects and

lighting in the scene, and computer vision algorithms may

thus have much to gain by imaging tens or hundreds of color

samples over the light spectrum of each scene point.

Multispectral image capture has drawn much attention

in the past several years. For imaging of static scenes,
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Figure 1. Basic idea of multispectral video capture using the hy-

brid camera system. We integrate the high-spatial, low-spectral

resolution frames from the RGB camera and the high-spectral,

low-spatial resolution frames from the grayscale camera to gen-

erate videos with both high-spectral and high-spatial resolution.

Temporal consistency in scene point color is also used, but not

illustrated in this figure.

systems have been designed to record high spectral res-

olution at the expense of acquisition time. Spectrome-

ters [11, 21] employ dispersive optical elements that re-

quire scanning over the scene to capture a full image.

Other methods utilize a sequence of bandpass color filters

in front of a camera to measure different spectral compo-

nents [17, 24]. While both of these approaches provide

direct measurements of scene spectra, they are unsuitable

for multispectral imaging at video rates. To record dy-

namic scenes, reconstruction-based imaging techniques us-

ing computed tomographic imaging spectrometry (CTIS)

[6, 13] and coded apertures [2, 23] have been presented.

These methods allow for multispectral imaging at video

rates, but the considerable post-processing needed to recon-

struct multispectral videos makes them unsuitable for real-

time vision applications such as tracking and surveillance.

Recently, a system based on a prism and occlusion mask

was proposed for direct, real-time capture of multispectral

video [7]. However, due to the sacrifice of spatial resolution

for additional spectral resolution, the image frames contain

little spatial detail, which may limit the ability to perform

image analysis. Video capture with real-time multispec-

tral output and both high spatial and spectral resolution

remains an open problem.

In this paper, we propose a solution to this problem based

on a hybrid camera system and a method to integrate the

data from the two cameras as illustrated in Figure 1. The

imaging hardware, shown in Figure 2, consists of a regu-



lar RGB video camera, a grayscale video camera and sev-

eral off-the-shelf optical elements including a prism, a beam

splitter, an occlusion mask and a mirror. Incoming light

from the scene is first equally divided towards two direc-

tions by the beam splitter. In one direction, the light passes

through the occlusion mask and prism to form dispersed

spectra on the grayscale sensor, similar to the system in [7].

While high spectral resolution is obtained in this manner,

it is obtained with a significant loss in spatial resolution.

Light in the other direction is reflected by the mirror and

captured by the RGB camera, which has low spectral reso-

lution but high spatial resolution. Frames from the two cam-

eras are aligned so that each scene point measured by the

multispectral camera has a known corresponding pixel in

the RGB camera. Captured multispectral data is then trans-

ferred to corresponding pixels in the RGB frames, and is

propagated to other pixels according to spectral similarity,

spatial proximity, and temporal color consistency of scene

points tracked by optical flow [3]. This propagation is im-

plemented using a bilateral filter [14], whose fast implemen-

tation enables multispectral video generation in real-time.

Unlike systems that tradeoff either temporal or spatial

resolution for additional spectral information, the proposed

approach does not require such sacrifices while maintaining

high spectral accuracy. Different from reconstruction based

systems, our capture device can be constructed from widely

available components and is much simpler to calibrate in

practice. The effectiveness of this system is demonstrated

with experiments on different computer vision applications

including dynamic white balance adjustment and tracking.

2. Related Work

Depending on the target application, most existing meth-

ods for multispectral imaging forgo high spatial and/or tem-

poral resolution to increase spectral sampling. For example,

the spectrometer in [11] obtains a very high spectral reso-

lution of 0.1nm but measures only a single pixel at a time.

Methods that employ multiple color filters, such as a rotat-

ing filter wheel in front of the camera [24] or different filters

distributed over the sensor [17], require multiple exposures

to record different parts of the spectrum at each pixel. While

such methods are effective for static scenes, they lack the

efficiency needed to capture video of dynamic scenes.

Instead of directly measuring the spectral data of each

scene point, CTIS systems [5, 6, 12] and coded aperture

methods [2, 22, 23] treat multispectral imaging as a recon-

struction problem. They regard the two-dimensional spatial

information plus one spectral dimension as a 3D datacube,

and reconstruct the 3D datacube from a set of 2D projec-

tions. CTIS systems utilize 2D projections that integrate

spectral signals from different scene positions on the de-

tector. The multiple projections are recorded on the sensor

in a single snapshot, which gives this method the potential

to be used for multispectral video acquisition. However,

CTIS systems need custom-made optical elements and are

sensitive in practice to calibration noise. Only simulations

and snapshots of very simple scenes have been reported

in the literature [10]. Coded aperture methods take mul-

tiplexed 2D projections of the 3D datacube using specially

designed apertures, namely the coded aperture snapshot im-

ager (CASSI). The key idea of CASSI is to use apertures

with certain patterns to code and decode the optical field.

Recently, Wagadarikar et al. presented a video rate CASSI

system [23]. A video of a lit candle was demonstrated,

though with some reported reconstruction error. Although

CTIS and CASSI systems have high spectral and tempo-

ral resolution, the spatial resolution is relatively low. Also,

a time-consuming reconstruction step is necessary for both

CTIS and CASSI, which makes them unsuitable for use in

real-time video processing applications.

Other types of systems have also been presented for mul-

tispectral imaging with high temporal resolution. A device

based on optical fiber bundles and a diffraction grating was

proposed in [8] for real-time video capture, but provides

only a 14 × 14 image resolution due to practical limita-

tions on minimum fiber thickness. Park et al. developed

a system that captures six-channel video at 30fps by tak-

ing advantage of multiplexed coded illumination [15], but

is limited by the need for controlled lighting. In [7], a

prism-based system for multispectral video acquisition was

demonstrated with relatively low spatial resolution. Our ac-

quisition system differs from previous methods in that it

achieves high resolution in the spectral, spatial and tempo-

ral domains, with real-time video generation.

3. System Overview

In this section, we first introduce the basic principles

and configuration of the proposed hybrid camera system.

The entire multispectral capture pipeline is then described

including the propagation algorithm and its temporal en-

hancement. Finally, system distortion and calibration issues

are discussed together with several design tradeoffs.

3.1. System Configuration

We illustrate the hybrid camera system in Figure 2(a).

For ease of understanding, the devices and optical path are

shown as a 2D slice of the actual 3D system. Incoming light

from a scene point first reaches the beam splitter, which re-

flects half of the light along the blue path, while transmitting

the remainder along the yellow path. The reflected light is

again reflected at a mirror before arriving at the RGB cam-

era. An alternative configuration for this light path is to

remove the mirror and have the RGB camera directly face

the beam splitter, but this results in a less compact system.

The light on this path is measured in RGB at a high spatial

resolution.
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Figure 2. (a) System configuration of the proposed hybrid camera system. (b) Pipeline for high-resolution multispectral video generation.

The light transmitted through the beam splitter is dis-

persed by the prism onto the grayscale sensor, which mea-

sures numerous channels of its spectra. To avoid overlap of

spectra from different scene points on the sensor, we em-

ploy an occlusion mask as in [7] to subsample the scene

radiance. Because of this subsampling, the multispectral

imaging at the grayscale camera is obtained at a low spatial

resolution.

The triggering of the two cameras is synchronized, such

that high resolution RGB video frames and low resolu-

tion multispectral video frames are captured simultane-

ously. The two cameras are aligned to capture the same

view. Each sample point of the multispectral imager has a

counterpart pixel in the RGB camera that shares the same

incoming light ray, and these correspondences are deter-

mined as described in Section 4. The correspondences are

used by the propagation algorithm to produce high resolu-

tion multispectral video.

3.2. Propagation Algorithm

The correspondence between multispectral samples and

RGB pixels gives high resolution spectral values for certain

pixels in each RGB frame. To obtain high spectral reso-

lution over the entire frame, we propagate the multispec-

tral data to the other pixels according to color similarity

and spatial proximity. Although related low-resolution to

high-resolution propagation methods have been presented

[9, 18], they are not suitable for real-time video processing

(e.g. 30 seconds per frame in [9]). This motivates us to

use a bilateral filtering approach, which can be computed in

real-time [25].

The bilateral filter extends the traditional Gaussian spa-

tial filter to account for differences in intensity. In our sce-

nario illustrated in Figure 3(a), there are RGB pixels that

do not have a correspondence to a multispectral sample (as

shown in blue), and RGB pixels with known multispectral

data from correspondences (as shown in orange). The mul-

tispectral data of blue pixels is solved based on color simi-

(a) (b)

Figure 3. Propagation algorithm. (a) Distribution of multispectral

pixels over RGB frame. (b) Response curves of RGB filters.

larity and spatial distance to the surrounding orange pixels.

As exhibited in Figure 3(a), suppose we have an RGB

frame with a resolution of p× q pixels and a corresponding

multispectral frame of resolution m × n (m < p, n < q).

For each blue pixel (i, j), its multispectral (MS) informa-

tion is calculated from neighboring orange pixels as

msij =
∑

c∈R,G,B

∑

k∈Ω
Gσr

(dRGB
k )Gσs

(dxy
k ) · ρk · ms

c
k

∑

k∈Ω
Gσr (d

RGB
k )Gσs(d

xy
k )

(1)

where msij denotes the multispectral vector for pixel (i, j),
k ∈ Ω indexes the orange pixels within a neighborhood

centered on (i, j), Gσ() represents the Gaussian operator

with zero mean and variance σ, and dRGB
k and dxy

k denote

the Euclidean distance between the pixels (i, j) and k in

RGB space and (x, y) space, respectively. In computing

dRGB
k , the RGB values of k in the original RGB frame are

used. The factor ρk represents the ratio of a given color

channel value at k to the corresponding value at (i, j) (e.g.,

ρk = Ri,j/Rk for the red channel) and is included for in-

tensity matching.

In Eq. (1), we propagate multispectral data between pix-

els with similar RGB values, a strong indicator of similar-

ity in scene radiance spectra. The propagation is done per-

channel, so that slight intensity differences between source

and target pixels in different parts of the spectrum can be

accounted for using factor ρ. For this per-channel propaga-



σr
Acc/%(σs = 8) Acc/%(σs = 16) Acc/%(σs = 32)

min med max min med max min med max

4 83.2 93.3 97.5 83.7 93.4 97.8 85.2 93.6 97.8

8 81.7 93.6 97.6 82.7 93.6 97.9 83.3 93.6 97.9

16 81.0 93.7 97.6 82.6 93.8 98.0 82.7 93.5 98.1

32 80.3 93.7 97.6 82.0 93.6 97.9 82.2 93.2 98.0

Table 1. Algorithm evaluation on groundtruth datasets with differ-

ent propagation parameters, Acc means accuracy

tion, the multispectral data is separated into RGB according

to the relative responses of the camera’s RGB filters at each

wavelength (see Figure 3(b)):

ms
c
k = msk ⊗ w

c for c = r, g, b (2)

where

wc
λ =

qc
λ

∑

c

qc
λ

(3)

and qc
λ denotes the response of filter c at wavelength λ. Af-

ter propagating the per-channel multispectral data, the three

channels are summed to obtain the full spectrum.

The effectiveness of this propagation scheme is evalu-

ated in Table 1 for different algorithm parameters, using

all of the .mat and .aix images in the Joensuu multispec-

tral dataset [20]. Here, we simulated our system by com-

puting the RGB values of each pixel using the RGB filter

responses in Figure 3(b) and by sampling the multispectral

data at pixels using the same pattern and density (0.3% of

total image pixels) as in our physical system implementa-

tion. Accuracy is computed from differences of spectral in-

tensity from the ground truth over all the wavelengths. We

found the parameter settings of σs = 16 and σr = 16 to be

generally effective, with the radius of neighborhood Ω set to

twice the image distance between horizontally neighboring

multispectral samples. These values were used for all the

remaining experiments in this paper.

An important difference between our propagation algo-

rithm and traditional bilateral filtering methods is our use

of intensity modulated spectra (see ρ factor in Eq.(1)). This

modulation is critical for our system to accurately handle

subtle variations such as shading using the very sparsely

sampled multispectral points. In fact, the median accuracy

over the datasets of Table 1 drops from 93.8% to 88.7%
without the intensity modulation.

Several of the multispectral images used to compute Ta-

ble 1 are exhibited in Figure 4. Here, the original multi-

spectral data was integrated with the RGB filter curves in

Figure 3(b) to generate RGB values for display purposes. In

Figure 4(a), we show the image that yielded the minimum

accuracy at all parameter settings. The scene contains many

spectral variations, even within a single bunch of yarn, and

the signal-to-noise ratio is relatively low for this dark im-

age. The accuracy is nevertheless at a reasonable level for

this particularly challenging example. While this experi-

ment examines accuracy for multispectral data propagation

within a single frame, better results are generally obtainable

(a) (b) (c)

(d) (e) (f) (g)

Figure 4. Propagation results. (a-e) Example images from the

Joensuu multispectral dataset [20] used for parameter evaluation

in Table 1. (f) Error map for the image in (e) without temporal

enhancement. (g) Error map for the image in (e) with temporal

enhancement.

Figure 5. Optical flow for temporal enhancement. For a frame

at time instant t, we use temporal correspondences from the two

preceding frames t− 1, t− 2 to generate more spectral samples.

using multiple frames from a video, as described in the fol-

lowing subsection.

3.3. Temporal Enhancement

Since our system captures video streams, multispectral

data can be propagated temporally as well as spatially. The

multispectral data recorded for a scene point in one frame

is approximately valid for the same scene point in other

frames captured close in time. As illustrated in Figure 5,

optical flow [3] is adopted to track scene points for which

multispectral data has been measured. The multispectral

data of these points can then be propagated to other frames,

thus increasing the density of multispectral samples used in

the spatial propagation described in the previous subsection.

Although spatial propagation is often sufficient for mul-

tispectral video generation, temporal enhancement can lead

to improved accuracy. This is exemplified using Figure 4(e)

with simulated linear motion. Without temporal enhance-

ment, the relative error computed over the wavelengths of

propagated colors with respect to the ground truth is 7.8%,

with the error map shown in Figure 4(f). When temporal

enhancement is used, the relative error drops to 4.3%, with

the error map shown in Figure 4(g).



(a) (b)

Figure 6. (a) System prototype. (b) Occlusion mask configuration.

To minimize the effects of view-dependent appearance

changes and tracking errors, we use only the two imme-

diately preceding frames for temporal enhancement in our

implementation. The use of fewer frames also expedites

computation. We note that in video analysis, the objects of

interest are generally in motion, and thus benefit from tem-

poral enhancement.

3.4. Design Tradeoffs

The settings of the hybrid camera system can be adjusted

for different spectral resolutions. The spectral resolution

depends on several system parameters:

SpectralResolution ∝ {f, n, ω,
1

α
} (4)

where the f is the focal length of the camera lens, n is the

refraction index of the prism, ω is the prism angle and α
is the incident light angle, as shown in Figure 2(a). The

most effective way to increase spectral resolution is to use a

larger focal length lens with a suitable occlusion mask that

prevents overlaps of spectra on the sensor. Unlike the de-

vice in [7], higher spectral resolution does not require a cor-

responding loss of spatial resolution, which is determined

by the resolution of the RGB camera in our system. How-

ever, when spectral resolution is increased using a larger

focal length, our system obtains fewer multispectral sample

points per frame, which can reduce propagation accuracy.

Another tradeoff when using a large focal length to gain

spectral resolution is that less light energy is collected on

the grayscale sensor, which may then require an increase in

exposure time and a lower frame rate.

Different camera settings additionally affect the image

distortions introduced by the system optics. For example,

a larger aperture increases light throughput but results in

greater geometric distortion. Such tradeoffs must also be

taken into consideration when selecting a camera design.

4. System Implementation

The hybrid camera system, exhibited in Figure 6(a), was

implemented using a PointGrey R© GRAS-50S5M as the

greyscale camera, which can capture 15fps video at a max-

imum resolution of 2448 × 2048. The focal length of the

greyscale camera lens is set according to the spectral reso-

lution required in a given application. The RGB camera is a

PointGrey R© Flea2-08S2, which has a maximum resolution

of 1024× 768 at 25 fps. The two cameras are synchronized

using the PointGrey R© MultiSync program. A half-reflect-

half-pass beam splitter provides the two cameras with equal

light energy. The occlusion mask is configured as shown in

Figure 6(b), with rectangular holes through which the prism

disperses light in the horizontal direction. Each hole repre-

sents one multispectral sample, and the projected spectrum

from the hole is averaged vertically to reduce noise. The

prism is made of BK7 glass with known refraction indices

for wavelengths 400 ∼ 1000nm. An optional filter may

be placed in the optical path to isolate a certain band of the

spectrum. The spectrum, geometry and radiance distortions

in the multispectral imager are calibrated as in [7].

To register the two cameras, we place an LCD screen in

front of the capture system and display a calibration video

of horizontal and vertical line sweeps. The lines are dis-

played on the LCD in white, which has a spectrum with

peaks similar to those of fluorescent light. When a hori-

zontal line sweeps past a row sampled by the multispectral

sensor, it produces a sharp response and its corresponding

row position on the RGB sensor is identified. Similar corre-

spondences between columns are obtained using a vertical

line sweep. The information from the two sweeps jointly

determines the correspondences of individual multispectral

samples to pixels on the RGB sensor. This registration and

alignment is a one-time operation, and does not need to be

repeated when capturing another scene.

5. Experimental Results

In this section, we use the proposed system to capture

several videos and demonstrate the utility of the system on

various applications. The high-spectral, high-spatial resolu-

tion measurements provide considerably more data than tra-

ditional RGB or monochrome cameras for identifying and

distinguishing different materials and objects. The fast gen-

eration of output video from the simultaneously captured

streams makes our system practical for real-time video ap-

plications such as tracking.

Resolution comparison We demonstrate the increase in

spatial resolution that can be gained with our approach over

using just a prism-mask multispectral video system as pre-

sented in [7]. In this example, the multispectral imager is

configured so that each spectral sample spans about 60 pix-

els on the greyscale sensor over the wavelength range from

400nm to 700nm, giving a spectral resolution of about

5nm and a spatial resolution of 116×24. With RGB values

computed using the color filter response curves of the RGB
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Figure 7. Resolution comparison. (a)(f) Video frames captured by RGB camera. (b)(g) Video frames captured by grayscale camera. (c)(h)

Reconstructed RGB in grayscale frames. (d)(i) High resolution RGB video using propagation algorithm. (e)(j) Comparison of spectral

detail from an RGB camera and our multispectral system.

camera, video frames captured by the multispectral sensor

are shown in Figure 7(c) and 7(h). At this resolution, de-

tails on the objects are unclear. The characters on the mon-

key and book become visible at the 1024 × 768 resolution

produced with our hybrid camera system as shown in Fig-

ure 7(d) and 7(i). These images also show the RGB repro-

duction from propagated multispectral data to be consistent

with the captured RGB frames. Figure 7(e) and 7(j) ex-

emplifies the additional spectral detail that can be acquired

with our device in comparison to the coarse spectra recon-

structed from RGB values using the method of [19].

Automatic White Balance High spectral resolution can

benefit techniques for automatic white balance. Figure 8

shows an example of a warm colored object under fluo-

rescent lighting, captured by a regular RGB camera and

by our system. The warm colors of the object can mis-

lead a white balance algorithm to infer a warm illumina-

tion color like tungsten light, giving the incorrect result in

Figure 8(b). Figure 8(c) is the white balance result using

the grey world hypothesis [4], a standard approach that as-

sumes the average scene radiance to be achromatic. In real-

ity, the scene is illuminated by a fluorescent light, obvious

from the spectra in 8(e) captured by our system. Fluores-

cent lighting is detected by the two characteristic peaks at

wavelengths 546nm and 611nm. Figure 8(d) shows the

white balance result with the correct illumination. Since the

background color is white in this scene, we can evaluate

the white balance result based on the average color of the

background, shown at the bottom-left of each figure. In the

supplementary material, we additionally show a video that

demonstrates the white balance capability of our system un-

der temporally varying illumination, a challenging case for

current automatic white balance algorithms.

In Figure 9, we show another example of white balanc-

ing for a scene with hybrid illumination, where a fluores-

cent light source is on the left and a tungsten light source

is on the right. Such scenes also present great difficulty to

white balance algorithms because of blended light colors.

Here, we use a simple heuristic to estimate the proportion

α of fluorescent light intensity at each point, according to

the height of its characteristic spectral peaks (at 546nm and

611nm) in relation to the spectral intensity at a wavelength

in between (578nm). Specifically, we compute α from

k(p(546) + p(611) − 2 ∗ p(578))/max(p(546), p(578)),
where p(λ) denotes spectral intensity at wavelength λ, and

k is a scale factor. Then the white balance matrix is com-

puted by a combination of the matrices for fluorescent light

Mf and tungsten light Mt as αMf + (1 − α)Mt. For the

input frame exhibited in Figure 9(a), we obtain the spatially-

variant white balance result shown in Figure 9(d) using our

simple method. For comparison, global white balancing

with fluorescent and tungsten lighting is displayed in Fig-

ure 9(b) and Figure 9(c) respectively. In Figure 9(e), we

show the differences in spectra among points with different

light blending. The high spectral and spatial resolution of

our device allows for spatially-variant white balancing with

high spatial precision.

Tracking In tracking, features of the target object need to

be distinguished from the background. This problem is par-

ticularly challenging when the foreground object and back-

ground have a similar color. Figure 10 illustrates such an

example, with a moving foreground object of blue poster

color and part of the background in blue water color. With a

traditional RGB camera, the two colors are difficult to dis-
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Figure 8. Automatic white balance. (a) Raw frame captured by the RGB camera. (b) White balance result based on tungsten light. (c)

Result of grey world white balance algorithm. (d) Result using correct illumination information (fluorescent light). (e) Multispectral curves

of the marked areas in (a), which were captured by the proposed system. The peaks of these curves reveal the actual illumination to be

fluorescent light.

(a) (b) (c) (d) (e)

Figure 9. White balance with hybrid illumination. (a) Raw frame captured by the RGB camera. (b) Global white balancing based on fluo-

rescent light. (c) Global white balancing based on tungsten light. (d) Spatially-variant white balancing with our system. (e) Multispectral

curves of points with different light blending.

tinguish. Tracking with a state-of-the-art algorithm [16]

fails when the object moves over the blue background.

With the hybrid camera system, the spectral differences be-

tween poster color and water color become evident, allow-

ing for accurate tracking. Here, the tracking algorithm uses

responses at wavelengths 550nm, 625nm and 700nm as

color features for the multispectral input video.

We also demonstrate tracking of human skin, a task im-

portant in many surveillance applications. A special charac-

teristic of human skin spectra is a small hump centered on

wavelength 559nm, a physical feature caused by melanin

and hemoglobin in skin [1]. Detection of this hump us-

ing a multispectral camera can distinguish human skin from

other materials with similar colors in RGB space. Figure 11

shows an example in which we capture a real human hand

in front of a fake hand printed on paper. In this experiment,

we identify true skin pixels by thresholding the quantity
(

r(559)−0.5(r(540)+r(580))
)

to detect the 559nm peak,

where r(λ) denotes the spectral radiance at wavelength λ.

We use a 50mm lens and a 400 ∼ 620nm bandpass filter

in this example, which gives a spectral resolution of about

1nm. We capture a video clip at 5fps with the hand per-

forming different gestures. One frame is shown in Figure

11(a). Figure 11(b) shows the corresponding spectral frame

captured by the grayscale camera. Figure 11(c) plots the

spectral curves of samples from the genuine human hand

and fake hand. The spectral hump around 559nm is evident

in measurements of the real hand. Figure 11(e) shows the

detection result in a video frame, with the detected skin pix-

els highlighted. In comparison to the low resolution frame

in Figure 11(d), the high spatial resolution of our system in

Figure 11(e) allows for a clearer analysis of hand gestures.

6. Conclusion

Spectral imaging at video rates has long been a chal-

lenging problem. In this paper, we address this problem

with a hybrid camera system that generates video with both

high spectral and high spatial resolution. Our experiments

demonstrate the utility of such video in different computer

vision applications.

A limitation of this system is the relatively large depth

of field needed to reduce optical distortions from the prism

and avoid blur of the occlusion mask. While this can be ac-

complished with a small aperture size, this limits the light

throughput of our system. In future work, we plan to extend

the bilateral filtering formulation of the propagation algo-

rithm to a trilateral filter that includes a time dimension,

where multispectral samples from temporally closer frames

are more heavily weighted in the temporal enhancement. As

trilateral filtering is a standard function supported in modern

graphics cards, real-time processing should remain possible

with such a propagation scheme.
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(a) (b) (c) (d) (e)

Figure 10. Object tracking. (a) Tracking target, highlighted by a red rectangle. (b) Unsuccessful tracking using RGB camera. (c) Multi-

spectral frame from grayscale sensor. (d) Spectra of poster color and water color in areas marked in (c). (e) Successful tracking using the

hybrid camera system.

(a) (b) (c) (d) (e)

Figure 11. Human skin tracking. (a) RGB frame containing a genuine hand and fake hand. (b) Multispectral frame captured by grayscale

sensor. (c) Spectral curves from real human skin in red and printed skin in blue. (d) Low resolution frame without multispectral propagation,

where image details are unclear. (e) High resolution capture by our system, where the detected human skin pixels are highlighted.
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