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Abstract—Tilted fiber Bragg gratings (TFBGs) have shown to
be a suitable tool for exciting surface plasmon waves in a compara-
ble manner as in typical attenuated total reflection Kretschmann
configurations. In this paper, we present a comparative analysis of
the characteristics of prism and grating configurations for gener-
ating surface plasmon resonance (SPR) for 800 and 1550 nm wave-
lengths. Results indicate that longer wavelength SPR may present
advantages in sensing. Recent label-free biochemical sensing re-
sults using NIR TFBGs with and without SPR coatings demon-
strate limits of detection ranging from the nM to the pM range
without the need for thermal stabilization.

Index Terms—biochemical sensors, optical fiber sensors, SPR
sensors, Surface plasmon resonance, tilted fiber Bragg gratings.

I. INTRODUCTION

T
HE diagnostic and control of diseases, monitoring and

prediction of environmental conditions, drug development

and improvement, and food safety are worldwide topics of in-

terest. In all cases, biochemical quantification is primordial and

this is what sensing is focused on. In particular, the rapid and

sensitive detection of species of interest at low concentrations in

the context of field use and applications in developing countries

has led to the current challenge of designing simple, inexpen-

sive, accurate and reliable sensors [1], [2].

A biosensor is an analytical device consisting of a biologi-

cal recognition element and a physical transducer [1]. Optical

biosensors are useful tools with applications in biomedical re-

search, healthcare, food safety, and environmental monitoring

[3]. Interesting features stand out, such as immunity to elec-

tromagnetic interference, and they provide the possibility of

performing remote sensing and multiplexed detection within a

single device. There are mainly two detection protocols that

can be implemented in optical biosensing: fluorescence-based

detection and label-free detection [3]. Fluorescence-based de-

tection is probably the most widely used method. Molecules are

labeled with fluorescent dyes, and the intensity of the fluores-

cence is monitored to know the presence of the target molecules,

or the interaction strength between target and biorecognition
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molecules [4]. Fluorescence-based detection is extremely sen-

sitive; however, the labeling process interferes with the intrinsic

function of a biomolecule and requires the introduction of a

“foreign” species in the system. In contrast, label-free methods

perform the detection of target molecules without the need of

an external agent, allowing the detection of molecules in their

natural forms. Label-free detection mechanisms generally rely

on the measurement of the refractive index (RI) change induced

by molecular interactions, which is related to the sample con-

centration or surface density, instead of total sample mass [3].

Thus, a very small amount of sample is required to obtain an

accurate measurement.

Recently, surface plasmon resonance (SPR) sensors have be-

come relevant as label-free sensors. A surface plasmon wave can

be defined as a charge density oscillation that occurs at the in-

terface of two media with dielectric constants of opposite signs,

such as a metal (e.g., gold or silver) and a dielectric [3]. SPR

sensors take advantage of the evanescent field of a special mode

of the electromagnetic field propagating at a metal/dielectric in-

terface: the surface plasmon polariton (SPP). SPPs are highly

sensitive to changes in the RI of the dielectric in the proxim-

ity of the interface, which makes them useful as RI sensors

by measuring the SPR (resonant coupling of light to a SPP).

SPR sensors have been widely studied, and particularly SPR

biosensors have shown to be able to detect chemical and bio-

logical analytes, as well as biomolecular interactions [5]. The

study of nucleic acids, which play an important role in numer-

ous biological processes, has also been a field explored by SPR

sensors [6].

Optical fibers have also successfully contributed to the de-

velopment of label-free sensing applications, with the general

advantages that an optical sensor offers, plus the intrinsic char-

acteristics of the optical fiber [3], [7], [8]. They make possible

measurements at inaccessible sites or over large distances, as

well as distributed sensing. Waveguides and optical fibers take

advantage of the interaction of the light that “leaks” from the

core to the cladding—as evanescent waves—with an external

medium [7].

A particular configuration of optical fibers for sensing can be

found in tilted fiber Bragg gratings (TFBGs). TFBGs are devices

built into the core of an optical fiber by ultraviolet irradiation,

leading to resonant coupling from the core guided light into

modes guided by the cladding. Once in the cladding, part of

the light can interact with an external medium. Thus, multiple

applications in sensing have been demonstrated with promising

results [9]. The cladding-guided modes can also be used for a
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different purpose: If an optical fiber is coated with a metallic

film, a configuration analogous to that for conventional SPR

instruments can be formed because the optical fiber cladding

modes strike the glass–metal interface at well defined angles.

Many other theoretical and experimental investigations have

been developed around the use of optical fibers to excite surface

plasmons. These works include side-polished fibers (D-shape

fibers), tapered fibers, multimode fibers with thin cladding, fiber

Bragg gratings (FBGs), long period gratings (LPGs) [10], [11],

and photonic crystal fibers [12]. The approach reviewed here is

based on TFBGs written in standard telecommunications single-

mode fibers [13], [14]. In TFBGs, light is resonantly coupled

from the core of a single mode fiber to a multitude of modes

propagating through the cladding, as a function of wavelength.

When the axial component of the propagation constant of the

cladding mode equals that of an SPP, coupling to that SPP

can occur and the transmission spectrum of the TFBG reveals

this coupling [13], [15]. The main difference with other fiber

grating approaches is that a single grating design is able to

generate a wavelength-dependent set of cladding modes that

are “interrogating” the metal film at a large number of angles

of incidence, each associated with a particular wavelength in

the spectrum [13]. Another advantage of this approach is that

TFBGs can be easily fabricated on standard telecommunications

single-mode fibers.

The generation of SPR under the TFBG scheme depends on

many variables, such as the properties of the materials involved,

as well as the geometric characteristics of the configuration.

It has been demonstrated experimentally and with fiber mode

simulations that the sensitivity of TFBG-assisted SPR devices

is optimized when the metallic film thickness ranges between

50 and 70 nm [8].

Typically, SPR sensors have mostly been studied at visible

wavelengths but it has been experimentally demonstrated that

the operation in near infrared (NIR) wavelengths is also pos-

sible [1], [3], [6], [10], [15]. It has already been reported that

sensitivity can be increased by operating at longer wavelengths

than the visible spectrum [16]; nonetheless, we consider use-

ful to present an explicit calculation of the particular case of

wavelengths around 1550 nm for an optimized-thickness metal-

lic film on pure silica glass. It can also be found in literature

that the prism geometry can show higher sensitivity than grat-

ing configurations; however, the later benefits from a substantial

reduction of the resonance width [16].

While the main purpose of this paper is to present a review of

our recent results in the field of biochemical sensing, including

some unprecedented experimentally verified limits of detection,

we have included a theoretical section to present a comparative

analysis of the performance of SPR sensors at visible and NIR

wavelengths, for both prism (analogous to cladding-removed

multimode fibers) and grating-assisted configuration. This anal-

ysis is indeed similar to that presented in the past [5], [15]–[17],

but is included here for completeness and also to present the

reader with numerical results obtained using material parame-

ters, sizes and geometries that allow direct comparison between

bulk sensors and fiber devices. Although it has been demon-

strated that sensitivity is increased at larger wavelengths, and

that prism-based configurations have higher sensitivities than

Fig. 1. Partial measured transmission spectrum of 1-cm long TFBG. The top
axis shows the corresponding angles of incidence of the light at the cladding
boundary.

grating assisted ones, the direct comparison with similar mate-

rials and evaluation in terms of a FOM explain the high quality

(LOD) of the TFBG based results. In this article, a comparative

analysis of SPR sensing using either 800 or 1550 nm light will

be presented, followed by a review of some biochemical sensing

applications developed at 1550 nm with TFBGs.

II. CLADDING MODE CONTROL WITH TFBGS

FBGs are devices built permanently into the core of a standard

telecommunications optical fiber, by means of an UV interfer-

ence pattern. The result is a fiber with a periodic modulation

of the RI of the core, which acts as a spectral filter, reflecting

a very narrow band of wavelengths [18]. The most widespread

configuration for FBGs is to have the interference pattern (and

hence the changes of RI) perpendicular to the direction of prop-

agation of the waveguide. However, a wider set of possibilities is

open when the RI pattern is tilted away from the perpendicular.

When this occurs, the grating couples light modes from the core

to the cladding, where they are highly sensitive to changes that

occur in the neighborhood of the cladding-external medium in-

terface [19]. When light with a broadband spectrum is launched

through the fiber, a discrete group of narrowband resonances is

observed in transmission as a consequence of coupling to the

cladding modes.

Part of the TFBG spectrum of a 1 cm-long TFBG is shown in

Fig. 1, where the top horizontal axis is used to illustrate the angle

of incidence of the light corresponding to each cladding mode

at the cladding boundary. Each of the resonances shown can

respond differentially to surface or bulk external perturbations.

The polarization state of the evanescent field of the cladding

modes is another important property affecting their sensitivity

to perturbations. TFBGs provide such polarization control when

using linearly polarized light in the fiber core. When the core-

guided input light is linearly polarized in the tilt plane (P) or

perpendicular to it (S), separate cladding mode families can be

observed in the transmission spectrum. These families corre-

spond to cladding modes with azimuthally or radially polarized
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light polarized light at the cladding-surrounding refractive in-

dex (SRI) boundary. Azimuthally polarized modes are “TE-like”

(hereafter labeled TE) and radially polarized ones are “TM-like”

(TM) [20]. Depending of the nature of the material surround-

ing the cladding, the RI sensitivity of the TFBG can be either

isotropically or anisotropically dependent on the polarization

state of the light interrogating the fiber surface, resulting in the

peak families responding either the same way or differentially

[20], [21].

This difference is especially strong when adding a metallic

film on the surface of the cladding (i.e., creating a dielectric-

metal interface), because of the high polarization sensitivity of

such interfaces. In particular for TM modes, evanescent light

can tunnel much more easily than TE modes through thin metal

layers and may eventually couple to a SPP at the outer metal

interface. But this can only occur when the axial component of

the propagation constant of the cladding mode equals that of

the SPP [15], i.e., for a very small subset of resonances. This

is a great advantage of the TFBG system because in contrast

with the LPG and FBG approaches, a single grating design

generates a large set of polarized cladding modes, dependent of

wavelength, that “interrogate” the metal film at various angles

of incidence [13]. Each mode can be individually “addressed”

by changing the wavelength of the guided light, and each mode

strikes the cladding boundary at a different angle of incidence.

In the particular case of SPR sensors, a decrease in the amplitude

of a few TM resonances is the signature of the coupling to the

outer metal surface SPP, because when this occurs the associated

cladding modes become lossy [19], [22]. Finally, the SPR effect

also lead to a stronger penetration of the evanescent mode field

into the surrounding medium, thus enhancing the sensitivity to

RI changes [19]. This was confirmed by experiments on side

polished TFBGs coated with 35 nm of silver, compared with the

conventional work done with side polished or cladding-etched

FBG sensors up to that point [23].

However, bare TFBGs resonances also shift when exposed to

changes in the SRI (without requiring metal coatings and SPR

enhancement); the maximum sensitivity for non-plasmonic sen-

sors is obtained by tracking the cladding mode resonance clos-

est to the cut-off point as this mode has the largest extent of its

evanescent mode [19]. Sensing in gases or liquids using TFBGs

can be done due to the ease of FBG fabrication and measure-

ment, and also due to the ability to change the interrogation

wavelength window from the near-infrared to the visible range

(more common for SPR/based sensors) [13], just by changing

the period, grating length, or tilt angle. Furthermore, in order to

increase the sensitivity or to make the detection chemically spe-

cific, optical fibers can be coated with functional films by a va-

riety of methods that include solution-based chemical bonding,

thermal evaporation, sputtering, plating, chemical vapor depo-

sition (CVD), or pulsed vapor deposition. These techniques are

widely used for depositing monolayers of molecules, nanoparti-

cles, dielectric, metal or metal oxide films on TFBGs and LPGs.

It has been demonstrated a few times that the TFBGs per se

are useful for monitoring the actual coating processes in-situ

or ex-situ assessment, i.e., for optimizing and characterizing

the coatings prior to their use as sensing transducers on the

fibers [24].

Fig. 2. Kretschmann geometry for the ATR method [15], [17].

What has not been considered exhaustively so far is the choice

of operating wavelength for grating based optical fiber sensors.

While TFBGs are conventionally used at NIR wavelengths, most

other kinds of fiber sensors as well as most bulk SPR sensors

operate at much shorter wavelengths below 1 µm [5], [15], [17],

in spite of the fact that there is some evidence that the NIR regime

may improve the performance of bulk SPR sensors [25]. In the

following sections a comparative analysis of the sensitivity for

NIR and visible wavelengths, for both prism and grating SPR

excitation methods, is presented.

III. PRISM-COUPLED SPR SENSORS

The most common approach to excite surface plasmons is by

means of a prism coupler, while the interrogation is done us-

ing the attenuated total reflection method (ATR). There are two

configurations for the ATR method—Kretschmann geometry

and Otto geometry. We are now interested in the Kretschmann

geometry (see Fig. 2), where a high RI prism with RI np is

interfaced with a metal–dielectric waveguide consisting of a

thin metal film—with electric permittivity εm and thickness d-,

and a semi-infinite dielectric with a RI nd(nd < np) [15], [17].

The electric permittivity of dielectrics is a real number given

by the square of their RI. In contrast, the electric permittivity

of metals is a complex number of the form εm = εm
′ + iεm

′′.

The function of the high index prism is to slow down the light

at the prism–metal interface so that a TM polarized evanes-

cent wave that propagates along the metal film can tunnel

across it and phase match to a SPP of the metal–dielectric

interface.

With this configuration and using a broad band light source,

the excitation of SPPs can be detected by the occurrence of a

minimum in the reflected intensity. The quantitative descrip-

tion of the reflected intensity can be obtained from Fresnel’s

equations for a three-layer system, where the prism–metal and

metal–dielectric interfaces act as mirrors. The electric field am-

plitude reflection coefficient for the two-mirror system is given

by [15], [17]:

r123 =
r12 + r23 exp (2ikz2d)

1 + r12r23 exp (2ikz2d)
, (1)

where the subscripts 1, 2, and 3 are associated to the prism, metal

film, and dielectric, respectively. r12 and r23 are the reflectivities

of the prism–metal and metal–dielectric interfaces; kz2 is the
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component of the wave vector through the metal film along the

z direction, while d is the metal layer thickness. The values of

r12 and r23 can be calculated using the following expression for

TM polarization:

rij =

(

kz i

εi
−

kzj

εj

)/(

kz i

εi
+

kzj

εj

)

, (2)

where i and j represent two materials forming an interface with

relative permittivities given by εi and εj , respectively. kz i and

kzj represent the wave vector components in the z-direction for

an i or j material, given by

kz1 =
√

k2ε1 − k2
x , (3)

kz2 =
√

k2ε2 − k2
x , (4)

and kz3 =
√

k2ε3 − k2
x . (5)

k is given by (ω/c), being ω the frequency, and c the speed of

light in vacuum. kx is the wave vector component propagating

along the x-direction, given by

kx = k
√

ε1 sin θi . (6)

Finally, the reflected intensity (reflectivity) for p-polarized

light is given by:

R =

(

r12 + r23 exp (2ikz2d)

1 + r12r23 exp (2ikz2d)

)2

= r2
123 . (7)

It now must be noted that in theory, the coupling between

the evanescent wave and the surface plasmon will occur when

the propagation constant of the evanescent wave (βEW which

is equal to kx ) and that of the SPP (βSP ) are equal.

The propagation constant of the surface plasmon propagating

along the metal film, βSP , can be expressed as:

βSP = βSP0 + ∆β =
ω

c

√

ε2ε3

ε2 + ε3
+ ∆β. (8)

βSP0 is the propagation constant of the SPP propagating along

the metal–dielectric interface without the presence of the prism,

whereas ∆β is a correction term associated with the finite thick-

ness of the metal film and the presence of the prism. Since bio-

chemical sensing involves the measurement of changes in ε3

only, the constant correction term ∆β is ignored in the present

analysis.

The resonance condition for SPs is [17]:

2π

λ
np sin θi = kx = βEW = Re

{

βSP
}

= Re

{

2π

λ

√

ε2ε3

ε2 + ε3

}

, (9)

which can be expressed in terms of the effective index as follows:

np sin θi = nEW
ef = nSP

ef = Re

{√

εdεm

εd + εm

}

(10)

where nEW
ef is the effective index of the evanescent wave and

nSP
ef is the effective index of the SPP. When this phase matching

Fig. 3. Reflectivity of a Kretschmann configuration calculated for different
metal layer thicknesses.

condition occurs, the reflectivity from the coated prism calcu-

lated using (7) shows a pronounced minimum as shown in Fig. 3

for a standard example from [17].

In the plot, R is a function of the angle of incidence for a

system formed by a prism of BK7 glass (np = 1.51), a gold

film (εm = −125 + 1.44i) and water (nd = 1.329), with light

at 800 nm and several values of gold thickness. According to the

ATR, the lowest point—the dip—corresponds to the occurrence

of SPR in the system. Thus, for this configuration, the SPR

occurs at an angle of about 66°.

Alternatively, R can be calculated as a function of wavelength,

while keeping the angle constant. Since the phase matching con-

dition (10) does not depend explicitly on wavelength and (7)

only weakly, the main contribution to the wavelength depen-

dence of R comes from the material dispersion of gold, water

and glass. In order to reproduce the conditions corresponding to

TFBGs in silica glass fibers, we now proceed to evaluate R(λ)

for the following cases.

We set the values of the thickness of the gold film (d =
53 nm) and the angle of incidence (θi = 71.9°) in such a way

that SPR can efficiently occur for a pure silica glass prism

and water as the external dielectric. The permittivity of gold

was modeled as a function of wavelength according to the data

obtained by Ordal et al. [26] for wavelengths around 800 nm.

The dispersion of silica is modeled using the Sellmeier formula

with the coefficients obtained by Malitson [27].

When evaluating R as a function of wavelength for different

values of n3 we can find the wavelength at which SPR occurs,

as shown in Fig. 4(a).

This wavelength of minimum reflection is then plotted in

Fig. 5 as a function of the RI of the external medium and fitted

with the following second order polynomial:

λ = 250.09 − 381.6nd + 146n2
d (µm). (11)

The sensitivity of this SPR configuration (∆λ/∆nd ) can be

calculated as the derivative of the curve at a point of inter-

est. Therefore, around nd = 1.329 (the index of pure water at

800 nm) we find that the sensitivity is S = 6468 nm/RIU.With
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Fig. 4. Silica prism coupling at (a) 800 nm and (b) 1550 nm. Reflectivity as a
function of wavelength obtained by simulation using (7).

the same silica-gold-water configuration we now evaluate the

performance of the prism configuration with light at NIR wave-

lengths, still using (7). In order to achieve SPR near 1550 nm,

we set the values of the gold film thickness at d = 40 nm and of

the incidence angle at θi = 66.5°. The permittivity of thin gold

films at wavelengths around 1550 nm was determined by fitting

the data published by Charbonneau et al. [28]. Fig. 4(b) shows

three different plots for R as a function of wavelength for three

different values of RI near that of water (n3 = 1.315 at these

wavelengths), and the wavelength minima are reported in Fig. 5

as a function of n3 at wavelengths around 1550 nm.

The NIR data in the plot of Fig. 5 were fitted to a second order

polynomial as follows:

λ = 10 956 − 16 730nd + 6387.6n2
d (µm). (12)

The slope of (12) at nd = 1.315 (water) is 69 390 nm/RIU,

an order of magnitude larger than at 800 nm. It can be noticed

that, as in the previous results, the wavelength at which SPR

occurs is a function of the RI of the external medium. In sensing

applications, sensitivity S is defined as the magnitude of sensor

transduction signal change in response to the change in the

variable of interest, or a measure of the strength of light–matter

interaction [29].

Fig. 5. SPR wavelength shift for silica prism coupling at 800 and 1550 nm.
The central point corresponds to the RI of pure water at 800 nm (nw = 1.329)
and 1550 nm (nw = 1.315). Data obtained from simulation.

For the purpose of this study, sensitivity is then a measure

of the change of wavelength with respect to a change in RI of

water, expressed in nm/RIU. In addition, while sensitivity is the

first quantifier of the overall performance of a sensor, the ability

to measure small wavelength shifts is equally important when

the sensitivity depends on such measurements. In those cases,

it is convenient to introduce another performance metric. The

figure of merit (FOM), defined by [30]

FOM =
S

FWHM
(RIU−1). (13)

Dividing S by the FWHM—full width at half of the

maximum—reflects the fact that it is easier to measure small

shifts of narrow resonances than that of wide ones. Of course,

this is only true when the amplitude noise is negligible and the

signal to noise ratio is the same.

Thus, although the values of sensitivity of the silica-gold-

water configuration at 1550 nm are high (i.e., extremely small

changes in RI could potentially be detected), the wide FWHM

implies an experimental difficulty for the interrogation, which

lowers the FOM for the configuration. Still, in the NIR the FOM

is 338.5 RIU−1 (for n3 = 1.315) but only 92.8 RIU−1 at 800 nm

(for n3 = 1.329).

IV. GRATING-COUPLED SPR SENSORS

Surface plasmons can also be optically excited by means

of the light diffracted by a grating. Instead of a high index

prism and ATR, it is the grating that provides phase matching

of the wave vector of the diffracted light with that of the SPP.

Under this approach, a light wave is incident from a dielectric

medium with RI nd on a metal grating with dielectric constant

εm , a grating period Λ and a depth d [17]. For this method, the

coupling between the diffracted waves and a surface plasmon

will occur when the propagation constant of the diffracted wave

propagating along the grating surface kxm and that of the surface
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Fig. 6. Equivalent geometry for the grating excited SPR [15], [17].

plasmon are equal [17]:

2π

λ
np sin θi + m

2π

Λ
= kxm = ±Re

{

βSP
}

, (14)

where θi is the angle of incidence of the light, Λ the period, and

m the diffraction order of the grating.

In order to analyze a grating configuration that is closer to

that of the TFBG (still for silica–gold–water systems), we cal-

culate the reflectivity using the already presented approach (7)

but instead of using (6) to define kx , we incorporate the new

coupling condition kxm = kx + m 2π
λ

from (14). Therefore, in

contrast with the typical analysis of the grating excited config-

uration, where the metal layer is considered infinite in extent

and excitation is from the top of the grating [17], an equivalent

three-layered system is considered here (see Fig. 6).

Using this system, we now consider an arrangement of a gold

layer of average thickness d = 65 nm, an angle of incidence

θi = −71°, and grating period Λ = 290 nm. If we evaluate R

as a function of wavelength for different values of the RI of the

external medium (water) at wavelengths around 800 nm, we can

get plots as shown in Fig. 7(a) and transfer the wavelengths of

the reflectivity minima in Fig. 8, as a function of the external

medium index. The sensitivity (i.e., the slope of the curve at

wavelengths around 800 nm) is 306.7 nm/RIU.

To evaluate the performance of the grating arrangement at

wavelengths around 1550 nm, we set values for the geometrical

parameters of the system (gold film thickness d = 50 nm, grat-

ing period Λ = 0.563 µm, and angle of incidence θi = −82°).
Those results are plotted in Figs. 7(b) and 8. The slope of the

curve represents the sensitivity for this particular grating con-

figuration, 564.6 nm/RIU, which is 1.84 times the sensitivity

obtained for the 800 nm configuration. In this grating assisted

configuration, the wavelength shift sensitivity is closely linked

to the grating period.

The values of FWHM for these cases as well as all other cases

discussed so far are grouped in Table I.

Table I summarizes the performance parameters for each

configuration, for prism and grating coupling. It is clear that

although the prism configuration for silica at 1550 nm results

in the highest sensitivity, the large value of the FWHM re-

duces drastically its FOM. Furthermore, the use of a grating

geometry represents a significant improvement in FOM at NIR

wavelengths. These results support the recent theoretical calcu-

lations which show that waveguide Bragg gratings supporting

Fig. 7. Silica-gold grating coupling at (a) 800 nm and (b) 1550 nm. Reflectivity
as a function of wavelength obtained by simulation using (7).

long-range SPPs present an improvement in their bulk sensitiv-

ity (i.e., without the addition of an “adlayer”) when operating at

NIR wavelengths (particularly at 1550 nm) [30].

The table also includes experimental data for RI sensors based

on bare TFBGs and gold-coated TFBGs designed to excite SPPs

in water. As indicated earlier, the TFBG represents a special

class of grating-assisted sensor that is either similar to an Abbe

refractometer [31] (a bare prism refractometer) when uncoated,

or to a Kretschmann SPR prism when coated with a thin gold

film. Bare TFBGs at 1550 nm have a measured FOM of 100

RIU−1, comparable to that of prism or prism-grating systems

at 800 nm, but lower than that of such systems at 1550 nm.

However the SPR-assisted TFBG has FOM that is at least ten

times larger than competing systems, and it will be shown in

Section V that properly functionalized non-SPR TFBGs can

also achieve impressive limits of detection. The main reason

for these advantages is that the TFBG transmission spectrum

depends on resonant coupling between the incoming core guided

light and select cladding modes, and that the spectral width

of this resonant effect decreases with grating length. It is the

perturbation of this resonant coupling by changes on the fiber

surface that allows detection, much like in cavity resonators.

The only drawback is that the TFBG responds to the average of

the perturbation over its whole length, and is therefore unsuitable
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Fig. 8. Minimum reflectivity wavelength as a function of the RI of the external
medium, in the vicinity of the index of water at around 800 nm (nw = 1.329)
and 1550 nm (nw = 1.315), located in the middle of the horizontal axis. Data
obtained from simulation.

TABLE I
PERFORMANCE OF PRISM AND GRATING SPR SENSORS

Wavelength Sensitivity

[nm/RIU]

FWHM [nm] FOM [RIU−1]

Prism, 800 nm 6468 69.39 92.8

Prism, 1550 nm 69,390 205 338.5

Grating, 800 nm 306.7 2.9 105.76

Grating, 1550 nm 564.6 1 564.6

TFBG bare, 1550 nm (measured) [32] 10 0.1 100

Au-coated TFBG (SPR, measured) [8] 400–500 0.1 4000–5000

in applications like single molecule detection, which require

nanoscale resonating structures to become sensitive.

This concludes the theoretical analysis of performance pa-

rameters for the two geometries (prism and grating) operating

at two different wavelengths each (800 and 1550 nm). In the

following section a review of experimental results is presented

involving the use of TFBG-assisted SPR sensors with promising

results for biochemical applications. It will be noticed that the

experimental sensitivities obtained by TFBGs agree with the

widely published models for the grating configuration (adapted

for 1550 nm).

V. PRACTICAL EXAMPLES

A. Bare TFBG Biochemical Sensors

Cladding modes have shown to be very sensitive to changes in

the RI of an external medium—typically a dielectric—, which

may contain a species of interest. These characteristics allow

optical fibers with a TFBG inscribed to be sensors per se. It

has been demonstrated that a bare TFBG can be used to detect

changes in RI of water–sugar solutions with a performance sim-

ilar to some cases of LPG configurations, achieving an accuracy

of 10−4 RIU [32]. Although possible extremely high sensitivi-

ties have also been predicted in LPGs [33], they are coming with

Fig. 9. Variation of the wavelength of a MIP-coated TFBG resonance with
maltol concentration (from [2], see text for details).

similarly high cross-sensitivities to other parameters (e.g., tem-

perature, bending, or strain). Taking this into consideration, TF-

BGs represent an interesting approach, since cross-sensitivities

can be straightforwardly compensated by tracking the Bragg

peak shifts, avoiding the use of thermal chambers or complex

isolating setups. Furthermore, since LPGs and TFBGs made

from standard single mode fibers and operating at similar wave-

lengths have essentially identical signal-to-noise ratio, the FOM

becomes one of the most relevant performance quantifiers.

The ability for measuring changes in RI has been used to de-

tect changes in density—due to effects of drugs or environmental

changes—in non-physiological cells [34]. For this purpose, two

TFBGs were accordingly integrated to a microfluidic chip to

supply the solution under study. Light at two orthogonal polar-

izations was introduced to each grating, to measure the differ-

ential transmission spectrum. Human acute leukemia cells with

different intracellular densities and refractive indices were dis-

criminated with an amplitude variation sensitivity of 1.8 × 104

dB/RIU, a wavelength shift sensitivity of 180 nm/RIU, and a

limit of detection of 2 × 10−5 RIU. There is an evident poten-

tial to TFBGs to be used as sensors for biological or chemical

purposes. However, since most real applications involve com-

plex media, the bulk RI measurement is not a sufficient indicator

for measuring an isolated variable. It is then required from sen-

sors to be selective (i.e., sensors are expected to have a high

specificity) [3], [7], [35], [36].

B. Polymer Coatings on TFBGs

Polymer coatings have been successfully used for detecting

low molecular weight molecules (particularly maltol, a contro-

versial food additive) in real food samples [2]. A molecular

imprinted polymer (MIP) is functionalized to form a “key and

lock” system for the exclusive detection of the molecule of in-

terest. In this example, the wavelength shift sensitivity of the

MIP-coated TFBG was 6.3 × 108 pm/M with a limit of detec-

tion of 1 ng/mL. Fig. 9 depicts the signal shift (∆λ) of a TFBG

resonance for very low concentrations of maltol. The error bars
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were calculated from the standard deviation over five indepen-

dent measurements.

C. Thin Film Deposition Thickness Monitoring and Optical

Characterization

Sensors can be provided with specificity by means of func-

tionalized thin coatings and metals in particular, taking advan-

tage of electromagnetic field enhancements near and around

metal surfaces to increase the sensitivity. Many deposition tech-

niques have been studied for the deposition of dielectrics, gold,

silver, and copper in a variety of shapes, from amorphous to

different nanostructures. It has been demonstrated that TFBGs

are useful for in situ, real-time monitoring of gold nano-films

deposited by electroless deposition. The monitoring TFBG al-

lows stopping the process once the optimum gold thickness for

SPR is reached, and then the same TFBG becomes a SPR sensor

[37]. CVD has also been used for coating fibers and, recipro-

cally, TFBGs can be used as a probe for monitoring a variety of

CVD processes in-situ. The perturbation in the cladding modes

of the TFBG-polarized spectra during the deposition process are

directly related to physical properties of the fiber-coating con-

figuration, such as refractive indices or permittivities, porosity

and average thickness [24]. The layer by layer deposition by

immersion of polyelectrolyte films (useful for biological and

chemical sensing) on top of metallic coatings has been stud-

ied, showing that TFBG SPR sensors can be used to monitor

polymer thickness steps of the order of 1.12 nm [38].

The response of TFBGs to metallic films is highly polarization

dependent. Using the polarization selectivity of TFBGs has led

to the successful investigation of the complex permittivity of

various metallic films. In particular, it has been demonstrated

that the permittivity of a thin film of nanoparticles of copper is an

order of magnitude larger than that of bulk copper at 1550 nm,

and that changes in the RI of an external medium can be detected

using this Cu-coated TFBG with a sensitivity of 585.3 nm/RIU

[39]. Similarly, the effective permittivity of ultrathin gold films

down to a few nm in thickness has been studied, showing that

the real part of the permittivity of such gold films can reach

10 times that of the bulk metal, whereas the imaginary part may

become two orders of magnitude lower. Furthermore, the TFBG

approach has been useful for finding that the surface topology

of the film (e.g., roughness or granularity) has an influence on

the values of the properties of the film, beyond the geometric

characteristics [40].

D. TFBG-SPR RI Sensors

Changes in the RI of an external medium have been studied

to a great extent using gold coated TFBGs. Gold films are the

most frequently used, mainly due to their stability (they do not

form oxides when exposed to air) and their intrinsic biocompat-

ibility. As indicated in Section IV, with a gold film thickness of

50 nm, TFBGs have a bulk sensitivity of (500 ± 10) nm/RIU at

wavelengths near 1550 nm. With polarization resolved measure-

ment, the measured uncertainty falls within the order of 10−5

RIU [41]. The presence of a thin metal coating is particularly in-

teresting in the sense that for gold thicknesses of at least 50 nm,

TM cladding modes can still penetrate across the metal into the

surrounding medium but TE modes are completely shielded.

The differential sensitivity between TM and TE modes reaches

seven orders of magnitude (in theory) and a factor of 25 (mea-

sured) [42]. Spekle and near field scanning microscopy analyses

have also demonstrated the strong dependence on the polariza-

tion state of the excitation of plasmonic resonances for a fiber

coated by silver nanocube random arrays [43] and oriented silver

nanowires [44].

Silver nanowires have been used to form a metallic coat-

ing, randomly distributed over an optical fiber. The sensitivity

reached with a sparse coating of only 14% surface coverage was

185 nm/RIU for the measurement of bulk RI changes: a FOM

of 3700 RIU−1 was achieved as well as a sensitivity increase of

3.5 times that of a bare fiber [44]. A larger improvement in the

sensitivity has been found when the silver nanowires have a par-

ticular orientation—achieved by means of Langmuir–Blodget

film deposition—, reaching 650 nm/RIU (about ten times that

of a bare TFBG) when measuring changes in RI of ethylene

glycol in water [45].

E. TFBG-SPR Biochemical Sensors

The use of TFBGs coated with gold to perform as SPR sensors

has been demonstrated in several biochemical applications. Us-

ing a biotin-streptavidin biomolecular recognition experiment,

it was shown that differential polarization spectral transmission

measurements of a fine comb of cladding mode resonances in

the vicinity of a so-called a polarized resonance provide the

most accurate method to extract information from plasmon-

assisted TFBGs, down to 2 pM concentrations and changes of

10−5 RIU [46]. Label-free biorecognition is achieved in these

sensors by the functionalization of the gold-coated fibers. The

first gold-coated TFBG-SPR sensor was functionalized with ap-

tamers (synthetic DNA sequences that bind with high specificity

to a given target) and resulted in the detection of different con-

centrations of thrombin in buffer and serum solutions with a

LOD of 22.6 nM, as well as in the evaluation of the dissociation

constant of the aptamer-thrombin pairs [47]. Biomolecules can

be physically immobilized or attached to the gold surface by

covalent linkage, which is the preferred method due to repro-

ducibility and sensitivity of the final arrangement. The choice

of the biomolecule for the specific recognition layer depends on

the application. Aptasensors have been demonstrated to perform

with sensitivities of around 500 nm/RIU, with a Q-factor of 105,

and limits of detection of 10−5 RIU [48].

A follow up work to [46] and [47] was done using the

antibody-antigen affinity mechanism for a more comprehen-

sive assessment of the configuration. Two kinds of experiments

were reported: with the biotin-streptavidin pair and with human

transferrin. The differential behavior of cladding mode reso-

nances in the vicinity of the SPR mode was used to monitor

the self-assembled monolayer formation and to finely measure

streptavidin concentrations. Functionalized SPR-TFBG biosen-

sors were immersed in phosphate buffered saline solution with

streptavidin molecules at very low concentrations, ranging from

10−11 to 5 × 10−4 g/ml. The evolution of wavelength and
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Fig. 10. Wavelength shift of the most sensitive TFBG-SPR resonance of a
biotin-functionalized sensor as a function of the streptavidin concentration [44].

Fig. 11. Wavelength shift response of avidin-coated TFBGs with and without
gold nanocages from test solutions of varying biotin concentration [50].

amplitude of the relevant cladding mode resonances was

recorded (an example is shown in Fig. 10). This configuration is

particularly competitive, reaching a LOD equal to 2 pM (10−10

g/ml). Additionally, an immunosensing experiment is reported

with human transferrins (proteins that control the level of free

iron in blood plasma), demonstrating that the device can operate

well in real biochemical conditions. Furthermore, it was demon-

strated that the binding is reversible, which makes the device

reusable [49].

In a similar vein, gold nanoparticles (nanocages and

nanospheres) have been attached to a TFBG surface by dip-

ping the optical fibers into solutions with the nanoparticles.

Biomolecular recognition of biotin by avidin molecules attached

to the nanoparticles showed an improved LOD (down to 8 pM)

compared to TFBGs without nanoparticles (see Fig. 11) [50].

Finally, gold-coated TFBG-SPR sensors have been used to

monitor the state of living cells in Petri dishes, inside an incu-

bator. The response of the cells in the first minutes following

the introduction in the Petri dish of different kinds of positive

or negative stimuli, such as trypsin, serum, and sodium azide

can be detected [51]. The sensor response is monitored, when

solutions of fetal bovine serum (FBS) at different concentrations

(50%, 30%, and 10% (v/v)) are added to cultured NIH-3T3 fi-

broblast cells. Since FBS induces cellular uptake of nutrients,

cells grow and spread on the sensor surface, which results in an

increase in the average RI near the gold surface of the fiber. This

in turn increases the SPR response of the TFBG, within the first

few minutes following the injection of FBS, and at a rate that is

concentration dependent.

In more recent advances, alternative configurations have been

developed, such as a combination of a low-index polymer layer

underneath a gold sheath of the fiber in order to symmetrize

the permittivity on the two sides of the metal when the external

medium is a water solution. In this configuration, long-range

SPPs can be excited, which in principle could lead to narrower

resonances. Preliminary results with this configuration showed

a sensitivity of 115 nm/RIU [52]. And with a different approach

towards the realization of fiber-based long-range-SPR sensing

has been proposed inside a hollow fiber. The main difference

was the addition of a dielectric, forming a silica-silver-dielectric

cylinder, and where the liquid of interest is placed into the hol-

low center of the device. The sensitivities of this configuration

ranged from 2000 to 6600 nm/RIU, with figures of merit be-

tween 70 and 88 RIU−1 [53].

V. CONCLUSION

TFBGs operating in the NIR have achieved impressive sen-

sitivities and limits of detection without the need for reference

channels or temperature stabilization. This is because of the

large number of cladding mode resonances that are excited by a

single TFBG, and the fact that these resonances provide inher-

ent referencing features as well as capabilities for differential

measurements. The TFBG also benefits from having a grating-

assisted coupling mechanism which leads to reasonably high

Q-factors (λ/∆λ), as a result of their large length to period ra-

tios. And finally, by breaking the cylindrical symmetry of the

conventional single mode fiber, it is possible to excite cladding

modes that are exclusively TE or TM at the cladding bound-

ary and hence to benefit from additional differential sensitivity

features (instead of controlling and rotating linearly polarized

the input light in the fiber core, automated PDL measurements

using standard fiber optic instrumentation can also be used for

differential polarization measurements of TFBGs. All these ad-

vantageous features are further compounded by the fact that

single mode fibers in the NIR have extremely low loss and can

carry large amounts of optical powers, and over long distances

if necessary, resulting in excellent signal to noise ratios. Widely

available instrumentation developed for the telecommunications

industry further facilitates the use NIR TFBGs in many other

fields. Calculations have been presented to explain these results

in terms of the fundamental properties of waves reflected from

thin films and interfaces, thereby confirming the advantages in

moving to longer wavelengths in the NIR instead shorter ones

for sensing. The successful use of TFBGs at NIR wavelengths is

confirmed through the demonstration of multiple applications,

including food safety, biomolecular binding assays, and cell

behavior studies. Further work will undoubtedly find new appli-

cations where accurate control of the phase and polarization of

evanescent waves at the surface of optical fibers can be used to

improve the sensitivity and selectivity of biochemical sensors,
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particularly in situations where instrumentation based on bulk

optics is not practical.
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