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Spectral estimation can be defined as the art of recovering the frequency content
in a measured signal, and is a highly relevant problem in practice. In particular,
many engineering problems, ranging from synthetic aperture radar (SAR) imaging
to the analysis of time-series observed in seismology or astronomy, can be cast
as a spectral analysis problem. A nonparametric spectral estimator is a method
that, unlike parametric methods, attempts to compute the spectral content of a
signal without using any a priori information or making any explicit assumption
about it. While many smoothed versions of the discrete Fourier transform can
be interpreted as nonparametric methods, a body of recent work has suggested
more advanced such methods that are based on adaptive filterbanks. This chapter
provides a review of some of the existing work in the area of nonparametric spectral
estimation, including fast implementations of the most successful estimators as well
as various extensions to spectral analysis of incomplete data. Numerical examples
are provided to exemplify the various algorithms.

4.1 Introduction

Spectral analysis is an important problem that occurs in many applications. For
instance, the task of detecting the periodicity in a time-series can be cast as a
spectral analysis problem [1], and imaging using synthetic aperture radar (SAR)
or other tomographic techniques can essentially be interpreted as the problem of
estimating the amplitudes and frequencies of superimposed sinusoids buried in noise
(see, e.g., [2], [3] and the references therein). Spectral estimation is also relevant in
other problems related to radar [4]. Consequently, an abundance of literature on
the topic exists; see, for example, the textbooks [5], [6], [7] and their bibliographies.

The classical approaches to spectral analysis (of uniformly sampled data) include
the discrete Fourier transform (DFT) as well as its variants, which are typically

153



154 High-Resolution Nonparametric Spectral Analysis: Theory and Applications 4

based on smoothing the DFT spectral estimate or windowing the data [5], [6],
[7]. While the spectral resolution of the DFT based algorithms is usually rather
poor, these methods do not make any a priori assumptions on the spectral shape
and consequently they are very robust. On the other hand, there exist several
parametric high-resolution methods that exhibit an excellent capability to resolve
spectral peaks. This class of methods includes MUSIC [8], and other so-called
subspace-based methods [5], [9]. In contrast to the DFT-based methods, these
parametric techniques rely heavily on the assumption that the observed data consist
of a known number of sinusoids in white noise, and unfortunately they often fail in
applications where this assumption is not perfectly satisfied.

An emerging class of methods that can overcome the resolution limit of the
DFT, and to some extent trade spectral resolution against robustness and statis-
tical stability is the group of so-called nonparametric adaptive filter-bank methods.
This class of estimators contains the classical Capon algorithm [10], and the more
recent amplitude and phase estimation (APES) approach [11], [12]. Although a rel-
atively straightforward analysis shows that (under certain conditions) both APES
and Capon are essentially equivalent to the DFT as the amount of data goes to
infinity, their finite sample properties have shown to be promising in experiments
with both simulated and measured data. There is also some evidence that these
methods may be able to improve the performance of automatic target recognition
algorithms [13]. Therefore, several research papers describing these filterbank meth-
ods, as well as various extensions and combinations of them, have appeared in the
literature. The main goal of this chapter is to summarize this body of research in
a unified framework. We will also provide numerical illustrations of several of the
methods, as well as identify some open problems.

We start in Section 4.2 by discussing the spectral estimation problem in general
and by introducing appropriate notation. In Section 4.3 we go on to discuss several
spectral estimators that can be obtained via a weighted least-squares (WLS) fitting
criterion. These methods include in particular the smoothed DFT, , Capon, APES
and their variations. In Section 4.4, we provide a filterbank interpretation of the
so-obtained estimators. Section 4.5 shows how the estimators can be extended to
two-dimensional data, and Section 4.6 discusses how the so-called forward-backward
averaging can be used to improve the statistical properties of the estimators. In
Section 4.7, we summarize the available results on statistical performance of adap-
tive filterbank estimators. Next, in Section 4.8 we describe fast techniques for the
evaluation of the Capon and APES spectra and in Section 4.9 we collect various
numerical examples of the performance of these estimators. Section 4.10 treats an
important problem where the filterbank estimators have proven to be successful:
spectral estimation of data with missing samples. Finally, in Section 4.11 we treat
some special topics including spectral estimation of real-valued data, spectral anal-
ysis of data that contain damped sinusoids in noise, and combinations of the various
filterbank methods.
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4.2 The Spectral Estimation Problem

In a few words, the spectral estimation problem amounts to “estimating how the
total power is distributed over frequency, from a finite record of a stationary data
sequence.” To formulate this statement in a more precise form, it is necessary to
first specify what we mean by “distribution of power over frequency.”

There is more than one way to define the spectral distribution of power. For
instance, for a stationary random process x(n) we can define the power spectrum
[14]:

αP (ω) ,
∞∑

k=−∞
E[x(n)x∗(n− k)]e−iωk (4.2.1)

where (·)∗ stands for the complex conjugate. On the other hand, if x(n) is a signal
consisting of superimposed sinusoids with fixed amplitudes in stationary noise w(n)
that has a finite power spectrum for all ω:

x(n) =

P∑

p=1

αpe
iωpn + w(n), (4.2.2)

it is natural to define the complex amplitude spectrum in the following way:1

αA(ω) ,

{
αp ω = ωp

0 otherwise
. (4.2.3)

For a signal such as that in (4.2.2), the power spectrum as defined in (4.2.1) is
infinite whenever ω is equal to any of the frequencies of the sinusoids. Moreover,
if the signal amplitudes {αk} are fixed, the signal in (4.2.2) is not stationary (it is
cyclo-stationary [14]).

Before the spectral estimation problem is formulated, it is necessary to specify
what type of signal that will be studied, and how the spectrum that we want to
estimate is defined. Throughout this chapter, and often elsewhere in the context of
nonparametric spectral estimation, it is assumed that the signal under considera-
tion is a sum of sinusoids embedded in stationary noise, i.e., that (4.2.2) holds, and
consequently that the amplitude spectrum in (4.2.3) is the quantity of interest. On
the other hand, signals observed in practice may not necessarily consist of superim-
posed sinusoids; if the signal is not a superposition of sinusoids then the estimation
of the amplitude spectrum apparently amounts to implicitly approximating the sig-
nal with such a sum of sinusoids. Doing so may make sense in a wide range of
applications. For instance, the presence of a hidden periodicity in the data can be
revealed by estimating the amplitude of a fictitious sinusoidal component in the
data and comparing it to a threshold. In SAR imaging applications, the measured
phase-history data fulfill a two-dimensional counterpart to the model (4.2.2) (in an
approximate sense).

1For deterministic signals with finite energy, there are also other definitions of the amplitude
spectrum, see, e.g., [7, Sec. 2.5].
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4.3 Nonparametric Spectral Analysis via Weighted Least-Squares

In this section we introduce the nonparametric spectral analysis methods. We first
describe these methods in a weighted least-squares (WLS) framework, and later in
Section 4.4 we discuss filterbank interpretations of them.

Let x(n) be an arbitrary one-dimensional (1D) time series. For a given frequency
ω of interest, let us decompose x(n) in a sinusoidal term with amplitude α(ω) and
a residual term wω(n):

x(n) = α(ω)eiωn + wω(n). (4.3.1)

In the context of (4.2.2), wω(n) contains all sinusoids except for that one possibly
present at ω, as well as the random noise component w(n). The problem of esti-
mating the amplitude spectrum of x(n) then essentially becomes that of estimating
α(ω) given x(n).

Let us assume that we are given N consecutive samples of x(n), viz., x(n) for
n = 0, . . . , N−1. Let M ≤ N/2 be a user parameter, whose choice will be discussed
subsequently, and arrange the observed data x(n) in an M × L Hankel matrix as
follows:

Y , [y0 · · · yL−1] ,




x(0) x(1) · · · x(L− 2) x(L− 1)
x(1) x(2) x(L− 1) x(L)

...
. . .

...
x(M − 2) x(M − 1) x(N − 3) x(N − 2)
x(M − 1) x(M) · · · x(N − 2) x(N − 1)




(4.3.2)

where
L = N −M + 1. (4.3.3)

We will refer to the columns {yl} of Y as snapshots. Also, let

W(ω) = [w0(ω) · · · wL−1(ω)] (4.3.4)

be defined similarly to Y in (4.3.2) and let A(ω) be the following rank-one matrix:

A(ω) = aM (ω)aTL(ω) (4.3.5)

where (·)T denotes the transpose and

aP (ω) ,




1
eiω

...

eiω(P−1)


 (4.3.6)
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for any integer P . Then we can write (4.3.1) as:

Y = α(ω)A(ω) + W(ω). (4.3.7)

Note that in the “degenerate” case of M = 1, (4.3.7) reduces to

[
x(0) · · · x(N − 1)

]

=α(ω)
[
1 eiω · · · eiω(N−1)

]
+
[
wω(0) · · · wω(N − 1)

]
.

(4.3.8)

Equation (4.3.7) expresses a linear regression between the quantity of interest
α(ω) and the observed data matrix Y, and is similar to the classical snapshot
formulation that appears in most treatments of spectral estimation methods [5], [6],
[7]. For instance, all the so-called parametric subspace methods [5], [9] rely on an
equation equivalent to (4.3.7), which in that case is essential in order to formulate
a low-rank signal model. The DFT method, certain averaged DFT methods, as
well as the Capon and APES algorithms are also based on (4.3.7). In the present
framework, the latter methods simply compute a WLS estimate of α(ω) as follows:

α̂(ω) = argmin
α(ω)

∥∥∥Φ−1/2(ω)
(
Y − α(ω)A(ω)

)∥∥∥
2

(4.3.9)

where Φ(ω) is a weighting matrix and (·)1/2 denotes the square root of a Hermitian
matrix.

The WLS criterion (4.3.9) effectively pre-whitens the columns of Y with an
ω-dependent weight matrix Φ(ω) to account for a possible coloration of the resid-
ual signal wω(n), and then fits a single-sinusoidal model to the pre-whitened data.
Provided that wω(n) is stationary, the residual vectors {wl(ω)} are identically dis-
tributed, although they are not independent. Consequently, it makes sense to use
the same weight matrix Φ(ω) to pre-whiten all columns of Y.

The criterion in (4.3.9) is quadratic in α(ω). Hence the solution to (4.3.9) can
be obtained by some straightforward algebra:

α̂(ω) =
aHM (ω)Φ−1(ω)g(ω)

aHM (ω)Φ−1(ω)aM (ω)
(4.3.10)

where (·)H denotes the complex conjugate transpose and

g(ω) ,
1

L

L−1∑

l=0

yle
−iωl =

1

L
Ya∗

L(ω). (4.3.11)

The difference between the DFT, Capon and APES methods is the choice of M and
Φ(ω), which will be discussed next.

However, before we proceed to discuss the different methods, a technical remark
is in order. For many of the estimates presented below, the matrix Φ(ω) is a function
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of the covariance sequence of x(n). In a strict sense, this covariance sequence is only
well-defined if x(n) is a stationary random process. This is the case if x(n) is an
outcome of (4.2.2) and the amplitudes {αp} are considered to be random quantities,
but not if x(n) is a realization of (4.2.2) conditioned on {αp} (nevertheless, when
applying the filterbank estimators we consider {αp} to be deterministic). Under the
assumption that x(n) is stationary, the following covariance matrix is well-defined:

R , E[yky
H
k ]. (4.3.12)

(and is independent of k). Moreover, since {wk(ω)} are identically distributed, the
covariance matrix

Q(ω) , E[wk(ω)wH
k (ω)] (4.3.13)

is also well-defined (and independent of k). Finally, under the same assumption, it
follows readily that

Q(ω) = R−E[|α(ω)|2]aM (ω)aHM (ω). (4.3.14)

4.3.1 The Discrete Fourier Transform (DFT) Method

For the DFT method, we takeM = 1 and consequently we have L = N . In this case,
Φ(ω) disappears from both the formulation (4.3.9) and from the solution (4.3.10) of
the LS problem. The resulting spectral estimate (4.3.10) reduces to the well-known
DFT estimate:

α̂DFT(ω) =
1

N
aHN (ω)y =

1

N

N−1∑

n=0

x(n)e−iωn (4.3.15)

where
y = [x(0) · · · x(N − 1)]T . (4.3.16)

4.3.2 The Averaged Fourier Method

If we choose M > 1 and Φ(ω) = I (independently of ω), we obtain the following
averaged version of the DFT:

α̂A-DFT(ω) =
1

M
aHM (ω)g(ω) =

1

LM

L−1∑

l=0

M−1∑

m=0

x(l +m)e−iω(l+m). (4.3.17)

The averaging in (4.3.17) reduces the variance of the spectral estimate at the cost of
a decreased resolution. Effectively, in this case the parameter M can be interpreted
as a smoothing lag that trades spectral resolution for improved statistical stability.
It is worth mentioning that the averaged Fourier Method coincides with a version
of the Welch method [15], [5].
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4.3.3 The Capon Method

The Capon method [10], [5], [7], [6] is a classical spectral analysis method that has
also, somewhat incorrectly, been referred to as a “maximum-likelihood” spectral
estimator. The Capon method can easily be described in the current framework by
choosing an ω-independent weighting matrix Φ(ω) that is a sample estimate of the
data covariance matrix R in (4.3.12):

ΦCapon(ω) = R̂ ,
1

L
YYH =

1

L

L−1∑

l=0

yly
H
l . (4.3.18)

The resulting estimator is (cf. (4.3.10))

α̂Capon(ω) =
aHM (ω)R̂−1g(ω)

aHM (ω)R̂−1aM (ω)
. (4.3.19)

The choice of Φ(ω) in (4.3.18) can be given a natural interpretation as follows.
Let Q(ω) be the covariance matrix defined in (4.3.13). This matrix effectively
captures the statistics of the residual term wω(n) in (4.3.1). An ideal choice of
weighting matrix for the WLS problem would be to use Φ(ω) = Q(ω) since this
yields a Markov-like estimate that is known to have optimal (in a certain sense)
statistical properties.2 In practice Q is unknown. However, under the assumptions
made on the data we have that (see (4.3.14)):

R = Q(ω) +E
[
|α(ω)|2

]
aM (ω)aHM (ω). (4.3.20)

By applying the matrix inversion lemma [17] to (4.3.20), it can be shown that

R−1aM (ω) =
1

1 +E
[
|α|2

]
· aHM (ω)Q−1(ω)aM (ω)

Q−1(ω)aM (ω). (4.3.21)

Hence we see from (4.3.10) that using Φ(ω) = R−1 yields the same result as using
Φ(ω) = Q−1(ω). Although such a result does not hold when the matrices in (4.3.21)
are replaced by their sample estimates, we can still expect that Capon’s choice of
Φ(ω) = R̂−1 will give estimates with reasonable properties.

In some literature, the “Capon” estimator derived above is referred to as the
“amplitude-spectrum Capon (ASC) estimator.” There exists a variant of ASC,
namely the power-spectrum Capon (PSC) estimator, which can also be derived in
a framework similar to that above. Although for conciseness we do not treat PSC
in this chapter, for instance [18], [19], [20] have observed that ASC and PSC have
quite different properties (in terms of spectral resolution, bias and variance).

2However, even if Q(ω) were available, the choice Φ(ω) = Q(ω) would not be overall optimal
since the columns of W are not independent. This problem was addressed in [16]; see also the
section “MMSE spectral estimation” below.
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4.3.4 The APES Method

The APES algorithm was originally suggested in [11] and later re-derived and in-
terpreted in different ways in [12], [21], [22], [23]. APES chooses Φ(ω) as follows:

ΦAPES(ω) = R̂− g(ω)gH(ω) , Q̂(ω) (4.3.22)

where g(ω) is defined in (4.3.11). Note that unlike Capon, for APES the weighting
matrix Φ(ω) depends on ω. The resulting spectral estimate is obtained by inserting
(4.3.22) into (4.3.10):

α̂APES(ω) =
aHM (ω)Q̂−1(ω)g(ω)

aHM (ω)Q̂−1(ω)aM (ω)
. (4.3.23)

We have that (cf. (4.3.14)):

E[Q̂(ω)] = R− E[g(ω)gH(ω)] → R−E
[
|α(ω)|2

]
a(ω)aH (ω) = Q(ω) (4.3.24)

when N → ∞. Hence Q̂(ω) can be seen as an estimate of Q(ω) in (4.3.13), which
makes the choice of Φ(ω) in (4.3.22) intuitively appealing.

In [11] it was also shown that (4.3.23) is the maximum-likelihood estimate of
α(ω) in the model (4.3.7) under the assumption that the columns of W are indepen-
dent and Gaussian with the same covariance matrix. Unfortunately, the columns of
W are not independent for the problem under study; nevertheless this result does
establish a connection between the seemingly ad-hoc choice of Φ(ω) in (4.3.22) and
a more systematic estimation theory. To prove that α(ω) is the ML estimate in the
aforementioned sense, assume that W has independent and Gaussian columns with
covariance matrix Q(ω). Then the part of the negative log-likelihood function that
depends on the quantities of interest is proportional to:

L · log |Υ(ω)| + tr
[
Υ(ω)−1

(
Y − α(ω)A(ω)

)(
Y − α(ω)A(ω)

)H]
. (4.3.25)

Applying some matrix algebra we find that the matrix Q(ω) that minimizes (4.3.25)
is equal to:

QML(ω) =
1

L

(
Y − α(ω)A(ω)

)(
Y − α(ω)A(ω)

)H
. (4.3.26)

Inserting (4.3.26) into (4.3.25) we find that the problem of ML estimation of α(ω)
reduces to that of minimizing the following determinant:

∣∣∣
(
Y − α(ω)A(ω)

)(
Y − α(ω)A(ω)

)H ∣∣∣

=
∣∣∣
(
Y − α(ω)aM (ω)aTL(ω)

)(
Y − α(ω)aM (ω)aTL(ω)

)H ∣∣∣
. (4.3.27)
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By using some identities involving the determinant of a matrix we obtain:
∣∣∣(Y − α(ω)A(ω))(Y − α(ω)A(ω))H

∣∣∣

=
∣∣∣YYH − α(ω)A(ω)YH − αH (ω)YAH(ω) + |α(ω)|2A(ω)AH (ω)

∣∣∣

=
∣∣∣YYH − g(ω)g(ω) +

(
α(ω)aM (ω) − g(ω)

)(
α(ω)aM (ω) − g(ω)

)H ∣∣∣

=
∣∣∣YYH − g(ω)g(ω)

∣∣∣ ·
∣∣∣I + Q̂−1(ω)

(
α(ω)aM (ω) − g(ω)

)(
α(ω)aM (ω) − g(ω)

)H∣∣∣

=
∣∣∣YYH − g(ω)g(ω)

∣∣∣ ·
(
1 +

(
α(ω)aM (ω) − g(ω)

)H
Q̂−1(ω)

(
α(ω)aM (ω) − g(ω)

))

(4.3.28)

where Q̂(ω) is taken as in (4.3.22). The expression in the last line of (4.3.28) is
quadratic in α(ω) and is minimized by (4.3.23).

4.3.5 MMSE Spectral Estimation

A different approach to the spectral analysis problem, which can be argued to be
more systematic than both Capon and APES, was proposed in [16]. By develop-
ing an expression for the mean-square error (MSE) of the WLS spectral estimate
(4.3.10), an optimality criterion for the choice of Φ(ω) by minimizing this MSE
was formulated. In the current framework, the results of [16] can be described as
follows. Since

α̂(ω) − α(ω) =
aHM (ω)Φ−1(ω)

(
g(ω) − α(ω)aM (ω)

)

aHM (ω)Φ−1(ω)aM (ω)
(4.3.29)

we find by using the fact that (cf. (4.3.11)):

g(ω) − α(ω)aM (ω) =
1

L
Wa∗

L(ω) (4.3.30)

that the MSE for the estimate of α(ω) in (4.3.29) is equal to:

E
[
|α̂(ω) − α(ω)|2

]
=

1

L2
E

[
aHM (ω)Φ−1(ω)Wa∗

L(ω)aTL(ω)WHΦ−1(ω)aM (ω)
(
aHM (ω)Φ−1(ω)aM (ω)

)2

]

=
aHM (ω)Φ−1(ω)Υ(ω)Φ−1(ω)aM (ω)

(
aHM (ω)Φ−1(ω)aM (ω)

)2

(4.3.31)

where

Υ(ω) =
1

L2
E[Wa∗

L(ω)aTL(ω)WH ]. (4.3.32)

We have that:

Υ(ω) =
1

L2
E[Ya∗

L(ω)aTL(ω)YH ] −E[|α(ω)|2]aM (ω)aHM (ω). (4.3.33)
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It follows that the MSE in (4.3.31) is minimized for

Φ(ω) = E[Ya∗
L(ω)aTL(ω)YH ] , Ψ(ω). (4.3.34)

The problem of spectral estimation in a MMSE sense therefore reduces to that
of finding a good estimate of Ψ(ω). This problem was addressed in some detail in
[16], where it was suggested that Ψ(ω) could be estimated as a structured quadratic
function of the data (this is quite natural in view of (4.3.34)):

Ψ̂(ω) = YΣ(ω)YH (4.3.35)

where Σ(ω) is an L× L Toeplitz matrix whose (k, l)th element is equal to

Σk,l(ω) = rk−le
−iω(k−l) (4.3.36)

and {rk} is a conjugate-symmetric weighting sequence. A motivation for choosing
this estimate that relates to the literature on estimation of covariance sequences
was provided in [16]. As a guideline towards choosing the constants {rl}, a theorem
in the cited article demonstrated that as long as

f(γ) =

L−1∑

l=−L+1

rle
iγl (4.3.37)

is uniformly (in γ) lower bounded by a strictly positive constant, the condition num-
ber of the matrix Ψ(ω) is bounded, which is a desirable property. Yet, choosing
the “best” windowing sequence {rl} remains an open problem. Numerical experi-
ments reported in [16] indicate that the MMSE estimator can provide slightly better
resolution than APES and Capon, but we will not pursue it further in this chapter.

4.4 Matched-Filterbank Interpretations

In addition to the averaged Fourier transform, which can be seen as a degenerated
special case of the filterbank methods, perhaps the most successful estimators to
date are the Capon and APES methods; hence the rest of this chapter will focus on
these methods.

The DFT, Capon and APES estimators described above can be interpreted in
an adaptive filterbank framework. Although this interpretation is somewhat ad-hoc,
it does provide additional insight into the characteristics of the different methods.
The filterbank interpretations of the various estimators was presented in [23]. In the
context of filterbanks, for each frequency ω of interest the nonparametric methods
filter the data with a normalized finite-impulse response (FIR) filter h(ω) of length
M . The variable M is a user parameter which is the same as the length of the
snapshots in the matrix (4.3.2) above. The filter h(ω) is chosen according to a
criterion which is different for the various spectral analysis methods, but with the
common constraint that a sinusoid with frequency ω should pass the filter without
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distortion. Following the filtering, a sinusoid is fitted to the filtered data in a LS
sense, and the amplitude of the so-obtained sinusoid α̂(ω) is taken as the estimate
of the amplitude spectrum αA(ω) at the frequency ω of interest.

The idea behind the filtering is easy to understand intuitively as follows. Clearly,
filtering x(n) with h(ω) reduces the number of available samples from N to L; yet,
if the filter is properly designed the increase in signal-to-noise ratio (SNR) in the
filtered data will counterbalance this reduction and the amplitude of a sinusoidal
component with frequency ω can be estimated more accurately from the filtered
data than from the original signal.

Let x(n) be the same time-series as above, and let yn be defined according to
(4.3.2). If

h(ω) = [h0(ω) · · · hM−1(ω)]T (4.4.1)

is an M -vector that contains the coefficients of the FIR filter, the filtered data can
be written as:

z(l) =
M−1∑

m=0

x(l +m)hm(ω) = hH(ω)yl = α(ω)hH (ω)aM (ω) + hH(ω)wl(ω) (4.4.2)

for l = 0, . . . , L− 1. If the transfer function of the filter is equal to unity at ω:

hH(ω)aM (ω) = 1 (4.4.3)

(in other words, a sinusoid with frequency ω passes the filter undistorted), then the
LS estimate of α(ω) (given yl) in (4.4.2) is:

α̂(ω) =
1

L

L−1∑

l=0

hH(ω)yle
−iωl = hH(ω)g(ω) (4.4.4)

where h(ω) is yet to be determined.

4.4.1 DFT and Averaged DFT

The averaged DFT can be interpreted in a filterbank framework by choosing a fixed
(i.e. independent of the realization of x(n)) narrowband filter h(ω) as follows:

h(ω) =
1

M
[1 eiω · · · eiω(M−1)]T . (4.4.5)

We get the spectral estimate

α̂A-DFT(ω) =
1

L

L−1∑

t=0

1

M

M−1∑

k=0

x(t + k)e−iω(t+k)

=
1

L

L−1∑

t=0

e−iωt
( 1

M

M−1∑

k=0

x(t+ k)e−iωk
) (4.4.6)

which is (4.3.17).
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4.4.2 Capon

For the Capon method, the filter coefficients in h(ω) are chosen such that the
energy of the filtered signal is minimized subject to the constraint that a sinusoid
with frequency ω passes the filter undistorted. This design criterion can be written
as

min
h(ω)

L−1∑

l=0

|hH(ω)yl|2 (4.4.7)

subject to the constraint

aHM (ω)h(ω) = 1. (4.4.8)

The constraint (4.4.8) is enforced in order to guarantee the existence of a mean-
ingful solution to (4.4.7), and it is also intuitively appealing. The solution to the
minimization problem under consideration is:

h(ω) =
R̂−1aM (ω)

aHM (ω)R̂−1aM (ω)
. (4.4.9)

The Capon amplitude spectrum estimate α̂(ω) is obtained by fitting a sinusoid to
the filtered data z(l) = hH(ω)yl in a least-squares (LS) sense. This yields the same
estimate as previously derived in a different way, viz. (4.3.19):

α̂Capon(ω) =
1

L

L−1∑

l=0

y(l)e−iωl =
aHM (ω)R̂−1g(ω)

aHM (ω)R̂−1aM (ω)
. (4.4.10)

4.4.3 APES

For the APES method the filter h(ω) and the amplitude spectrum estimate α̂(ω)
are the joint minimizers of the following criterion:

min
h(ω),α(ω)

L−1∑

l=0

|hH(ω)yl − α(ω)eiωl|2 (4.4.11)

subject to the same constraint (4.4.8) as for the Capon method. The design in
(4.4.11) can be interpreted as filtering x(n) in a way such that the filtered signal
resembles a sinusoid as closely as possible in a least-squares (LS) sense; this is an
intuitively appealing criterion. The spectral estimate resulting from (4.4.11) is equal
to that derived in (4.3.23):

α̂Apes(ω) =
aHM (ω)Q̂−1(ω)g(ω)

aHM (ω)Q̂−1(ω)aM (ω)
. (4.4.12)
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4.5 Extensions to Two-Dimensional Data

With some additional notational effort, the nonparametric spectral estimation meth-
ods can easily be extended to spectral estimation of two-dimensional (2D) data. Let
X(n, n̄) be a 2D data matrix of dimension N × N̄ , and suppose that for a certain
frequency pair ω, ω̄ of interest we decompose X(n, n̄) in a manner similar to (4.3.7):

X(n, n̄) = α(ω, ω̄)ei(ωn+ω̄n̄) +Wω,ω̄(n, n̄).. (4.5.1)

Also, letM and M̄ be user parameters and let us define snapshots that are vectorized
sub-matrices of the available data matrix:

yl,l̄ , vec







X(l, l̄) · · · X(l, l̄+ M̄ − 1)
...

. . .
...

X(l+M − 1, l̄) · · · X(l +M − 1, l̄+ M̄ − 1)





 (4.5.2)

for l = 0, . . . , L − 1, l̄ = 0, . . . , L̄ − 1 where L = N −M + 1 and L̄ = N̄ − M̄ + 1
(note that in the 1D case we have N = M = L = 1).

Let us introduce the following 2D Fourier vector, for arbitrary integers P and
P̄ :

aP,P̄ (ω, ω̄) ,
[
1 eiω̄ · · · ei(P̄−1)ω̄

]T ⊗
[
1 eiω · · · ei(P−1)ω

]T
(4.5.3)

where ⊗ stands for the Kronecker product and let

Y ,
[
y0,0 · · · yL−1,0 y0,1 · · · yL−1,L̄−1

]
(4.5.4)

as well as
A(ω, ω̄) = aM,M̄ (ω, ω̄)aTL,L̄(ω, ω̄). (4.5.5)

Then we can formulate a linear regression similar to (4.3.7):

Y = α(ω, ω̄)A(ω, ω̄) + W(ω, ω̄). (4.5.6)

Estimation of α(ω, ω̄) in (4.5.6) via WLS, with Φ(ω, ω̄) as weighting matrix, yields
an expression with the same form as (4.3.10):

α̂(ω, ω̄) =
aH
M,M̄

(ω, ω̄)Φ−1(ω, ω̄)g(ω, ω̄)

aH
M,M̄

(ω, ω̄)Φ−1(ω, ω̄)aM,M̄ (ω, ω̄)
(4.5.7)

where

g(ω, ω̄) ,
1

LL̄
Ya∗

L,L̄(ω, ω̄) =
1

LL̄

L−1∑

l=0

L̄−1∑

l̄=0

yl,l̄e
−i(ωl+ω̄l̄) (4.5.8)

where Y is defined in (4.5.4), and Φ(ω, ω̄) is chosen in a manner similar to that in
Section 4.3.
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Capon: For the Capon method, Φ(ω, ω̄) is chosen according to:

Φ = R̂ =
1

LL̄

L−1∑

l=0

L̄−1∑

l̄=0

yl,l̄y
H
l,l̄ =

1

LL̄
YYH (4.5.9)

(independently of ω, ω̄).

APES: For the APES algorithm, Φ(ω, ω̄) is taken as:

Φ(ω, ω̄) = Q̂(ω, ω̄) = R̂− g(ω, ω̄)gH(ω, ω̄). (4.5.10)

4.5.1 Representation of Two-dimensional Filterbanks

In this section we introduce some notation for 2D filtering, that will help us formu-
late the nonparametric spectral estimators for 2D data in a filterbank framework.

Let X be an arbitrary N × N̄ data matrix and let H be an M × M̄ matrix that
contains the coefficients of a given FIR filter. Then we denote by

Z = H ∗X (4.5.11)

the following L × L̄ data matrix obtained by filtering X through the filter corre-
sponding to H:

Z(l, l̄) =

M−1∑

m=0

M̄−1∑

m̄=0

H∗(m, m̄)X(l +m, l̄+ m̄) = vecH(H)yl,l̄. (4.5.12)

In (4.5.12), yl,l̄ is defined as in (4.5.2). As the size of the filtered data matrix is
L× L̄ there are no edge-effects.

Let the LL̄× (L̄N −M + 1) matrix T be defined by:

T =




IL 0L,M−1

IL 0L,M−1

. . .

IL


 (4.5.13)

where IL is the L× L identity matrix and 0K×L is a K × L matrix of zeros. Note
that in the 1D-case, T is an identity matrix. Furthermore, let G be the following
Toeplitz matrix of dimension (L̄N −M + 1) ×NN̄ :

G =




hH1 01,L−1 hH2 01,L−1 · · · hH
M̄

0 · · · 0
0 hH1 01,L−1 hH2 01,L−1 · · · hH

M̄
· · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 hH1 01,L−1 hH2 01,L−1 · · · hH

M̄


 (4.5.14)
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where {hm}M̄m=1 are the columns of H. Note that in the 1D-case, H is a row vector
and hence G is simply a Toeplitz matrix with H∗ as its first row. From (4.5.2),
(4.5.12), (4.5.13) and (4.5.14) it follows after a few lines of algebra that

vec(Z) = vec(H ∗X) = TG vec(X). (4.5.15)

Equation (4.5.15) will be useful later in Subsection 4.10.2.

4.5.2 Filterbank Interpretations of Two-Dimensional Spectral Es-
timators

Using the notation in the previous subsection, the filterbank interpretations of
Capon and APES can easily be extended to the 2D case.

Capon: For Capon, the relevant criterion can be expressed as:

min
H(ω,ω̄)

∥∥H(ω, ω̄) ∗X
∥∥2

(4.5.16)

subject to the constraint

vecH
(
H(ω, ω̄)

)
aM,M̄ (ω, ω̄) = 1. (4.5.17)

In the same way as for 1D data, the constraint in (4.5.17) guarantees that the
transfer function of the filter H(ω, ω̄) is equal to unity at the frequency ω, ω̄ and
hence that a sinusoid with frequency ω, ω̄ passes through the filter undistorted.

APES: For APES, the relevant criterion can be expressed as:

min
H(ω,ω̄),α(ω,ω̄)

∥∥ vec
(
H(ω, ω̄) ∗X

)
− α(ω, ω̄)aL,L̄(ω, ω̄)

∥∥2
(4.5.18)

subject to the constraint (4.5.17).

4.6 Forward-Backward Averaging

Forward-backward (FB) averaging is a technique developed in the literature on pa-
rameter estimation [24], [25], [26]3, that can also be used to improve the performance
of the adaptive filterbank estimators. The idea behind FB averaging is simple. Un-
der the assumptions made in the preceding sections, the covariance matrices R as
well as Q(ω) are Toeplitz matrices. In particular, this means that they are also
persymmetric ,that is, R = JRTJ where J is a reversal matrix (i.e., a matrix of
compatible dimension that has ones along its anti-diagonal, and zeros everywhere
else). Clearly, any attempt to estimate the matrices R or Q(ω) by forming (outer
product) sample covariances, such as (4.3.18) and (4.3.22), leads to an estimate that
is not Toeplitz. Incorporating the constraint that the covariance matrix is Toeplitz

3Reference [26] deals with 1D data, but we can expect the results to also be valid for 2D data.
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leads to a difficult estimation problem (that is addressed in the literature on esti-
mation of structured covariance matrices). It is easier to incorporate the constraint
that the estimated covariance matrix should be persymmetric; this is done by FB
averaging of the sample covariance matrix.

4.6.1 FB Averaging of the Covariance Matrices

The FB averaged spectral estimates take on the following form (for generality, we
discuss FB averaging for the 2D case; the 1D case follows as a special instance).
Let X̃ be the following backward data matrix

X̃ ,



X∗(N − 1, N̄ − 1) · · · X∗(N − 1, 0)

...
. . .

...
X∗(0, N̄ − 1) · · · X∗(0, 0)


 (4.6.1)

and let ỹl,l̄ be defined similarly to yl,l̄ by replacing Xn,n̄ with X̃n,n̄ in (4.5.2). Also,
let

Ỹ = JY∗J (4.6.2)

where J is a reversal matrix. Next, define theMM̄×MM̄ forward sample covariance
matrix (which is the same as before)

R̂f ,
1

LL̄

L−1∑

l=0

L̄−1∑

l̄=0

yl,l̄y
H
l,l̄ =

1

LL̄
YYH (4.6.3)

where yl,l̄ is defined in (4.5.2) and the backward sample covariance matrix

R̂b ,
1

LL̄

L−1∑

l=0

L̄−1∑

l̄=0

ỹl,l̄ỹ
H
l,l̄ =

1

LL̄
ỸỸH =

1

LL̄
JY∗YTJ = JR̂T

f J. (4.6.4)

Then the forward-backward sample covariance matrix is defined according to:

R̂fb ,
1

2
(R̂f + R̂b). (4.6.5)

Let us introduce the following vector-valued Fourier transforms:

ḡ(ω, ω̄) ,
1

LL̄

L−1∑

l=0

L̄−1∑

l̄=0

yl,l̄e
−i(ωl+ω̄l̄)

g̃(ω, ω̄) ,
1

LL̄

L−1∑

l=0

L̄−1∑

l̄=0

ỹl,l̄e
−i(ωl+ω̄l̄)

(4.6.6)
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and define the matrix

Q̂fb(ω, ω̄) ,
1

2

(
Q̂(ω, ω̄) + JQ̂T (ω, ω̄)J

)

= R̂fb −
1

2

[
ḡ(ω, ω̄) g̃(ω, ω̄)

] [ḡH(ω, ω̄)
g̃H(ω, ω̄)

]. (4.6.7)

Then the Capon estimate of αA(ω, ω̄) is

α̂FB-Capon(ω, ω̄) =
aH
M,M̄

(ω, ω̄)R̂−1
fb ḡ(ω, ω̄)

aH
M,M̄

(ω, ω̄)R̂−1
fb aM,M̄ (ω, ω̄)

(4.6.8)

and the APES estimate is

α̂FB-APES =
aH
M,M̄

(ω, ω̄)Q̂−1
fb (ω, ω̄)ḡ(ω, ω̄)

aH
M,M̄

(ω, ω̄)Q̂−1
fb (ω, ω̄)aM,M̄ (ω, ω̄)

. (4.6.9)

4.6.2 Filterbank Interpretation of FB Averaged Spectral Estima-
tors

In the context of adaptive filterbanks, the FB averaging can be accomplished by
running the data forwards as well as backwards through the FIR filter, and rewriting
the relevant criteria as follows.

Capon: The filter coefficient matrix H(ω, ω̄) associated with the FB-averaged
Capon spectrum is the minimizer of the following criterion:

min
H(ω,ω̄)

{∥∥H(ω, ω̄) ∗X
∥∥2

+
∥∥H(ω, ω̄) ∗ X̃

∥∥2
}

(4.6.10)

subject to the following constraint:

vecH
(
H(ω, ω̄)

)
aM,M̄ (ω, ω̄) = 1. (4.6.11)

Minimization of the criterion (4.6.10) amounts to minimizing the energy of the
data matrix X when run backwards and forwards through the filter H(ω, ω̄). The
constraint in (4.6.11) guarantees that the transfer function of the filter H(ω, ω̄) is
equal to unity at the frequency ω, ω̄ and hence that a sinusoid with frequency ω, ω̄
passes through the filter undistorted.

Capon with FB-averaging has slightly worse resolution than Capon without FB-
averaging [18], [19], [20].

APES: In a similar way, the APES spectrum estimate α(ω, ω̄) and the APES
filter coefficient matrix H(ω, ω̄) are the minimizers of the following least-squares
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(LS) criterion:

min
H(ω,ω̄),α(ω,ω̄),β(ω,ω̄)

{∥∥∥ vec
(
H(ω, ω̄) ∗X

)
− α(ω, ω̄)aL,L̄(ω, ω̄)

∥∥∥
2

+
∥∥∥ vec

(
H(ω, ω̄) ∗ X̃

)
− β(ω, ω̄)aL,L̄(ω, ω̄)

∥∥∥
2
} (4.6.12)

subject to the (4.6.11) and the additional constraint:

β(ω, ω̄) = α∗(ω, ω̄)e−i
(
(N−1)ω+(N̄−1)ω̄

)
(4.6.13)

where β(ω, ω̄) can be interpreted as the amplitude of the sinusoid obtained by run-
ning the data backwards through the filter. Equation (4.6.13) expresses a constraint
between the amplitude of the sinusoid fitted to the forward-filtered data and the
amplitude of the sinusoid fitted to the backward-filtered data. It can be shown [12]
that the constraint (4.6.13) is redundant, i.e., the minimizer of (4.6.10), subject to
(4.6.11) only, necessarily satisfies (4.6.13).

FB averaging of the APES spectral estimate typically improves the spectral
resolution [27] (see also Example 4.5 below).

4.7 Performance Analysis

The following discussion will provide some insight into the behavior of the different
nonparametric estimators. For simplicity, we treat only the 1D versions of the
estimators; with some additional notational effort the same results can be proved
by the analysis of the estimators for 2D data. We start in Subsection 4.7.1 by
proving that if M remains fixed while N → ∞, all filterbank spectral estimators are
statistically equivalent. This result was first established in [23] for the forward-only
case and in [21] for the forward-backward case; a somewhat more general analysis
is contained in [16]. Next, in Subsections 4.7.2 and 4.7.3 we go on to analyze the
case of a finite number of samples N but a high signal-to-noise ratio. In this case,
the properties of the different estimators are somewhat different from one another.
The results in Subsection 4.7.2 are novel, whereas the results of Subsection 4.7.3
are due to [21].

4.7.1 Large-Sample Analysis

We assume that x(n) is a signal comprising K complex sinusoids in noise, and hence
that (4.2.2) holds:

x(n) =
K∑

k=1

αke
iωkn + w(n). (4.7.1)
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We also assume that {αk, ωk}Kk=1 are deterministic quantities; hence the process
x(n) is cyclo-stationary [14]. Provided that

Φ−1(ω)aM (ω)

aHM (ω)Φ−1(ω)aM (ω)
→ h0(ω) (4.7.2)

for some deterministic vector h0(ω) as N → ∞ and M is fixed (which is a weak
assumption), all filterbank estimators give asymptotically (in N or L) the same
mean-square error (MSE) of the spectrum estimate for a fixed ω. Of course, if
this MSE goes to zero as N → ∞ then in particular the estimators give consistent
estimates of the amplitude spectrum. We formalize this statement in the following
theorem.

Theorem 4.1: Assume that x(n) is an outcome of (4.7.1), and let {αk} be fixed
(in other words, consider (4.7.1) conditioned on {αk}). Furthermore, let ω and M
be fixed and assume that (4.7.2) holds, for some deterministic vector h0(ω), in a
mean square sense as L→ ∞. Then

E
[
|α̂(ω) − α(ω)|2

]
→ 1

L
· P (ω) (4.7.3)

as L→ ∞, where P (ω) is the power spectrum of w(n) at the frequency ω.

Proof: See Section 4.A.

We leave as an exercise to the reader to verify that (4.7.2) holds for all nonpara-
metric estimators treated in this chapter, and hence that Theorem 4.1 is applicable
to these estimators.

In principle, Theorem 4.1 states that all filterbank estimators are equally good
for large N and therefore provides some justification for the somewhat heuristic
arguments that were used to derive them. However, as we will see next, the finite-
sample properties of the various estimators may differ substantially from what we
would expect from Theorem 4.1. In particular, the resolution properties of the
estimators are fairly different.

4.7.2 Leakage Analysis

For simplicity of the analysis, assume in this subsection that x(n) is a single sinusoid
with frequency ω0 embedded in white noise w(n) with variance σ2:

x(n) = eiω0n + w(n). (4.7.4)

Let
w = [w(0) · · · w(N − 1)]T (4.7.5)
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and consider first the DFT spectrum (4.3.15). When σ2 → 0,

α̂DFT(ω) =
1

N
aHN (ω)

(
aN (ω0) + w

)
→ 1

N

N−1∑

n=0

eiω0ne−iωn

=
1

N

N−1∑

n=0

ei(ω0−ω)n =

{
1 ω = ω0

1
N · 1−ei(ω0−ω)N

1−ei(ω0−ω) ω 6= ω0

. (4.7.6)

Equation (4.7.6) illustrates the so-called leakage effect of the DFT: the presence of
a sinusoid at a certain frequency ω0 introduces a bias (even when the SNR→ ∞)
in the spectrum estimate for any different frequency ω 6= ω0. The DFT therefore
gives inconsistent (in SNR) spectral estimates. The bias of the DFT spectrum can
be thought of as a consequence of the fact that the set of vectors {aN (ω)} is not
perfectly orthogonal to the vector aN (ω0) when ω 6= ω0. However, if |ω − ω0| >
2π/N the correlation between aN (ω) and aN (ω0) is small in general, and hence the
DFT is a useful estimator if the spectrum is known to consist of sinusoids that are
sufficiently separated in frequency.

It is known that the leakage effect discussed in the above paragraph is signifi-
cantly less for the other nonparametric estimators than for the DFT. The following
discussion will help us understand why this is so. Consider, for the sake of illustra-
tion, the Capon estimator (4.3.19). For high SNR, M > 1, and a large but fixed
number of snapshots L, we have that:

σ2R̂−1 ≈ σ2R−1 =
(
I +

1

σ2
aM (ω0)a

H
M (ω0)

)−1

= I − 1

σ2 + aHM (ω0)aM (ω0)
aM (ω0)a

H
M (ω0)

≈ I − aM (ω0)a
H
M (ω0)

aHM (ω0)aM (ω0)
= Π⊥

aM (ω0)

(4.7.7)

where ΠX = X(XHX)−1XH and Π⊥
X = I−ΠX stand for the orthogonal projection

onto the column space of X and its complement, respectively, and where in the last
equality we have used the matrix inversion lemma [17], [5]. It follows that

α̂Capon(ω) =
aHM (ω)R̂−1g(ω)

aHM (ω)R̂−1aM (ω)
≈

aHM (ω)Π⊥
aM (ω0)

g(ω)

aHM (ω)Π⊥
aM (ω0)aM (ω)

. (4.7.8)

The usefulness of the approximation in (4.7.8) is somewhat limited since the de-
nominator goes to zero as ω → ω0. However, for |ω − ω0| 6= 0 and M > 1, the
denominator of (4.7.8) is nonzero. Moreover, since

g(ω) → 1

L
aM (ω0)a

T
L(ω0)a

∗
L(ω) (4.7.9)

as σ2 → 0 (see (4.3.5), (4.3.7) and (4.3.11)), it follows that

Π⊥
aM (ω0)

g(ω) → 0 (4.7.10)
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as SNR→ ∞ and hence the numerator (4.7.8) goes to zero under the same assump-
tion. This analysis indicates that the Capon spectrum is close to zero for all ω 6= ω0

and high SNR. Consequently Capon does not suffer from the same serious leakage
effects as the DFT does. Another way to understand this observation is that for the
estimation of the spectrum for ω 6= ω0, the covariance matrix R will model the con-
tribution to x(n) from other frequencies than ω (in particular from the sinusoid at
ω0), and this contribution will be suppressed by the weighting in the WLS criterion
(4.3.9).

Note that in the case of M = 1, Capon reduces to the DFT. In this case, the
above analysis is not applicable (if M = 1, the denominator of (4.7.8) is zero for all
ω).

Another intuitively appealing explanation of the absence of leakage for Capon
is offered by the filterbank interpretation in Section 4.4. It turns out that for the
estimation of α(ω), the filter associated with h(ω) has (by construction) a unit
gain at the frequency ω of interest, but typically a gain close to zero at all other
frequencies where significant power is present. In other words, the filter tends to
annihilate spectral components that may potentially interfere with the particular
one under study. We will exemplify this fact in Example 4.2 in Section 4.9 below.

4.7.3 Bias Analysis

The following theorem (from [21]) is interesting since it establishes an analytical
explanation of the empirically observed fact that APES is less biased than Capon.

Theorem 4.2: Suppose that the third order moments of w(n) are equal to zero.
Then, to within a second-order approximation, the biases of the Capon and APES
estimates obey the following relations.

(a) Capon is biased downwards, i.e.,

E[α̂Capon(ω)] . α(ω). (4.7.11)

(b) The bias of FB-Capon is half that of F-Capon, that is,

E[α̂FB-Capon(ω)] − α(ω) ≈ E[α̂F-Capon(ω)] − α(ω)

2
. (4.7.12)

(c) APES is unbiased, i.e.,
E[α̂APES(ω)] ≈ α(ω). (4.7.13)

Proof: See Section 4.B.
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4.8 Fast Implementations of Capon and APES

A direct implementation of the filterbank estimators by computing (4.3.10) in a
direct way for many different ω is computationally demanding, and several papers
in the literature have dealt with the problem of implementing Capon and APES
efficiently. For instance, in [19], [20] a fast (but approximate) implementation of
Capon was obtained by replacing the outer-product sample covariance matrix with
a structured block-Toeplitz matrix obtained by fitting an autoregressive model to
the data.4 The implementation of APES was discussed in [30], and to some extent,
in [21]. Although the technique in [30] improves over the direct way of implementing
APES suggested in [21], its computational complexity is still very high and typically
it must be combined with suboptimal splitting techniques such as that in [31], or
with other approximations.

The fastest available technique for the computation of the Capon and APES
spectra is that of [32]. For APES, the techniques in [32] are several orders of
magnitude faster than those in [30], [21] whereas for Capon the improvement over
the approximate techniques in [19], [28] is not fully as large. The implementations
in [32] also reduce the memory demands for the computation significantly; using the
algorithms therein quite large 2D spectra can be computed on a standard personal
computer. This chapter summarizes the main results from [32]. We treat only the
2D case with FB averaging; the 1D case follows as a special case and the variants
without FB averaging can be obtained by omitting certain terms from the derived
expressions.

4.8.1 Some Results on Fast Computation

The starting point for the derivation of fast implementations is the following result.

Lemma 4.1: Define the following trigonometric polynomials:

p11(ω, ω̄) , aHM,M̄ (ω, ω̄)R̂−1aM,M̄ (ω, ω̄)

p12(ω, ω̄) ,
1

LL̄
aHM,M̄ (ω, ω̄)R̂−1YaL,L̄(−ω,−ω̄)

p13(ω, ω̄) ,
1

LL̄
aHM,M̄ (ω, ω̄)R̂−1ỸaL,L̄(−ω,−ω̄)

p22(ω, ω̄) ,
1

L2L̄2
aHL,L̄(−ω,−ω̄)YHR̂−1YaL,L̄(−ω,−ω̄)

p23(ω, ω̄) ,
1

L2L̄2
aHL,L̄(−ω,−ω̄)YHR̂−1ỸaL,L̄(−ω,−ω̄)

(4.8.1)

and the trigonometric polynomial matrix

Σ(ω, ω̄) ,
1

2

[
p22(ω, ω̄) − 2 p23(ω, ω̄)
p∗23(ω, ω̄) p22(ω, ω̄) − 2

]
. (4.8.2)

4A similar idea was used in [28] to obtain a fast implementation of the PSC estimator (which
is not equivalent to the Capon method described in this chapter; cf. the remark at the end of
Section 4.3.3); in the 1D case the technique of [28] is equivalent to that in [29].
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Then it holds that

p∗13(ω, ω̄) = p∗12(ω, ω̄)e−i((N−1)ω+(N̄−1)ω̄). (4.8.3)

Furthermore, the FB-averaged Capon and APES spectra can be expressed as

α̂Capon(ω, ω̄) =
p12(ω, ω̄)

p11(ω, ω̄)
(4.8.4)

and

α̂APES(ω, ω̄) =

p12(ω, ω̄) − 1
2

[
p12(ω, ω̄) p13(ω, ω̄)

]
Σ−1(ω, ω̄)

[
p22(ω, ω̄)
p∗23(ω, ω̄)

]

p11(ω, ω̄) − 1
2

[
p12(ω, ω̄) p13(ω, ω̄)

]
Σ−1(ω, ω̄)

[
p∗12(ω, ω̄)
p∗13(ω, ω̄)

] . (4.8.5)

Proof: Equation (4.8.3) is shown in [21]. The expressions in (4.8.4) follow imme-
diately from (4.6.8) and (4.8.1). The proof of equation (4.8.5) consists of applying
the matrix inversion lemma to (4.6.9).

Let R̂−1/2 denote the inverse of the Cholesky factor of R̂, i.e., the (unique)
upper triangular matrix with real and positive diagonal elements such that

R̂−1/2
(
R̂−1/2

)H
= R̂−1. (4.8.6)

Furthermore, let {rm}MM̄
m=1 be the columns of R̂−1/2. Then the polynomials in

Lemma 4.1 can be written as:

pij(ω, ω̄) =

MM̄∑

m=1

p
(m)∗
i (ω, ω̄)p

(m)
j (ω, ω̄) =

MM̄∑

m=1

p
(m)
ij (ω, ω̄) (4.8.7)

where

p
(m)
1 (ω, ω̄) , rHmaM,M̄ (ω, ω̄)

p
(m)
2 (ω, ω̄) ,

1

LL̄
rHmYaL,L̄(−ω,−ω̄)

p
(m)
3 (ω, ω̄) ,

1

LL̄
rHmỸaL,L̄(−ω,−ω̄)

(4.8.8)

and
p
(m)
ij (ω, ω̄) , p

(m)∗
i (ω, ω̄)p

(m)
j (ω, ω̄). (4.8.9)

The technique proposed in [30] for the computation of 1D and 2D APES
and Capon evaluates the polynomials in Lemma 4.1 by using the fact that once
R̂−1/2, R̂−1/2Y and R̂−1/2Ỹ were computed, the trigonometric polynomial vectors
R̂−1/2aM,M̄ (ω, ω̄), R̂−1/2YaL,L̄(−ω,−ω̄) and R̂−1/2ỸaL,L̄(−ω,−ω̄) can be evalu-
ated using MM̄ 2D FFTs of size K × K̄. In [20], the same technique was used for
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the evaluation of the Capon spectrum, with the exception that the Cholesky factor
R̂−1/2 is approximated with a structured matrix obtained by fitting an autoregres-
sive model to the data. This approximation technique provides efficient means for
computing R̂−1/2, which was sometimes claimed to be a bottleneck in the compu-
tation of the spectrum (at least for the 1D case). However, it turned out that this
technique is not applicable to the computation of the APES spectrum.

The key observation that leads to our fast implementation of Capon and APES
is the following. Instead of computing the values of the MM̄ polynomials in (4.8.8)
at K× K̄ points, we compute the coefficients of the polynomials pij(ω, ω̄) in (4.8.7)
and upon completion of this computation, each polynomial is evaluated at K × K̄
points using a single 2D FFT. The computation of the polynomial coefficients is

performed by accumulating the contributions from p
(m)
ij (ω, ω̄) in the sum in (4.8.7).

To exploit this idea optimally, it must be combined with some relevant results
on fast computation involving matrices and trigonometric polynomials.

Fast Matrix-Vector Multiplication

The matrices Y and Ỹ have a structure that enables products of the type uHY,
uHỸ, Yu and Ỹu (for arbitrary vectors u of compatible dimension) to be evalu-
ated in O

(
NN̄ log(NN̄)

)
floating point operations. The procedure for doing so is

reminiscent of that for fast convolution, and is outlined in Section 4.C. Note that
a direct evaluation of the vector-matrix product uHY would require O(MM̄NN̄)
operations and hence the technique in Section 4.C is considerably faster.

An important consequence of this result is that R̂ can be computed in
O
(
MM̄NN̄ log(NN̄)

)
operations. To see this, note that row k of R̂ equals

1/(LL̄)uHk YH where uHk is the kth row of Y, and apply the fast matrix-vector
multiplication method MM̄ times (once for each row). This should be compared
with direct evaluation of (4.6.3) and (4.6.5) which requires O(M 2M̄2NN̄) opera-
tions.

Fast Multiplication of Trigonometric Polynomials

Consider two 2-D trigonometric polynomials of the form:

p(ω, ω̄) = pnp−1,n̄p−1e
i
(
(np−1)ω+(n̄p−1)ω̄

)
+ · · ·

+ pnp−1,0e
i(np−1)ω + · · · + p0,n̄p−1e

i(n̄p−1)ω̄ + · · · + p0,0

(4.8.10)

and

q(ω, ω̄) = qnq−1,n̄q−1e
i
(
(nq−1)ω+(n̄q−1)ω̄

)
+ · · ·

+ qnq−1,0e
i(nq−1)ω + · · · + q0,n̄q−1e

i(n̄q−1)ω̄ + · · · + q0,0
. (4.8.11)
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Then the (np + nq − 1)(n̄p + n̄q − 1) coefficients of the following polynomial:

r(ω, ω̄) = p∗(ω, ω̄)q(ω, ω̄) = rnq−1,n̄q−1e
i
(
(nq−1)ω+(n̄q−1)ω̄

)
+ · · ·

+ r0,0 + · · · + r−np+1,−n̄p+1e
i
(
(−np+1)ω+(−n̄p+1)ω̄

) (4.8.12)

as well as the coefficients of the polynomials

r̃(ω, ω̄) = p∗(ω, ω̄)q(−ω,−ω̄)

r̂(ω, ω̄) = p∗(−ω,−ω̄)q(−ω,−ω̄)
(4.8.13)

can be computed in O
(
(np + nq)(n̄p + n̄q) log

(
(np + nq)(n̄p + n̄q)

))
operations.

This result, which we prove in Section 4.D, is based on an isomorphism between
multiplication of polynomials and a standard convolution (which can be performed
using the fast Fourier transform (FFT)).

Note that a direct computation of the polynomial coefficients would require
O
(
(np + nq)

2(n̄p + n̄q)
2
)

operations.

Fast Cholesky Factorization of R̂−1

The matrix R̂ is rich in structure, and this structure can be exploited in order
to compute its Cholesky factorization and inverse. Using a certain displacement
factorization of R̂ presented in [32], it is possible to apply the fast generalized Schur
algorithm of [33], [34]. The resulting fast algorithm for fast Cholesky factorization

of R̂−1 is given in Section 4.E.
By using the technique of Section 4.E, the columns {rk}MM̄

k=1 of R̂−1/2 can be
computed from the data in O

(
MNN̄ log(NN̄)+M2M̄2N

)
floating point operations.

This operation count should be compared to a direct computation of R̂ via (4.6.3)
and (4.6.5) followed by a standard Cholesky factorization and inversion [35] which
together require O(M2M̄2NN̄) operations. It turns out that in the 1D case, the
method of Section 4.E usually is significantly faster than inversion and classical
Cholesky factorization. This is true also for the 2D case, provided that M, M̄ are
relatively large (which in effect is the case of interest in practice), although for small
values of M, M̄ conventional Cholesky factorization and inversion can be somewhat
faster.

Under the assumption, which is valid in our application, that each rk is used
directly after its computation, running the algorithm requires only O(MM̄N) bits
of memory. Note that the storage of the whole Cholesky factor would require
O(M2M̄2) bits of memory, which is typically much more than the storage require-
ment of our algorithm. The low memory requirement (especially in the 1D case)
of the algorithm may be of value for both possible hardware implementations and
off-line data analysis applications.

Finally, we stress that the method of Section 4.E gives the inverse of the exact
Cholesky factor, which should not be confused with the approximations in [28],
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[20] (the latter are also relatively computationally efficient but they operate on a

structured Toeplitz approximation of R̂).

4.8.2 Fast Implementation

1. Decide, based on the values of M, M̄,N, N̄ and the above operation counts,
whether to use classical Cholesky factorization and inversion or the fast tech-
nique of Section 4.E to compute R̂−1/2. If the fast factorization method is
chosen, compute the displacement factorizations {G̃,Ψ,M} introduced in Sec-

tion 4.E. Otherwise, first compute R̂ as indicated in the previous subsection
and thereafter compute R̂−1/2 by a direct method [35].

2. Perform the following steps for m = 1, . . . ,MM̄ :

(a) Obtain the mth column rm of R̂−1/2:

• If the classical Cholesky factorization is used, rm is already precom-
puted in Step 1 above.

• If the fast Cholesky factorization is used, perform one iteration (i.e.
the Steps 1-3) of the generalized Schur algorithm described in Sec-
tion 4.E.

(b) Compute rHmY and rHmỸ by using the technique in Section 4.C.

(c) Compute the coefficients of the polynomials p
(m)
1 (ω, ω̄), p

(m)
2 (ω, ω̄),

p
(m)
3 (ω, ω̄) in (4.8.8) by using the results of step (a)-(b) above.

(d) Compute the coefficients of the polynomials p
(m)
ij (ω, ω̄) in (4.8.9) by using

the technique in Section 4.D. These coefficients are summed up to obtain
the coefficients of the polynomials pij(ω, ω̄) in (4.8.7).

3. Evaluate the polynomials pij(ω, ω̄) at K× K̄ points by using a single 2D FFT
(per polynomial).

4. Compute the Capon or APES spectrum according to (4.8.4) or (4.8.5).

4.8.3 Discussion

Numerical examples presented in [32] (but omitted here for brevity) demonstrate
that the implementations described above improve over the techniques in, for in-
stance, [30], [20] by several orders of magnitude. In fact, the difference in compu-
tational complexity between these implementations increases with increasing data
sample lengths, and with increasingK/N and K̄/N̄ . Note in particular that the im-
plementation outlined above is practically insensitive to the density of the frequency
grid (K, K̄), unlike those in [30], [28], [20].

The fast algorithms operate at maximum efficiency if N, N̄ and M, M̄ are chosen
such that N, N̄, 2M − 1, 2M̄ − 1, 2L− 1 as well as 2L̄ − 1 approach from below a
power of two. The reason for this is that the FFTs used in the above fast methods
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are then exploited optimally (it is possible to overcome this restriction by using
non-power of two variants of the FFT). Furthermore, K and K̄ should be powers of
two. Finally, if the fast Cholesky factorization is used, the orientation of the data
matrix should be chosen such that L ≤ L̄. Further remarks and details that can
speed up the implementation are given in [36].

4.9 Performance Examples and Applications of Capon and APES

In this section, we present numerical examples showing the performance of the
APES and Capon algorithms in complex spectral estimation exercises as well as
in applications to radar range signature estimation and synthetic aperture radar
(SAR) imaging.

4.9.1 1D Examples

Example 4.1: DFT, Capon and APES applied to a 1D time-series.
In our first example (see also [11]) we compare the performances of Capon and APES
with those of the DFT, windowed DFT and Welch methods for the estimation of
a 1D line spectrum. The data sequence is N = 128 samples long and consists of
4 dominant spectral lines and many small closely spaced lines embedded in zero-
mean white Gaussian noise with unit variance. The four dominant spectral lines are
located at the frequencies 0.04, 0.05, 0.08, and 0.09 Hz, where Hz means cycles-per-
sample. The estimation of these spectral components is our primary goal. Although
we are interested in estimating the complex spectrum, which is important in range
signature estimation and SAR imaging applications, such a spectrum is difficult to
visualize effectively and therefore we show only the modulus of the complex spectral
estimates.

The modulus of the true complex spectrum is shown in Figure 4.1(a). Fig-
ure 4.1(b) shows the modulus of the spectral estimate obtained via the DFT. We
note that the use of the DFT method results in high sidelobes which, for instance,
makes it hard to distinguish the peak caused by the 4th line in Figure 4.1(a) from
the sidelobe peaks. Note also that the peak heights given by the DFT method are
rather inaccurate estimates of the true ones shown in Figure 4.1(a). Figure 4.1(c)
shows the modulus of the spectral estimate obtained by using a DFT with a Kaiser
window and shape parameter 4. We can see that this windowed DFT method re-
duces the sidelobes of the spectral peaks. Yet, at the same time, the windowed
DFT widens the spectral peaks and as a result, the third and fourth peaks in Fig-
ure 4.1(c) are smeared together. Figure 4.1(d) shows the modulus of the spectral
estimate obtained by using the unwindowed Welch method (or averaged DFT) with
M = 64. We note that the Welch method performs similarly to the windowed FFT
method. Finally, Figure 4.1(e) shows the modulus of the spectral estimate obtained
by using the Capon method with M = 64 and Figure 4.1(f) shows the modulus of
the spectral estimate obtained by using the APES algorithm with M = 64.

Although the spectral peaks given by Capon are very narrow, the corresponding
estimated peak heights are less accurate than those obtained via the windowed DFT
or Welch methods. The sidelobes in the APES spectral estimate are comparable
with those in the Capon spectrum method, but the spectral peaks given by APES
are somewhat wider than those given by Capon. Note also that the amplitude
estimates at the true locations of the sinusoids obtained via APES are more
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accurate than those obtained from Capon or DFT. In fact, in this example the
APES algorithm gives the most accurate peak height estimates among all methods
considered. The Capon estimates are slightly biased downwards (cf. Theorem 4.2).
Finally, note that except for the DFT method, all other methods considered herein
tend to suppress the small closely spaced spectral lines.

We shall remark on the fact that, although this is not apparent from Exam-
ple 4.1, it has been observed in other studies that compared to DFT, its averaged
relatives as well as APES, the Capon estimate appears to yield superior precision
of the peak locations.
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(a) True spectrum.
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(b) FFT or APES with M = 1.
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(c) FFT with Kaiser window and shape pa-
rameter 4.
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(d) Welch with M = 64.

Figure 4.1. (continued on the next page)
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(e) Capon with M = 64.
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(f) APES with M = 64.

Figure 4.1. (cont.) Results for Example 4.1.

Example 4.2: The transfer function of the adaptive FIR filter.
In this example (see also [11]) we study the transfer function associated with the
adaptive FIR filter h(ω) for the estimation tasks in Example 4.1. Figure 4.2(a)
shows the true spectrum (the same as in Figure 4.1(a)). Figures 4.2(b)–4.2(d) show
the modulus of the frequency responses

∣∣hH(ω0)a(ω)
∣∣ of the FIR filters associated

with the Welch method as well as Capon and APES. We show the transfer function
as a function of f = ω/(2π), where ω0 = 2πf0 denotes the frequency of interest. In
Figure 4.2 we choose f0 = 0.04 (corresponding to the frequency of the first spectral
line in Figure 4.2(a)).

Note that all filters (by construction) satisfy the constraint
∣∣hH(ω0)a(ω0)

∣∣ = 1.
We see from Figure 4.2(b) that hWelch(ω) does not annihilate the contributions from
other spectral components. This is so since the Welch method is not adaptive,
and the interfering spectral lines contribute to the error in α̂(ω0) by entering the
filter output through both the mainlobe and the sidelobes of hWelch(ω). From Fig-
ures 4.2(c) and 4.2(d) we note that both hCapon(ω) and hAPES(ω) nullify (to a large
degree) the contributions from other spectral lines. This is a consequence of the
adaptive nature of these methods. Yet the frequency responses of hCapon(ω) at fre-
quencies other than ω0 tend to be much higher than those of hAPES(ω). These high
sidelobes seem to cause the α̂(ω) obtained with Capon to be less accurate than that
obtained with APES, as may be seen from Figure 4.1.
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(a) True spectrum.
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(b) Frequency response of the filter used in
Welch.
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(c) Frequency response of the filter used in
Capon.
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(d) Frequency response of the filter used in
APES.

Figure 4.2. Results for Example 4.2. The figure shows the modulus of the frequency responses
of the FIR filters in Example 4.1, when the first spectral line is the one of interest. Note that the
scales are different in the different subfigures.
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Example 4.3: Mixed-spectrum estimation (1D case).
We next consider the task of estimating a mixed spectrum that consists of both
continuous components and a line spectrum (see also [11]). The data sequence
under consideration has N = 128 samples and is corrupted by additive zero-mean
white Gaussian noise with variance 1. The modulus of the true complex spectrum is
shown in Figure 4.3(a). The two continuous parts of the spectrum in Figure 4.3(a)
are caused by two damped sinusoids with damping coefficients 0.995 and 0.996.
Figures 4.3(b)–4.3(f) show the spectral estimates obtained with the FFT, windowed
FFT, Welch, Capon, and APES methods. The APES algorithm again gives the best
spectral estimate. Figure 4.4 is very similar to Figure 4.3 except that in Figure 4.4
the continuous part of the spectrum is a rectangular pulse, which corresponds to a
sinc-function in the time-domain.

From Figures 4.3 and 4.4 we see that the continuous spectral estimate obtained
with the APES algorithm is similar to the ones obtained with the windowed FFT
and Welch methods. The line spectral estimate obtained with the APES algorithm,
however, is much better than those obtained with the windowed FFT and the Welch
methods. The Capon method performs rather poorly on this data set. The APES
algorithm again gives the best overall spectral estimate.
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(a) True spectrum.
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(b) FFT or APES with M = 1.
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(c) FFT with Kaiser window and shape pa-
rameter 4.
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(d) Welch with M = 64.

Figure 4.3. (continued on the next page)
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(e) Capon with M = 64.
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(f) APES with M = 64.

Figure 4.3. (cont.) Results from Example 4.3. In this example, the continuous spectral compo-
nent corresponds to a damped sinusoid.
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(a) True spectrum.
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(b) FFT or APES with M = 1.
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(c) FFT with Kaiser window and shape pa-
rameter 4.
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(d) Welch with M = 64.

Figure 4.4. (continued on the next page)
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(e) Capon with M = 64.
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(f) APES with M = 64.

Figure 4.4. (cont.) Results from Example 4.3. In this example, the continuous spectral compo-
nent corresponds to a damped sinc-function.

In the next example we will apply the adaptive FIR filtering methods to the
problem of radar target range signature estimation. Before doing so, we briefly
describe the target range signature estimation problem. In principle, the range
resolution of a radar is determined by the radar bandwidth [37]. To achieve a high
resolution in range, the radar must transmit a wideband pulse, which is often chosen
to be a linearly frequency modulated (FM) chirp pulse. Such a chirp pulse can be
written as (after appropriate normalization):

s(t) = exp
(
− i
(
2πf0t+ γt2

))
(4.9.1)

for |t| ≤ T0/2 where f0 is the carrier frequency, 2γ is the FM rate and T0 is the
length of the time interval under consideration. The noise-free chirp pulse returned
by a scatterer of a radar target can be written as

r(t) = α exp
(
− i
(
2πf0(t− τ) + γ(t− τ)2

))
, (4.9.2)

where τ denotes the round-trip time delay between the scatterer and the radar and
α stands for the radar cross section (RCS) of the scatterer. Note that the time
delay τ and the range d of the scatterer are related as follows:

d =
τc

2
, (4.9.3)
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where c denotes the propagation speed of the transmitted electromagnetic wave.
Mixing r(t) with the reference chirp signal s∗(t) at the receiver gives the following
demodulated signal:

r1(t) = α exp
(
i
(
2πf0τ − γτ2

))
· exp

(
i2γτt

)
(4.9.4)

which is a sinusoidal signal with frequency 2γτ . Let τmax and τmin correspond to
the maximum and the minimum values of the round-trip time delays between the
scatterers of a radar target and the radar, respectively, and assume that (τmax −
τmin) � T0. Then for −T0/2 + τmax ≤ t ≤ T0/2 + τmin, the scatterers of the radar
target at different ranges correspond to different frequencies of the demodulated
signal. By definition, the target range signature is given by the RCS’s of the target
scatterers as a function of the range. Thus the problem of estimating the target
range signature is equivalent to that of estimating the complex spectrum of the
demodulated signal. This estimated complex target range signature can be useful
for target recognition.

Note that for a radar with a very large bandwidth, α may change slightly
as a function of time since the RCS of a scatterer changes slightly as the radar
frequency changes. In this case, the peaks in the estimated range signature
no longer correspond to the time-varying RCS of the scatterers and hence the
estimated range signature cannot be used to accurately determine the time-varying
RCS of the scatterers. Nevertheless, the complex spectrum of the demodulated
signal can be used to determine the locations and characteristics of the target
scatterers, and hence it can still be used for target recognition.

Example 4.4: Estimation of a radar signature.
In this example (see also [11]) we apply the adaptive FIR filtering methods to the
experimental data measured by a ground-to-air radar. The target is an aircraft
(specific information about the radar and the target is classified). The measured
data consists of N = 128 samples and its quality was artificially degraded by adding
zero-mean white Gaussian noise with variance 10. Figures 4.5(a)–4.5(d) show the
spectral estimates of the demodulated signal obtained with DFT, windowed DFT
(using a Kaiser window and shape parameter 4), Capon (with M = 64), and APES
(with M = 64). The latter three methods give much lower sidelobes than the DFT
method. Note also that the windowed DFT method gives wider peaks than the
Capon and APES methods.
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(a) FFT or APES with M = 1.
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(b) FFT with Kaiser window and shape pa-
rameter 4.
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(c) Capon with M = 64.
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(d) APES with M = 64.

Figure 4.5. Results for Example 4.4. Spectral (range signature) estimates of an airplane observed
by a ground-to-air radar using N = 128 samples.
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Figure 4.6. Results for Example 4.5. The figure shows the probability with which the different
estimators resolve two closely spaced spectral peaks.

If α̂(ω) is the spectral estimate (obtained by any of the estimators above), we
say that two spectral lines at frequencies ω1 and ω2 are resolved if

∣∣∣α̂
(
(ω1 + ω2)/2

)∣∣∣ < 1

2

(
|α̂(ω1)| + |α̂(ω2)|

)
. (4.9.5)

The next example (see also [27]) demonstrates the difference in spectral resolution
between Capon, APES and its FB-averaged variants.

Example 4.5: Resolution of Capon and APES.
We study the capabilities of APES, Capon, DFT and the MUSIC algorithms [8],
[5] for resolving two sinusoids located at ω1 and ω2, respectively. The signal under
consideration is N = 64 samples long and consists of three dominant spectral lines
(with unit amplitude) at ω1 = 0.0625, ω2 = 0.0725 and ω3 = 0.25 and ten smaller
spectral lines at frequencies 0.28, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49 em-
bedded in noise with variance 0.01.

Figure 4.6 shows the probability that the two spectral lines are resolved, as
a function of the frequency separation |ω1 − ω2|. Clearly, F-Capon has the best
resolution capability, followed closely by the MUSIC and the “WLS” estimator5.

5This estimator is not equivalent to the WLS estimators in Section 4.3, and it is not described
herein. See [27] for details on it.
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FB-APES is found to have slightly higher resolution than the DFT, whereas
F-APES has a lower resolution than the DFT. In the example, the filter length in
the nonparametric methods was chosen to be M = 24.

Example 4.6: Performance analysis, forward-only, 1D case.
The next example (see also [11]) considers the effect of M , the length of the FIR
filter, on the accuracy of the complex amplitude estimates at frequencies that corre-
spond to the four dominant lines in Example 4.1. The empirical root-mean-squared
errors (RMSEs) of the complex amplitude estimates were obtained from 100 inde-
pendent Monte-Carlo trials. Figure 4.7 shows the RMSEs of the complex amplitude
estimates as a function of M . This figure also shows the CRB associated with this
estimation problem (see [11] for details) which is a measure of the best performance
that can be achieved by an unbiased estimator.

We can make a number of observations from Figure 4.7. Apparently, when
M = 1 the FIR filtering approaches reduce to the FFT method and hence the
performances of the various methods coincide. For some carefully picked values of
M , such as M = 16 and M = 28, the RMSEs obtained with Welch and Capon
are similar to those obtained with APES. Yet for such values of M , the Welch and
Capon methods yield wide spectral peaks and high sidelobes and therefore their
use with such relatively low values of M may not be advisable. The RMSEs of the
estimates obtained with the APES algorithm are close to the CRBs for a wide range
of values of M and in contrast to Welch and Capon, the selection of M in APES
for accurate amplitude estimation appears to be quite easy. Since M = N/2 = 64
gives the narrowest spectral peaks, this example indicates that the best choice of
M for the APES algorithm is M = N/2.
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(a) Spectral line at f = 0.04.
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(b) Spectral line at f = 0.05.
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(c) Spectral line at f = 0.08.
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(d) Spectral line at f = 0.09.

Figure 4.7. Results for Example 6. The figure shows the RMSEs of the complex amplitude
spectrum estimates obtained with Welch, Capon, and APES as a function of M for the problem
considered in Example 1.
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Example 4.7: Performance analysis, forward-backward averaging.
In this example (see also [21]) we compare the bias and variance of Capon, APES
and their FB-averaged versions for an 1D data set of length N = 64 consisting of
15 superimposed complex sinusoids embedded in zero-mean Gaussian noise. The
real part of the amplitude spectrum is shown in Figure 4.8(a). The amplitude
spectrum’s imaginary part is identical to its real part and therefore is not shown
here.

We begin by studying the performance of the estimators as the signal-to-noise
ratio (SNR) varies. The SNR for the kth sinusoid is defined as

SNRk = 10 log10

( |αk|2
P (ωk)

)
(dB) (4.9.6)

where αk is the complex amplitude of the kth sinusoid and P (ωk) is the spectral
density of the additive noise at frequency ωk. The filter length is chosen as M = 15.
The real parts of the biases, as a function of SNR1, are shown in Figure 4.8(b).
The imaginary parts behave similarly and are therefore not shown. As seen from
these figures, F-APES and FB-APES are almost unbiased, while F-Capon and FB-
Capon are biased downward. In addition, we notice that the bias of F-Capon is
approximately twice that of FB-Capon. All these observations are consistent with
Theorem 4.2. The variances of the real parts of the amplitude estimates are shown
in Figure 4.8(c) (the imaginary parts behave similarly and are not shown). For
this example, all of the estimators have similar variances. However, as we will see
shortly, the variance of Capon becomes notably larger than that of APES as M
increases.

We next study the performance as the filter length M varies for a fixed SNR1

equal to 20 dB. Figure 4.8(d) shows the real parts of the biases for some different
M , and Figure 4.8(e) shows the corresponding variance. From Figures 4.8(d) and
4.8(e), we can see that both F-APES and FB-APES are unbiased for all practical
filter lengths, whereas the bias of Capon grows significantly with increasing M . In
fact, all filterbank methods reduce to the Fourier transform approach when M = 1,
and only when M is sufficiently large the filterbank approach shows a noticeable
improvement over the Fourier method. All estimators seem to perform similarly for
M up to a fourth of the data length, with Capon being slightly biased downward.
As the filter length increases further, the performance of Capon degrades rapidly,
while that of APES remains unaffected.



4.9 Performance Examples and Applications of Capon and APES 195

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency − Hz

A
m

p
lit

u
d

e
 −

−
 R

e
a

l P
a

rt

1−D Complex Sinusoids

(a) True spectrum.

FCapon 
FBCapon
FAPES  
FBAPES 

5 10 15 20 25 30
−20

−15

−10

−5

0

5
x 10

−3

SNR − dB

B
ia

s 
−

−
 R

e
a

l P
a

rt

1−D Complex Amplitude Estimation

(b) Bias of real part.

FCapon 
FBCapon
FAPES  
FBAPES 

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
x 10

−3

SNR − dB

V
a

ri
a

n
c
e

 −
−

 R
e

a
l 
P

a
rt

1−D Complex Amplitude Estimation

(c) Variance of real part.

FCapon 
FBCapon
FAPES  
FBAPES 

0 5 10 15 20 25 30 35
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Filter Length

B
ia

s 
−

−
 R

e
a

l P
a

rt

1−D Complex Amplitude Estimation

(d) Bias of real part.

Figure 4.8. (continued on the next page)
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Figure 4.8. (cont.) Results for Example 4.7.

To summarize, we have found that as M increases, all the estimators under
study achieve better spectral resolution and that the best resolution is obtained
at M = N/2. This fact, along with the statistical results shown in the previous
examples, indicates that the choice of M for Capon should be done by a tradeoff
between resolution and statistical stability. Usually we choose N/4 ≤ M ≤ N/2.
While the choice of M for Capon is difficult to make, it is easy to see that APES
achieves the best performance at M = N/2, since with this choice, APES achieves
the highest possible resolution as well as the best statistical properties in terms
of bias and variance. The previous examples also show that F-APES and FB-
APES perform similarly in terms of bias and variance properties for the frequency
of interest, although FB-APES has a slightly better resolution than F-APES.

4.9.2 2D Examples

We next show some examples of 2-D spectral estimation.

Example 4.8: Estimation of a 2D complex line spectrum.
In this example we consider a 2D data matrix of size 32 × 32 consisting of three
2D sinusoids with frequencies (1, 0.8), (1, 1.1), (1.1, 1.3) and amplitudes 1, 0.7 and
2, respectively, embedded in white Gaussian noise with standard deviation 0.1. In
Figure 4.9(a) we show the true spectrum. Figure 4.9(b) shows a windowed Fourier
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transform spectrum (WFT) of the data evaluated on a 512×512 grid. The WFT is
the Fourier transform of the data multiplied with a radially symmetric 2D-Taylor
window with shape parameter 5 and sidelobe level -35 dB. Figures 4.9(c) and 4.9(d)
show the APES and Capon spectra evaluated using a filter matrix of size 8× 8. In
Figure 4.9(e) and 4.9(f), the corresponding results for a filter matrix of size 14× 14
are shown. Note the superior resolution of Capon and APES compared with the
windowed DFT. Also note that with a filter size of 14 × 14, the Capon spectral
estimate becomes somewhat noisy.



198 High-Resolution Nonparametric Spectral Analysis: Theory and Applications 4

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

(a) True amplitude spectrum

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

(b) Windowed DFT

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

(c) APES with filter size 8 × 8

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

(d) Capon with filter size 8 × 8

Figure 4.9. (continued on the next page)
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Figure 4.9. (cont.) Results for Example 4.8. Spectral analysis of a 2D data matrix with adaptive
filterbank methods. The dynamic range is 40 dB (amplitude) in all figures.

It can be shown that a 2D DFT is equivalent to first performing a row-wise 1D
DFT and subsequently a column-wise 1D DFT, i.e., applying a 1D DFT to each
row of the data matrix first and then a 1D DFT to each column of the resulting
intermediate matrix. Since the adaptive filterbank spectra are nonlinear functions
of the data, this result does not in general carry over to the case of Capon and
APES. Therefore, it can be interesting to compare the quality of the “true” 2D
spectral estimates with that of the estimates obtained via repeated 1D processing.
Specifically, we can compare the result of applying a row-wise 1D Capon or APES
estimator to the data and then use column-wise 1D Capon/APES on the so-obtained
intermediate matrix with the result of doing the operations in reverse order (i.e.,
column-wise processing before row-wise processing). Depending on whether the
rows or the columns are processed first, two different estimates α(ω, ω̄) are obtained.
It was found in [11] that taking the spectral estimate equal to the minimum absolute
value (in a fashion reminiscent of spatially variant apodization [38]) appears to give
the best result that a 1D approach can achieve. The so-obtained approach was
called M-APES and M-Capon, respectively. In the next example, we will compare
the 1D, 2D and M variants of Apes and Capon for a 2D signal that has a spectrum
consisting of continuous components and of spectral lines.
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Example 4.9: 1D vs. 2D vs. M Capon and APES for 2D data.
In this example (see also [11]) we consider a data matrix of size N × N̄ = 32 × 32
consisting of 3 spectral lines (whose magnitudes are 5, 7, and 10) and two closely-
spaced one-dimensional continuous pulses (whose magnitudes are 6.15). The data
are corrupted by additive zero-mean white Gaussian noise with variance 20. The
true spectrum is shown in Figure 4.10(a). The modulus (in dB) of the estimated
spectrum is shown in Figures 4.10(b)–4.10(e), using different estimation techniques.
Figure 4.10(b) shows the modulus of the estimate obtained with the 2D DFT
method. The use of the 2D DFT results in high sidelobes; the two 1D continu-
ous pulses in the spectrum are barely resolved. Figure 4.10(c) shows the modulus
of the spectral estimate obtained by using a 2D DFT with a circularly symmetric
Kaiser window with shape parameter 4. Whilst the windowed DFT method reduces
the sidelobes of the DFT, it widens the spectral peaks and consequently the closely
spaced one-dimensional continuous pulses are smeared together. Figures 4.10(d)
and 4.10(e) show the SAR image estimates obtained by using the 2D-Capon (with
M = M̄ = 16) and 2D-APES (with M = M̄ = 16), respectively. Note again
that 2D-APES gives slightly wider spectral peaks than 2D-Capon, but the spectral
estimates obtained with the former are more accurate.

In Figure 4.10(f) we show the modulus of the spectral estimate obtained by
applying the 1D APES method with M = 16 first to the rows and then to the
columns of the data matrix. Although the 1D APES method has a better resolution
than the windowed DFT, the spectral estimate obtained with the former contains
large vertical sidelobes. On the other hand, when the 1D APES method is applied
first to the columns and then to the rows of the data matrix, large horizontal
sidelobes occur in the estimate (this result is not shown here). In Figures 4.10(g)
and 4.10(h) show the estimates obtained by using the M-Capon (with M = 16) and
M-APES (with M = 16) methods, respectively. Clearly, M-APES is better than
1D APES. Note also that M-APES gives somewhat wider 2D spectral peaks than
M-Capon, but the former yields more accurate spectral estimates than the latter,
particularly so for the continuous parts of the image. Finally, comparing Figures
4.10(g) and 4.10(h) with Figures 4.10(d) and 4.10(e), we see that the 2-D methods
give better estimates of the amplitude spectrum than the M-approaches. This is an
expected result: 2D processing should be superior to 1D processing.
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(a) True spectrum. (b) 2-D FFT or 2-D APES with M = M̄ =
1.

(c) 2-D FFT with circularly symmetric
Kaiser window and shape parameter 4.

(d) 2-D Capon with M = M̄ = 16.

Figure 4.10. (continued on the next page)
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(e) 2-D APES with M = M̄ = 16. (f) 1-D APES (rows-then-columns) with
M = 16.

(g) M-Capon with M = 16. (h) M-APES with M = 16.

Figure 4.10. (cont.) Results for Example 4.9.
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4.9.3 Synthetic Aperture Radar (SAR) Imaging Examples

We next consider using the FIR filtering approaches for SAR imaging. In SAR or
inverse SAR (ISAR) imaging, the radar usually transmits linear FM chirp pulses
(like in target signature estimation applications) [39], [40]. Upon receiving each
pulse reflected by the object being imaged, the radar demodulates the pulse by
mixing it with a reference chirp signal in the same way as described above for
range signature estimation. As a result, the scattering centers of the object at
different ranges correspond to different frequencies of the demodulated signal. Since
either the radar or the object is moving or rotating, the pulses received at different
angles between the radar and the object are used to form a synthetic aperture.
After a Polar-to-Cartesian frequency interpolation, the scattering centers of the
object at the same range but different cross-ranges correspond to different (Doppler)
frequencies over the synthetic aperture.

The 2D signal obtained with a synthetic aperture radar is referred to as the SAR
phase history, and takes on the following form:

X(n, n̄) =

∫
α(ω, ω̄)e−i(ωn+ω̄n̄)dωdω̄ (4.9.7)

where α(ω, ω̄) is the object reflectivity function. In the “ideal” case that the object
consists of point-scatterers only, (4.9.7) reduces to a sinusoidal model similar to
that in (4.2.2):

X(n, n̄) =
P∑

p=1

αpe
−i(ωpn+ω̄pn̄). (4.9.8)

From these equations it follows that the task of forming a SAR image from the
phase history data is essentially a 2D spectral estimation problem.

The conventional SAR imaging methods include the DFT or windowed DFT
methods. Many parametric and nonparametric spectral estimation methods have
also more recently been used for SAR imaging [3], [41], [42], [43], [44]. It has
been shown in [3] that the minimum variance method (which is similar to the
Capon method herein) gives good SAR images while the high resolution parametric
methods advocated in some of the cited references tend to be too sensitive to
model errors. In the next example, we will apply the APES and Capon algorithms
to SAR imaging.

Example 4.10: SAR imaging of a slicy object.
We consider a 32×32 matrix of phase history data of an object (at 0◦ azimuth angle)
generated by XPATCH, a high frequency electromagnetic scattering prediction code
for complex 3D-objects [45]. A photo of the object under consideration (taken at 45◦

azimuth angle) is shown in Figure 4.11(a). In Figure 4.11(b) we show the SAR image
obtained by applying a windowed Fourier transform (WFT) to the data (which is
a standard method for SAR imaging). The same 2D window as in Example 8 was
used. Figures 4.11(c) and 4.11(d) show the SAR image obtained via application of
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APES and Capon using a filter matrix of size 8× 8. In Figures 4.11(e) and 4.11(f),
the corresponding results for a filter matrix of size 14 × 14 are shown. It is clear
that Capon and APES outperform the windowed DFT, and also that the increase
in filter lengths improves the resolution of the SAR image significantly.
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(a) Photograph of the object (at 45◦ az-

imuth angle)
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(b) SAR image obtained via windowed
DFT
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(c) SAR image obtained via APES with fil-
ter size 8 × 8
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(d) Capon with filter size 8 × 8

Figure 4.11. (continued on the next page)
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(e) APES with filter size 14 × 14
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(f) Capon with filter size 14 × 14

Figure 4.11. (cont.) Results from Example 4.10. SAR imaging of a “slicy” object via adaptive
filterbank methods. The dynamic range is 35 dB (amplitude) in all sub-figures.

Example 4.11: ISAR imaging of a MIG-25 aircraft.
We consider inverse SAR imaging of two snapshots of a simulated fast rotating
MIG-25 aircraft. The data matrices are of size 32 × 32 and were provided by the
Naval Research Laboratory. Figures 4.12(a) and 4.12(b) show the result obtained by
2D DFT, and Figures 4.12(c) and 4.12(d) show the result obtained by a windowed
2D DFT. Finally, Figures 4.12(e) and 4.12(f) show the result of applying 2D APES.
Note again that APES outperforms the DFT and windowed DFT methods.
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(a) 2D DFT image, snapshot I (b) 2D DFT image, snapshot II

(c) Windowed 2D DFT image, snapshot I (d) Windowed 2D DFT image, snapshot II

Figure 4.12. (continued on the next page)
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(e) 2D APES image, snapshot I (f) 2D APES image, snapshot II

Figure 4.12. (cont.) Results from Example 4.11.

4.10 Nonparametric Spectral Analysis of Gapped Data

In recent years, the problem of performing spectral analysis of incompletely sampled
data has attracted some attention. In this case, the signal under consideration
contains missing samples or segments. Apart from being of theoretical interest,
this problem is of considerable importance in a number of applications ranging
from SAR imaging with angular diversity to astronomical time-series analysis. The
missing samples are often, but not necessarily, clustered together forming gaps in
the collected data. In some applications it is common that entire rows or columns
of the data matrix are missing.

In time-series analysis applications it is common that observations are unavail-
able during certain periods of time, and therefore the observed data contain gaps
[46]. This can be so due to sensor failure, or due to an inherent inability to observe
the physical quantity of interest. In a SAR system that employs angular diversity, a
target is illuminated by a radar from several separate angular (cross-range) regions
independently. This means that the radar measurements are taken discontinuously
as the platform travels along its trajectory (see Figure 4.13), and consequently the
resulting phase-history matrix will have missing columns. Since the radar is avail-
able for other tasks during the “idle” periods, the angular diversity technique can
reduce the amount of radar resources needed for the imaging of a particular target
while maintaining the same cross-range aperture as if measurements were taken
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Figure 4.13. SAR imaging with angular diversity.

continuously. In both these applications, the locations of the missing samples are
always known.

A simple way to estimate the spectrum in the case of missing data would be
to compute the conventional DFT spectrum with the missing data set to zero.
However, it well-known that this usually gives rise to an estimated spectrum with
serious artifacts. It is not hard to understand why: setting the missing samples to
zero corresponds to multiplying the original time-series with a windowing function
that assumes a value of one whenever a sample is available, and zero otherwise.
In the frequency-domain, this procedure carries over to a convolution between the
Fourier transform of the signal and that of the windowing function. Since the
Fourier transform of the windowing function typically has very large sidelobes in the
gapped-data case, the resulting spectral estimate will contain significant artifacts.

To deal with the sidelobe problem, and to overcome the resolution limit of
the DFT, several sophisticated methods for spectral analysis of gapped data have
appeared in the literature. The so-called CLEAN algorithm [47] estimates the spec-
trum by fitting and removing sinusoids to and from the data in an iterative fashion.
It can be shown that under certain conditions, CLEAN essentially computes the
solution to a deconvolution problem [48] and consequently the CLEAN spectrum
can be evaluated efficiently using suitable numerical methods [49]; however, it is
known that CLEAN usually experiences problems when trying to resolve closely
spaced spectral lines. The so-called multi-taper methods (see, e.g., [50], [51]) com-
pute spectral estimates that are quadratic forms of the data. The coefficients in
the corresponding quadratic functions are optimized according to certain criteria,
and depend only on the gapping pattern. It appears that these algorithms cannot
overcome the resolution limit of the DFT. Finally, there are methods that attempt
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to fit an autoregressive (AR) model to the data and use this model to interpolate
the gaps. Doing so may well fail since the AR generally is strictly stable, and hence
the extrapolated samples decay to zero as the length of a gap grows.

In this section, we describe two nonparametric methods for spectral estima-
tion of gapped data. We start in Subsection 4.10.1 by presenting a modification
of the WLS technique in Section 4.3 to gapped data, and to periodically gapped
data in particular. The method described in Subsection 4.10.1 is interpolation-free,
which may have certain advantages (in particular for computational reasons), and
appeared first in [52]. Next, in Subsection 4.10.2 we go on to describe an exten-
sion of the APES method to gapped data, called gapped-data APES (GAPES).
The GAPES method is an interpolation-based algorithm that can deal with quite
general sampling patterns, and was developed in a series of papers [53], [54], [36].

4.10.1 Spectral Estimation of Gapped Data via WLS

We can obtain a WLS formulation (similar to that in Section 4.3) for the problem of
spectral analysis of incomplete data. Following [52] suppose that x(n) is available
only for certain time instants. Let

A = [n0, . . . , nNa−1] ⊂ [0, . . . , N − 1] (4.10.1)

denote the index set of the Na sample indices for which x(n) is available, and let
yA be a vector that contains the samples in A. If we can form snapshots {yl}
of a given length M in a similar way as for uniformly sampled data, and such
that the corresponding residual vectors {wl(ω)} are identically distributed (but not
necessarily independent), then the WLS criterion (4.3.9) is in principle applicable
directly.

The article [52] suggested to construct snapshots as follows:

yl = [x(kl +m0) x(kl +m1) · · · x(kl +mM−1)]
T (4.10.2)

for l = 0, . . . , L− 1, where {kl}L−1
l=0 and {mr}M−1

r=0 are given sets of numbers. Then
provided that w(n) is stationary, the residual vectors associated with yl will be
identically distributed (although not independent). Let

Ă(ω) = ăM (ω)ǎTL(ω)

ăM (ω) = [eiωm0 · · · eiωmM−1 ]T

ǎL(ω) = [eiωk0 · · · eiωkL−1 ]T

. (4.10.3)

Since

yl = α(ω)ăM (ω)eiωkl + wl(ω) (4.10.4)

and because {wl(ω)} are identically distributed, we can formulate a WLS criterium
similar to that in Section 4.3:

α̂(ω) = argmin
α(ω)

∥∥∥Φ−1/2(ω)
(
Y − α(ω)Ă(ω)

)∥∥∥
2

. (4.10.5)
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The solution to (4.10.5) is

α̂(ω) =
ăHM (ω)Φ−1(ω)ğ(ω)

ăHM (ω)Φ−1(ω)ăM (ω)
(4.10.6)

where

ğ(ω) ,
1

L
Yǎ∗

L(ω). (4.10.7)

By choosing different Φ(ω), both APES and Capon-like methods can be designed
and applied in a relatively straightforward way. A Capon-like method is obtained
by choosing

Φ(ω) =
1

L
YYH (4.10.8)

and an APES-like method is obtained by taking

Φ(ω) =
1

L
YYH − ğ(ω)ğH(ω). (4.10.9)

In the degenerate case of M = 1, we can simply take yl = x(nl) for l =
0, . . . , Na − 1 (in this case, {yl} become scalars). It is easy to verify that the
application of the WLS (which corresponds to the DFT in the case of uniformly
sampled data), now corresponds to applying a DFT to x(n) but with the missing
samples set to zero:

α̂G-DFT(ω) =
1

Na

∑

n∈A
x(n)e−iωn. (4.10.10)

As already explained, this gapped-DFT (G-DFT) spectrum usually contains sig-
nificant artifacts. In particular, if x(n) is a single sinusoid with unit amplitude
embedded in noise as in Subsection 4.7.2 above, the G-DFT spectrum (for high
SNR) is essentially equal to the DFT of the windowing function induced by the
gapping pattern:

α̂G-DFT(ω) → 1

Na

∑

n∈A
ei(ω0−ω)n, σ2 → 0 (4.10.11)

which can take on a more or less arbitrary shape. For certain gapping patterns, for
instance periodic, this problem is so significant that the G-DFT spectrum estimate
is useless even for |ω − ω0| � 2π/Na. Again, the artifacts in the spectrum can be
attributed to the non-orthogonality between ăN (ω0) and {ăN(ω)} for ω 6= ω0.

In the general case of M > 1, the leakage effects associated with the estimate in
(4.10.6) can be assessed by an analysis similar to that in Subsection 4.7.2. Let us
consider the Capon-like estimator, i.e., choose Φ(ω) = (1/L)YYH . If x(n) consists
of a sinusoid with frequency ω0 in noise as in Subsection 4.7.2, then for high SNR
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Figure 4.14. Periodic gapped-data sampling. There are Nc clusters of samples, each of length
Np. Each cluster contains Ns available samples and Np − Ns missing samples.

and a reasonably large number of snapshots, a calculation similar to that in (4.7.7)
shows that

σ2Φ−1(ω) = σ2L · (YYH )−1 ≈ Π⊥
ăM (ω0)

. (4.10.12)

Provided that M > 1 we have that:

α̂(ω) ≈
ăHM (ω)Π⊥

ăM (ω0)
ğ(ω)

ăHM (ω)Π⊥
ăM (ω0)

ăM (ω)
≈ 1

L

ăHM (ω)Π⊥
ăM (ω0)ăM (ω0)ǎ

T
L(ω0)ǎ

∗
L(ω)

ăHM (ω)Π⊥
ăM (ω0)

ăM (ω)
= 0

(4.10.13)

for ω 6= ω0 and high SNR. Hence we can expect the methods based on (4.10.6) to
be essentially leakage-free, even though the data sequence contains gaps.

Periodically Gapped Data

The key problem is of course how the snapshots, or rather, the parameters {kl}
and {ml} in (4.10.2), should be chosen. In general, the selection of snapshots
appears to be a hard problem that is open. However, for some important special
cases, including that of periodically gapped data, the snapshots can be chosen in a
systematic manner.

The case of periodically gapped data is illustrated in Figure 4.14. In this case,
we assume that the gapping pattern is periodic and that data are available at the
time instants:

n = 0, . . . , Ns − 1,

Np, . . . , Np +Ns − 1,

2Np, . . . , 2Np +Ns − 1,

(Nc − 1)Np, . . . , (Nc − 1)Np +Ns − 1

. (4.10.14)

Here Np is the periodicity of the gapping, Ns is the number of available samples per
cluster and Nc is the number of clusters. Clearly, Na = NcNs samples are available
in total.
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Choice of Snapshots: In the case of periodically gapped data, we can construct
snapshots as follows. Let N̆s and N̆c be two user parameters, and choose

kl =
{
0, 1, . . . , Ns − N̆s,

Np, Np + 1, . . . , Np +Ns − N̆s,

· · · ,
(Nc − N̆c)Np, (Nc − N̆c)Np + 1, . . . , (Nc − N̆c)Np +Ns − N̆s

}

ml =
{
0, 1, . . . , N̆s − 1,

Np, Np + 1, . . . , Np + N̆s − 1,

· · · ,
(N̆c − 1)Np, (N̆c − 1)Np + 1, . . . , (N̆c − 1)Np + N̆s − 1

}

(4.10.15)

in (4.10.2). Clearly, the total number of snapshots is L = (Ns−N̆s+1)·(Nc−N̆c+1)
and their length is M = N̆cN̆s. Hence the corresponding matrix Y will be of
dimension N̆cN̆s × (Ns − N̆s + 1)(Nc − N̆c + 1). An equivalent way of describing
the above choice of snapshots is to let 0 ≤ n̆s ≤ Ns − N̆s, 0 ≤ n̆c ≤ Nc − N̆c, and
take snapshot number l = n̆s + n̆cNp (i.e., the lth column of Y) as:

yl =
[
x(l) x(l + 1) · · · x(l + N̆s − 1)

x(l +Np) x(l +Np + 1) · · · x(l +Np + N̆s − 1)

· · · · · · · · ·

x
(
l + (N̆c − 1)Np

)
x
(
l+ (N̆c − 1)Np + 1

)
· · · x

(
l + (N̆c − 1)Np + N̆s − 1

)]T

.

(4.10.16)

The formation of snapshots is illustrated in Figure 4.15. By forming snapshots this
way and applying (4.10.6) with Φ(ω) chosen according to (4.10.8) or (4.10.9), we
arrive at two new methods that we will call periodically-gapped Capon, respectively.

Interpretation and Fast Implementation: The procedure described above for the
formation of snapshots and the related application of Capon or APES can be inter-
preted as forming a matrix of size Ns×Nc by stacking the available data segments
on top of each other, and applying 2D Capon/APES with a matrix filter of dimen-
sion N̆s × N̆c to the so-obtained matrix. This interpretation is useful for providing
more insight into how PG-Capon and PG-APES work, and for obtaining a fast
implementation.

To understand how PG-Capon/PG-APES and 2-D Capon/2-D APES/ are re-
lated, assume for the moment, although this is not a strictly necessary assumption
for Capon or APES, that x(n) is a superposition of sinusoids with amplitudes {αk}
and frequencies {ωk} in stationary noise w(n):

x(n) =
∑

k

αke
iωkn + w(n). (4.10.17)
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Figure 4.15. Illustration of the formation of snapshots in the case of periodically gapped data.
In this example, Nc = 5, Ns = 9, N̆c = 3, N̆s = 4.

By stacking the available segments of x(n) on top of each other, we effectively
construct the following fictitious 2D data set:

X(ns, nc) = x(ns + ncNp) (4.10.18)

for 0 ≤ ns ≤ Ns − 1, 0 ≤ nc ≤ Nc − 1. Observe from (4.10.17) that

X(ns, nc) =
∑

k

αke
i(ωkns+ωkncNp) +W (ns, nc) (4.10.19)

is a superposition of two-dimensional sinusoids in noise with frequencies (ωk, Npωk)
embedded in noise W (ns, nc) = w(ns +ncNp). Hence each 1D sinusoid in (4.10.17)
with frequency ω is transformed into a 2D sinusoid with 2D-frequency (ω,Npω).
We express this relationship as

(ω2D, ω̌2D) = (ω1D, Np · ω1D). (4.10.20)

As described in Section 4.5, the 2D-APES and 2D-Capon methods choose a set of
snapshot vectors {zn̆s,n̆c} whose elements are taken from consecutive sub-matrices
of X(ns, nc):

zn̆s,n̆c = vec







X(n̆s, n̆c) · · · X(n̆s, n̆c + N̆c − 1)
...

. . .
...

X(n̆s + N̆s − 1, n̆c) · · · X(n̆s + N̆s − 1, n̆c + N̆c − 1)







(4.10.21)

for n̆s = 0, . . . , Ns − N̆s and n̆c = 0, . . . , Nc − N̆c. It follows from (4.10.18) that
the snapshots formed in (4.10.16) coincide with those formed in (4.10.21): zn̆s,n̆c =
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yn̆s+n̆cNp and this fact establishes the sought relation between 2D-Capon/2D-APES
and PG-Capon/PG-APES. As an aside, note that W (n, ň) is a stationary random
process provided that w(n) is stationary (see [52] for a proof) and hence it makes
sense to apply 2D-Capon or 2D-APES to X(ns, nc).

To summarize, the PG-Capon and PG-APES methods can be formulated as
follows:

1. Stack the available data segments onto each other to obtain X(ns, nc) (see
(4.10.18)).

2. Apply 2D Capon or APES in a standard fashion to the transformed data
X(n, ň), using a matrix filter of size N̆s× N̆c. This way we obtain an estimate
of the 2D amplitude spectrum X(ω, ω̌) corresponding to X(ns, nc). Let this
amplitude spectrum estimate be denoted by α̂2D(ω, ω̌).

3. Obtain the spectral estimate of x(n) by “inverting” the relation (4.10.20):

α̂(ω) = α̂2D(ω,Npω). (4.10.22)

Based on the interpretation described above, we see that a fast implementation
of PG-Capon and PG-APES can be obtained by using the techniques in Section 4.8
(with the only difference that it is sufficient to evaluate the spectral estimate for
the frequencies (ω,Np ·ω) – and this can be accomplished via a standard 1D FFT).

Numerical Examples

Example 4.12: Sinusoidal spectrum and periodically gapped data.
In this example (see also [52]) we consider a time-series x(n) consisting of two com-
plex sinusoids with amplitudes 1 and 0.75 and frequencies 0.75 and 0.8, respectively,
embedded in white Gaussian noise with variance 0.01. We assume that Nc = 6
clusters with Ns = 8 samples each are available, and that the spacing between the
clusters is Np = 14. In Figure 4.16(a) we show the real part of the signal under
consideration and indicate which samples that are available. In Figure 4.16(b), the
PG-Capon spectral estimate (using N̆c = 3 and N̆s = 5) is shown together with the
DFT spectral estimate. Note the artifacts in the Fourier spectrum and the superior
resolution of PG-Capon compared with the Fourier transform.

In Figure 4.16(c) we illustrate the interpretation of PG-Capon discussed in Sub-
section 4.10.1. The figure shows the 2D spectral estimate of the fictitious 2D time-
series using Capon, and Figure 4.16(d) shows the corresponding Fourier transform
spectrum. We can think of the “horizontal dimension” as a “fast frequency axis”
and the “vertical dimension” as a “slow frequency axis”. The horizontal dimension
is needed to resolve closely spaced peaks, and the vertical dimension is needed to
eliminate ambiguities. The resolution in the horizontal dimension is inversely pro-
portional to the “aperture” (or data) length NcNp, and the resolution in the vertical
dimension is inversely proportional to the number of samples per cluster Ns.
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Figure 4.16. Results for Example 12.
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Example 4.13: SAR imaging of an object.
We illustrate how PG-Capon can be applied to SAR imaging with angular diversity
(see also [52]). We use a data matrix of size 50×50 generated by an electromagnetic
prediction code [45], and we assume that the columns 6–10, 16–20, 26–30, 36–40,
46–50 are missing due to the angular diversity. Each row of the phase-history matrix
is processed separately (this is clearly suboptimal, cf. Example 4.9, but a 2D version
of PG-Capon is not yet available). Figure 4.17(a) shows a photograph of the object
under consideration. In Figures 4.17(b) and 4.17(c) we show the Fourier and Capon
images of the full phase history data matrix. Finally, Figures 4.17(d) and 4.17(e)
show the Fourier and PG-Capon images of the gapped phase-history data.
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(a) Photograph of object (b) 2D DFT image of complete data.

(c) 2D Capon image of complete data (d) 2D Fourier image of gapped data matrix

Figure 4.17. (continued on the next page)
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(e) PG-Capon image of gapped data matrix

Figure 4.17. (cont.) Results for Example 13. Dynamic range in all figures: 35dB (amplitude).

4.10.2 APES for Gapped Data: GAPES

The papers [53], [54], [36] developed an extension of APES to gapped data that
(unlike the methods in the previous Subsection 4.10.1) can deal with quite general
sampling patterns. The method proposed therein is called “gapped-data” APES
(GAPES) and is based on interpolating the missing samples by minimizing the WLS
criterion (4.3.9) with respect to the missing data as well. Despite the relationship
between the Capon estimator and APES, a “GAPES-like” extension of Capon to
gapped data appears to be unfeasible).

In this section, we describe the main ideas of GAPES. We treat only the 2D
case, the 1D case follows as a special instance. As before, denote the N × N̄ data
matrix by X. We require N ≥ 1 and N̄ > 1, and therefore the special case of
N = 1 corresponds to the 1D case. Let U be the set of sample indices (n, n̄) for
which data are unavailable (or missing), and let A be the (complementary) set of
sample indices (n, n̄) for which data are available. The set of unavailable samples
{X(n, n̄) : (n, n̄) ∈ U} is denoted by Xu, whereas the set of available samples
{X(n, n̄) : (n, n̄) ∈ A} is denoted by Xa. Hence the problem of interest is to
estimate α(ω, ω̄) given Xa.
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The GAPES Criterion

Following [36], we minimize (4.3.9) with respect to both the spectrum and the
missing data using the filterbank framework. Consider the FB-APES criterion in
(4.6.12), and assume that we want to compute α(ω, ω̄) and H(ω, ω̄) simultaneously

for a set of K × K̄ frequencies {ωk, ω̄k̄}K−1,K̄−1

k=0,k̄=0
that lie on a uniform grid; hence

ωk = 2πk/K and ω̄k̄ = 2πk̄/K̄. The computation of {α(ωk, ω̄k̄)} and {H(ωk, ω̄k̄)}
then amounts to solving KK̄ LS minimization problems of the form (4.6.12) (one
for each frequency ωk, ω̄k̄). It is clear that the solutions to these LS problems are
the solutions to the following joint minimization problem:

min
{α(ωk,ω̄k̄),β(ωk,ω̄k̄),H(ωk,ω̄k̄)}

K−1∑

k=0

K̄−1∑

k̄=0

{∥∥∥ vec
(
H(ωk, ω̄k̄) ∗X

)
− α(ωk, ω̄k̄)aL,L̄(ωk, ω̄k̄)

∥∥∥
2

+
∥∥∥ vec

(
H(ωk, ω̄k̄) ∗ X̃

)
− β(ωk, ω̄k̄)aL,L̄(ωk, ω̄k̄)

∥∥∥
2
}

(4.10.23)

subject to (4.6.11) and (4.6.13). Making use of (4.5.15), we can rewrite the APES
criterion (4.10.23) as

min
{α(ωk,ω̄k̄),β(ωk,ω̄k̄),H(ωk,ω̄k̄)}

{∥∥∥∥∥




TG(ω0, ω̄0)
...

TG(ωK−1, ω̄K̄−1)


 vec(X) −




α(ω0, ω̄0)aL,L̄(ω0, ω̄0)
...

α(ωK−1, ω̄K̄−1)aL,L̄(ωK−1, ω̄K̄−1)



∥∥∥∥∥

2

+

∥∥∥∥∥




TG(ω0, ω̄0)
...

TG(ωK−1, ω̄K̄−1)


 vec(X̃) −




β(ω0, ω̄0)aL,L̄(ω0, ω̄0)
...

β(ωK−1, ω̄K̄−1)aL,L̄(ωK−1, ω̄K̄−1)



∥∥∥∥∥

2}

(4.10.24)

subject to (4.6.11) and (4.6.13) where T is defined in (4.5.13) and the relation
between H(ωk, ω̄k̄) and G(ωk, ω̄k̄) is described by (4.5.14).

The GAPES algorithm obtains {α(ωk, ω̄k̄)} by minimizing the criterion in
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(4.10.24) with respect to the missing data Xu as well:

min
{α(ωk,ω̄k̄),β(ωk,ω̄k̄),H(ωk,ω̄k̄)},Xu

{∥∥∥∥∥




TG(ω0, ω̄0)
...

TG(ωK−1, ω̄K̄−1)


 vec(X) −




α(ω0, ω̄0)aL,L̄(ω0, ω̄0)
...

α(ωK−1, ω̄K̄−1)aL,L̄(ωK−1, ω̄K̄−1)



∥∥∥∥∥

2

+

∥∥∥∥∥




TG(ω0, ω̄0)
...

TG(ωK−1, ω̄K̄−1)


 vec(X̃) −




β(ω0, ω̄0)aL,L̄(ω0, ω̄0)
...

β(ωK−1, ω̄K̄−1)aL,L̄(ωK−1, ω̄K̄−1)



∥∥∥∥∥

2}

(4.10.25)

subject to (4.6.11) and (4.6.13). In (4.10.25) the matrix X is of dimension N × N̄ ,
although some of its elements are unknown parameters in the minimization. For
(4.10.25) to be meaningful in practice, K and K̄ have to be fairly large.

The minimization of (4.10.25) with respect to Xu has a clear intuitive inter-
pretation in terms of interpolating the missing data. The missing samples Xu are
interpolated under the only, but natural, assumption that their amplitude spectrum
is similar to that of the available data Xa. In some applications, the interpolated
data may be of interest per se.

The article [36] proposes to use a cyclic minimization to find the minimizer
(4.10.25). Such a minimization is carried out via the following steps:

(a) Obtain an initial spectrum estimate {α(ωk, ω̄k̄)} along with the corresponding
filters {H(ωk, ω̄k̄)}.

(b) Minimize the criterion in (4.10.25) with respect to Xu (keeping {α(ωk, ω̄k̄)} and
{H(ωk, ω̄k̄)} fixed).

(c) Minimize the criterion in (4.10.25) with respect to {α(ωk, ω̄k̄)} and {H(ωk, ω̄k̄)}
keeping Xu fixed, in other words re-compute the estimated spectrum given Xu
from Step (b).

(d) Iterate Steps (b)-(c) until convergence.

Step (c) is nothing more than the computation of the APES spectrum. Before
discussing the other two steps in detail, let us note that the criterion in (4.10.25) is
non-negative and non-increasing in both Step (b) and Step (c); hence the algorithm
will converge. Since the criterion in (4.10.25) is non-convex, there is no guarantee
that the point of convergence is the global minimum (this is the usual case for non-
convex optimization problems). Empirical experience reported in [36] indicates that
with a proper initialization in Step (a), it is possible to come close to the global
minimum using a few iterations.



222 High-Resolution Nonparametric Spectral Analysis: Theory and Applications 4

Step (a): Obtaining an initial spectral estimate Initial estimates of the spectrum
{α(ωk, ω̄k̄)} and the filters {H(ωk, ω̄k̄)} can be obtained by choosing an initial size
M0 × M̄0 of the filter matrix and thereafter determining the spectrum estimates
{α(ωk, ω̄k̄)} and the filters {H(ωk, ω̄k̄)} by minimizing the APES criterion (4.10.24)
using the available data only. In other words, the vector inside the norm in the
criterion in (4.10.24) is modified such that to remove all elements which involve Xu.

Let S be the set of sample indices (l, l̄) such that

{(l, l̄), . . . , (l, l̄+M̄0−1), . . . , (l+M0−1, l̄), . . . , (l+M0−1, l̄+M̄0−1)} ∈ A. (4.10.26)

Define the set of M0M̄0 × 1 vectors {y0
l,l̄

: (l, l̄) ∈ S} (which contain available data

samples only) similarly to (4.5.2), and let |S| be the number of elements in S.
Furthermore, define the initial forward sample covariance matrix

R̂0
f ,

1

|S|
∑∑

(l,l̄)∈S
y0
l,l̄y

0H
l,l̄ . (4.10.27)

Next, define the initial backward and forward-backward sample covariance matrices
R̂0
b and R̂0

fb, the Fourier transforms ḡ0(ω, ω̄), g̃0(ω, ω̄) and the matrix Q̂0(ω, ω̄) (cf.
(4.6.4), (4.6.5), (4.6.6) and (4.6.7)). The initial estimates are now given by (4.6.9)

but with ḡ(ω, ω̄) and Q̂(ω, ω̄) replaced with ḡ0(ω, ω̄) and Q̂0(ω, ω̄), respectively.
Note that all quantities denoted by (·)0 in this paragraph are functions of the
available data only; no interpolation of the missing data has taken place yet. Once
the interpolation Step (b) has been carried out, the corresponding quantities can be
built from the full (interpolated) data matrix and consequently the “conventional”
APES algorithm is used in Step (c).

The size of the initial filter matrix M0 × M̄0 must be chosen such that R̂0
fb

has full rank. Since the spectral resolution typically increases with increasing filter
lengths, it is argued in [36] that M0 and M̄0 should be chosen equal to the largest

integers that render R̂0
fb nonsingular. In the event that there are no such integers,

some other initialization technique must be used; for instance, simply replacing all
the missing samples with zeros and computing the initial spectrum estimate by
applying the APES algorithm to the so-obtained sequence.

Step (b): Minimization of (4.10.25) with respect to Xu It can be shown [11]
that the filters {H(ωk, ω̄k̄)} that minimize (4.10.23) (or, equivalently, (4.10.24))
satisfy the following conjugate symmetry constraint:

Hm,m̄(ω, ω̄) =H∗
M−1−m,M̄−1−m̄(ω, ω̄) · e−i

(
(M−1)ω+(M̄−1)ω̄

)

,H̃m,m̄(ω, ω̄)ei
(
(M−1)ω+(M̄−1)ω̄

) . (4.10.28)

Making use of this property together with (4.6.13), it follows that the two terms in
the sum in (4.10.25) are equal for all X and X̃ that obey (4.6.1). This is so since
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for any ω, ω̄ it holds that (see [36] for a proof):

‖TG(ω, ω̄) vec(X) − α(ω, ω̄)aL,L̄(ω, ω̄)‖
=‖TG(ω, ω̄) vec(X̃) − β(ω, ω̄)aL,L̄(ω, ω̄)‖

. (4.10.29)

Hence, since {H(ωk, ω̄k̄)} and {α(ωk, ω̄k̄)} are kept fixed during the minimization
of (4.10.25) with respect to Xu, Step (b) amounts to:

min
Xu

∥∥∥∥∥




TG(ω0, ω̄0)
...

TG(ωK−1, ω̄K−1)


 vec(X) −




α(ω0, ω̄0)aL,L̄(ω0, ω̄0)
...

α(ωK−1, ω̄K̄−1)aL,L̄(ωK−1, ω̄K̄−1)



∥∥∥∥∥

2

.

(4.10.30)

To solve (4.10.30), let the matrices Ga(ωk, ω̄k̄) and Gu(ωk, ω̄k̄) be defined im-
plicitly by the following equality:

G(ωk, ω̄k̄) vec(X) = Ga(ωk, ω̄k̄) vec(Xa) + Gu(ωk, ω̄k̄) vec(Xu) (4.10.31)

where Xa and Xu are matrices that contain the elements of Xa and Xu, respectively.
In other words, Ga(ωk, ω̄k̄) and Gu(ωk, ω̄k̄) contain the columns of G(ωk, ω̄k̄) that
correspond to the indices in A and U , respectively. Furthermore, introduce the
following matrices:

Ğa ,




TGa(ω0, ω̄0)
...

TGa(ωK−1, ω̄K̄−1)




Ğu ,




TGu(ω0, ω̄0)
...

TGu(ωK−1, ω̄K̄−1)




. (4.10.32)

Then the criterion (4.10.30) can be written as

min
Xu

∥∥∥Ğu vec(Xu) + Ğa vec(Xa) − α
∥∥∥

2

(4.10.33)

where

α ,




α(ω0, ω̄0)aL,L̄(ω0, ω̄0)
...

α(ωK−1, ω̄K̄−1)aL,L̄(ωK−1, ω̄K̄−1)


. (4.10.34)

Since (4.10.33) is a standard LS problem, a closed form solution is easily ob-
tained:

vec(X̂u) =
(
ĞH
u Ğu

)−1
ĞH
u

(
α− Ğa vec(Xa)

)
. (4.10.35)
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Numerically, the solution to (4.10.33) can be obtained by QR-factorization (see,
e.g., [35], [55]). However, there are at least two drawbacks with this. First, the

QR factorization requires the storage of Ğu which is approximately of dimension
LL̄KK̄ × |U|. This can be virtually impossible even for data records of moderate
size. Second, the QR factorization requires O(LL̄KK̄|U|2) floating point operations
[35]. Since the equation system corresponding to (4.10.35) is highly structured, it
can be solved more efficiently than by using the QR factorization. In [36] it was
proposed to solve (4.10.35) by using the conjugate gradient (CG) algorithm [35].

The CG algorithm is an iterative procedure, and the number of required itera-
tions in the CG algorithm is bounded by the number of unknowns. Each iteration
in the CG algorithm requires the multiplication of ĞH

u Ğu with a vector. By ex-
ploiting the Toeplitz-like structure of Gu and using an approach similar to that
in Section 4.C, this multiplication can be done in O(KK̄NN̄ log(NN̄)) operations
(see Subsection 4.5.1). Hence the total cost of minimizing (4.10.33) is at most
O(KK̄NN̄ |U| log(NN̄)) operations, which is typically much less than the complex-
ity of a QR-factorization. Also, if (4.10.33) is minimized via the CG algorithm, the

storage of the regressor matrix Ğu is avoided (which would require O(NN̄KK̄|U|)
bits of memory).

Numerical Examples

We next present two examples of application of the GAPES algorithm. Note that
for large data matrices, the direct application of the 2-D GAPES algorithm can
be computationally demanding, even if an efficient technique is employed to solve
(4.10.33). In the first example, we present a technique to cope with large data
matrices. This example also illustrates the advantage of using 2D interpolation
instead of 1D data processing.

Example 4.14: GAPES applied to line spectrum.
In this example (see also [36]) we consider a data matrix of size 32 × 50 consisting
of three noisy sinusoids, with the same frequencies, amplitudes and noise variance
as in Example 4.8. All samples in the columns 10–20 and 30–40 are missing. The
true spectrum is shown in Figure 4.18(a) and the missing-data pattern is shown in
Figure 4.18(b). In Figure 4.18(c) we show the 512×512 windowed Fourier transform
(WFT) spectrum of the full data obtained using a 2D Taylor window with shape
parameter 5 and sidelobe level -35 dB. In Figure 4.18(d) we show the 512 × 512
APES spectrum of the full data obtained by using a filter matrix of size 8 × 8.
Figure 4.18(e) shows the WFT spectrum obtained by setting the missing samples
to zero.

Next we apply the following two methods:

(a) 1D (row-wise) data processing. Here each row in the data matrix is interpolated
separately. This is done by applying the 1D-GAPES algorithm with N = 1 and
N̄ = 50 using a 1D filter of length M̄ = 4 and a frequency grid with K̄ = 128
points. After completing this interpolation for all rows of the data matrix, we
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obtain the final spectral estimate by using the 2D-APES algorithm. The results
after one iteration are shown in Figure 4.18(f) (further iteration did not change
the result visibly).

(b) Partial 2D data processing. Here, we divide the data matrix into 4 blocks of
size 8×50 and interpolate the missing data in each block separately. To perform
the interpolation, we apply 2D-GAPES with a filter matrix of size 4 × 4 and
a frequency grid of size 16 × 128. After the interpolation step is completed,
the spectrum of the so-obtained interpolated data matrix is computed via 2D-
APES. The result after one iteration is shown in Figure 4.18(g) (further iteration
did not change the result visibly).

We compare the results with that of the CLEAN method (used as a deconvo-
lution method with a grid size of 1024× 1024, a loop gain of 0.5 and iterating 200
times, although the result was not very sensitive to these parameters). In Figure
4.18(h) we show the WFT image of the data reconstructed by CLEAN, and in Fig-
ure 4.18(i) we show the APES spectrum estimate of the data matrix obtained by
CLEAN. It is clear that GAPES outperforms the methods based on CLEAN. We
also conclude that the gain of using (even partial) 2D data interpolation can be
significant.
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Figure 4.18. (continued on the next page)
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Figure 4.18. (continued on the next page)
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Figure 4.18. (cont.) Results for Example 14.

Example 4.15: GAPES applied to measured SAR data.
In this example (see also [56]) we apply the GAPES algorithm to measured SAR
data. We consider a 64× 64 phase history matrix collected by the Sandia National
Laboratory using the STARLOS sensor. The radar system operates in spotlight
mode and uses a center frequency of 9.6 GHz and a bandwidth of 590 MHz. The
object illuminated by the radar is a tank (depicted in Figure 4.19(a)) and is located
at a distance of 4.5km and an elevation angle of 15◦ from the radar. To simulate the
angular diversity, we create artificial gaps in the phase history matrix by removing
the columns (corresponding to cross-range samples) 11–20 and 37–46, as illustrated
in Figure 4.19(b). In Figure 4.19(c) we show the SAR image obtained by applying
WFT (as described above) to the full data. Figure 4.19(d) shows the image obtained
by the application of APES to the full data with M = M̄ = 16 (note the superior
resolution of APES compared with that of WFT). In Figure 4.19(e) we show the
result of applying WFT to the phase history data with the missing data Xu set
to zero (note the artifacts in the image due to the gapping). Figures 4.19(f) and
4.19(g) show the results of applying GAPES with 1D (row-by-row) interpolation
and partial 2D (16 rows at a time) processing, respectively. We used the same filter
lengths as for Example 4.14. It is clear also from this example that by applying
GAPES to the incomplete phase history data we obtained a SAR image which is
almost identical to the 2D-APES image in Figure 4.19(d) (especially note that the
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“shadow”, which is characteristic of SAR images, remains essentially unchanged in
the 2D-GAPES image).
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Figure 4.19. (continued on the next page)
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(e) SAR image of the object (at 0◦ azimuth

angle) obtained via WFT with Xu = 0

(f) SAR image of the object (at 0◦ azimuth

angle) obtained via GAPES after two iter-
ations with 1D-interpolation of one row at
a time

(g) SAR image of the object (at 0◦ azimuth

angle) obtained via GAPES after two iter-
ations with 2D-interpolation of 16 rows at
a time

Figure 4.19. (cont.) Results for Example 4.15.
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4.11 Special Topics

Spectral estimation via adaptive filterbank methods is a theme that can be extended
and developed in many ways. The intention of this section is to summarize some
extensions and variations of the filterbank methods that have appeared in the lit-
erature. Instead of providing a full treatment of all techniques, we refer the reader
to the original articles for more details.

4.11.1 APES and Capon for Real-Valued Data

The estimation problem formulated in Section 4.3 as well as the associated solution
are meaningful in a strict sense only when the data fulfills a model such as that in
(4.3.1). An important special case of (4.3.1) is when the observed data are real-
valued, and can be modelled as a superposition of real sinusoids embedded in noise.
In this case, we can decompose the signal in a sinusoidal term with amplitude α(ω)
and phase φ(ω) and a residual term:

x(n) = α(ω) cos
(
ωn+ φ(ω)

)
+ wω(n)

= αI(ω) cos(ωn) + αQ(ω) sin(ωn) + wω(n)
(4.11.1)

where αI(ω), αQ(ω) can be interpreted as in-phase and quadrature components of
the sinusoid sin

(
ωn+ φ(ω)

)
, respectively. As before, the decomposition in (4.11.1)

is meaningful only for a fixed ω of interest.
Nonparametric spectral analysis of real-valued data was studied in [57] by taking

a filterbank approach (similar to that in Section 4.4). It was suggested to use
the same Capon and APES filter criteria as in (4.4.7) and (4.4.11), but with the
constraint

aH(ω)h(ω) =1

aT (ω)h(ω) =1
(4.11.2)

in lieu of (4.4.8). Obviously, the constraint in (4.11.2) is equivalent to requiring that
the filter transfer function has a value of unity at both ω and −ω. This is a natural
constraint in view of the fact that real-valued signals have symmetric spectra.

Let

A(ω) =




1 0
cos(ω) sin(ω)

...
...

cos
(
(M − 1)ω

)
sin
(
(M − 1)ω

)


. (4.11.3)

Then [57] showed that the resulting Capon and APES spectral estimate can be
written:
[
α̂I(ω)
α̂Q(ω)

]
= α̂(ω) = G−1

ω CT
ωΦ−1(ω)A(ω)

(
AT (ω)Φ−1(ω)A(ω)

)−1 ·
[
1
0

]
(4.11.4)
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where

Gω =
1

L

L−1∑

l=0

[
cos(ωl) sin(ωl)
sin(ωl) cos(ωl)

]

Cω =
1

L

L−1∑

l=0

yl · [cos(ωl) sin(ωl)]

. (4.11.5)

In (4.11.4) and (4.11.5), {yl} are defined as in Section 4.3, and Φ(ω) is a weighting
matrix chosen according to:

ΦCapon(ω) = R̂ =
1

L
YYT

ΦAPES(ω) =
1

L
YYT −CωG

−1
ω CT

ω

(4.11.6)

for Capon and APES, respectively.
The article [57] observed empirically that the estimator designed for real-valued

sinusoids outperforms that designed for complex sinusoids, although the difference
was not substantial. The same authors also proved analytically that the estimators
designed for complex data will have a slight bias if the data are real-valued.

4.11.2 Combining APES and Capon: CAPES

We know that the choice of snapshot (or filter) length M is a way to trade resolution
against statistical stability of the spectral estimates and that the resolution capabil-
ity of Capon and APES, and their FB averaged variants, differ substantially in finite
samples. In [27] (and Example 4.5) it was found that the Capon estimator (without
FB averaging) is the method that gives the highest resolution. In particular, for a
given M , Capon yields a better resolution than APES; consequently Capon may
be a preferable choice for locating spectral lines. Furthermore, [27] observed that
FB-APES usually gives superior estimates of the amplitude spectrum at the true
location of a spectral line.

The conclusions of [27] led to an intuitively appealing and computationally
tractable algorithm that combines the resolution properties of Capon with the
spectral estimation accuracy of APES. The new algorithm was called Capon-APES
(CAPES) and has a very simple structure. Capon is first used to locate the spectral
lines, and APES is subsequently used to recover their amplitudes. The computa-
tional complexity of the resulting estimator is of the same order as that of Capon
(the extra computations needed to evaluate the APES spectrum at the spectral line
locations are negligible).

4.11.3 APES and Capon for Damped Sinusoids

A recent contribution [58] presents an extension of the Capon and APES methods
to the case of damped sinusoids in noise. In this case there are two parameters asso-
ciated with each sinusoid, namely an angular frequency ω and a damping coefficient
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λ. The associated spectrum can be considered to be two-dimensional, with ω and λ
as variables. The method in [58] was applied to synthetic data as well as real data
from a nuclear magnetic resonance (NMR) application where the data can often be
quite accurately modelled as a superposition of damped sinusoids in noise.

The results of [58] are easy to describe in the framework of this chapter. Let
x(n) be an arbitrary one-dimensional (1D) time series. Following the developments
in Section 4.3, for a given frequency ω and a given damping coefficient λ, let us
decompose x(n) as:

x(n) = α(ω, λ)eiωn−λn + wω,λ(n) (4.11.7)

and assume that N consecutive samples of x(n) are arranged in an M × L Hankel
matrix Y according to (4.3.2). Also let Ã(ω) be the following rank-one matrix:

A(ω, λ) = aM (ω, λ)aTL(ω, λ) (4.11.8)

where

aP (ω, λ) ,




1
eiω−λ

...

eiω(P−1)−λ(P−1)


 (4.11.9)

for any integer P . Then we can write

Y = α(ω, λ)A(ω, λ) + W(ω, λ). (4.11.10)

The relatives of Capon and APES for damped sinusoids are easily formed by esti-
mating α(ω, λ) in (4.11.10) in a WLS sense:

α̂(ω, λ) = argmin
α(ω,λ)

∥∥∥Φ−1/2(ω, λ)
(
Y − α(ω, λ)A(ω, λ)

)∥∥∥
2

. (4.11.11)

The solution to this WLS problem takes on the same form as (4.3.10):

α̂(ω, λ) =
aHM (ω, λ)Φ−1(ω, λ)g(ω, λ)

aHM (ω, λ)Φ−1(ω, λ)aM (ω, λ)
(4.11.12)

where

g(ω, λ) ,
1

L(λ)
Ya∗

L(ω, λ) (4.11.13)

and

L(λ) =

L−1∑

n=0

e−2λn =
e−2λL − 1

e−2λ − 1
. (4.11.14)
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The weight matrix Φ(ω, λ) is formed in the same way as in Section 4.3, but with
aM (ω) replaced by aM (ω, λ) and g(ω, λ) taken as in (4.11.13) (see [58] for details).

There is a, somewhat superficial, similarity between the Capon/APES spec-
tra for 1D damped sinusoids and the 2D spectra derived in Section 4.5: both are
computed from the data via an equation of the form (4.11.12) depending on two
variables. However, in the case of damped sinusoids, the vectors aM (ω, λ) are not
“Fourier vectors” and thus the associated computations cannot be carried out di-
rectly via the techniques in Section 4.8.

4.11.4 Time-Recursive Implementations of Capon and APES

There are applications where it may be of interest to obtain an implementation
of Capon and APES that is recursive in time. In words, given a sequence of N
samples {x(0), . . . , x(N −1)} along with the associated spectral estimate, the prob-
lem is to determine an updated spectral estimate corresponding to the sequence
{x(1), . . . , x(N)} where the first sample x(0) is discarded and a new observation
x(N) is appended to the sequence.

Although no time-recursive implementation of the fast spectral estimators in [32]
(see Section 4.8) is available, [59], [65] presented time-recursive variants of Capon
and APES, respectively. The main idea is to apply the matrix inversion lemma to
obtain an update of the inverse of the sample covariance matrix R̂−1. Although
the techniques in the cited papers are considerably faster than a brute-force im-
plementation, it is an open question whether there remains additional structure
in the problem that could be exploited by, for example, methods such as those in
Section 4.8. An affirmative answer to this question could lead to a time-recursive
implementation that would be fast and therefore quite useful in practice.

We will not dwell into the details of the time-recursive implementations in [59],
[65], but we shall illustrate by an example how APES and Capon can be used for
short-time spectral analysis tasks.

Example 4.16: Short-term spectral analysis of non-stationary 1D se-
quence.
We consider a data sequence consisting of four superimposed chirp signals:

x(n) =

4∑

k=1

ei2πfk(n)n + w(n) (4.11.15)
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for n = 0, . . . , 231 where

f1(n) = −0.08− n

4 × 103

f2(n) = 0.02 +
n

4 × 103

f3(n) = −0.02− n

4 × 103

f4(n) = 0.08 +
n

4 × 103

(4.11.16)

and wn is zero-mean white complex Gaussian noise with variance = 0.01 (see also
[65]).

Figure 4.20(a) shows the true amplitude spectrum of the signal as a function
of time. In Figure 4.20(b) we show the spectral estimates obtained by using a 1D
short-time Fourier transform (STFT). Figure 4.20(c) shows the estimates obtained
by a 1D widowed STFT, and finally Figure 4.20(d) shows the result of applying
1D APES with maximally overlapping short-time data sequences of length N = 32.
We can see that the APES method gives much better spectral estimates than the
STFT and windowed STFT methods.
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(a) True spectrum as a function of time (b) STFT

(c) Windowed STFT (d) APES with maximally overlapping
short-time data sequences of length N = 32

Figure 4.20. Results for Example 4.16.
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4.12 Conclusions

This chapter has summarized some main results in the area of nonparametric spec-
tral analysis via adaptive filterbank methods. We started by formulating the spec-
tral estimation problem as a weighted least-squares problem and showed how various
nonparametric algorithms can be derived in a natural manner in this framework.
Next we discussed how the nonparametric methods can be interpreted in the con-
text of adaptive filterbanks, and showed how they can be computed efficiently. We
also discussed various extensions of the methods, with the extension to gapped data
as a particularly important case.

Although there exist an abundance of research papers in this area, there are still
topics that should form the subject of future investigations. We will not give an
exhaustive list of open problems, but in our opinion the most interesting and relevant
ones to solve include (1) finding a fast time-recursive implementation of Capon and
APES, (2) obtaining a fast implementation for the estimator in Subsection 4.11.3,
and (3) deriving an “optimal” (in finite samples) weighting matrix for the MMSE
spectral estimator.
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4.A Proof of Theorem 4.1

Since the data x(n) is an outcome of (4.2.2), it holds that

yl =

K∑

k=1

αke
iωklaM (ωk) + wl(ω) (4.A.1)

for l = 0, . . . , L− 1 and hence it follows that

α̂(ω) = α(ω) + φ(ω) + ψ(ω) (4.A.2)

where

φ(ω) =
1

L

K∑

k=1, k: ωk 6=ω
αkh

H(ω)aM (ωk)
L−1∑

l=0

ei(ωk−ω)l

ψ(ω) =
1

L
hH(ω)

L−1∑

l=0

wl(ω)e−iωl

. (4.A.3)

From (4.A.2) it follows that

E
[
|α̂(ω) − α(ω)|2

]
= E

[
|φ(ω)|2

]
+ 2<e

(
E
[
φ∗(ω)ψ(ω)]

)
+E[|ψ(ω)|2

]
. (4.A.4)

In a usual fashion, let “f(x) = O(g(x))” denote the existence of a constant C such
that |f(x)| ≤ Cg(x) for all x. Since

∣∣∣
L−1∑

l=0

eiωl
∣∣∣ = O(1) (4.A.5)

for ω 6= 0, it holds that

E
[
|φ(ω)|2

]
= O

( 1

L2

)
. (4.A.6)
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Furthermore,

E[φ∗(ω)ψ(ω)] =
1

L3/2
E

[(
K∑

k=1, k: ωk 6=ω
αkh

H(ω)aM (ωk) ·
L−1∑

l=0

ei(ωk−ω)l

)

·
(

hH(ω)
1√
L

L−1∑

l=0

w(l)e−iωl
)]

= O
( 1

L3/2

) (4.A.7)

where the last equality holds since the first factor inside the expectation converges
to a constant and the second factor is bounded (in a mean-square sense). Finally,

L ·E
[
|ψ(ω)|2

]
→ 1

L
hH0 (ω)

L−1∑

l=0

L−1∑

k=0

E
[
wl(ω)wH

k (ω)
]
e−iω(l−k)h0(ω)

=
1

L
hH0 (ω)

L−1∑

l=0

(L− |l|)E
[
wk(ω)wH

k−l(ω)
]
e−iωlh0(ω)

→hH0 (ω)

L−1∑

l=0

E
[
wk(ω)wH

k−l(ω)
]
e−iωlh0(ω)

→hH0 (ω)
(
aM (ω)aHM (ω)P (ω)

)
h0(ω)

=P (ω)

(4.A.8)

as L→ ∞ which together with (4.A.4), (4.A.6) and (4.A.7) shows (4.7.3).

4.B Proof of Theorem 4.2

Throughout this proof we shall omit the frequency variable ω (whenever no confu-
sion can occur) to simplify the notation. Let

δ̄ =
1

L

L−1∑

l=0

w̄l(ω)e−iωl (4.B.1)

δ̃ =
1

L

L−1∑

l=0

w̃l(ω)e−iωl (4.B.2)

Then we have that

α̂FB-Capon − α =
aHM R̂−1

fb δ̄

aHM R̂−1
fb aM

. (4.B.3)

In what follows, we use the symbol ≈ to denote an “asymptotic equality” that holds
to within a second-order approximation. A straightforward manipulation of (4.B.3)
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yields

α̂Capon − α

=
aHM (R̂−1

fb −R−1)δ̄

aHM R̂−1
fb aM

+
aHMR−1δ̄

aHM R̂−1
fb aM

=
aHM R̂−1

fb (R − R̂fb)R
−1δ̄

aHM R̂−1
fb aM

+ aHMR−1δ̄

[
1

aHM R̂−1
fb aM

− 1

aHMR−1aM
+

1

aHMR−1aM

]

≈ −aHMR−1(R̂fb −R)R−1δ̄

aHMR−1aM
+

aHMR−1δ̄

aHMR−1aM
+

aHMR−1δ̄aHM (R−1 − R̂−1
fb )aM

(aHM R̂−1
fb aM )(aHMR−1aM )

≈ −aHMR−1(R̂fb −R)R−1δ̄

aHMR−1aM
+

aHMR−1δ̄

aHMR−1aM
+

(aHMR−1δ̄)aHMR−1(R̂fb −R)R−1aM
(aHMR−1aM )2

(4.B.4)

which, in turn, implies that

E
[
α̂Capon − α

]

≈E
[
−(aHMR−1R̂fbR

−1δ̄)(aHMR−1aM ) + (aHMR−1R̂fbR
−1aM )(aHMR−1δ̄)

(aHMR−1aM )2

]
.

Next we note that

R̂fb =
1

2L

L−1∑

l=0

[ (
αaM e

iωl + w̄l(ω)
) (
αaM e

iωl + w̄l(ω)
)H

+
(
α̃aMe

iωl + w̃l(ω)
) (
α̃aMe

iωl + w̃l(ω)
)H ]

= |α|2aMaHM +
1

2
(α∗δ̄ + α̃∗δ̃)aHM +

1

2
aM (αδ̄

H
+ α̃δ̃

H
)

+
1

2L

L−1∑

l=0

[
w̄l(ω)w̄H

l (ω) + w̃l(ω)w̃H
l (ω)

]

. (4.B.5)

We also remind the reader of the assumption that w(n) has nonzero third order
moments. Since

w̃l(ω) = Jw̄∗
L−l−1(ω) (4.B.6)

we have

δ̃ =
1

L

L−1∑

l=0

w̃l(ω)e−iωl =
1

L

L−1∑

l=0

Jw̄∗
L−l−1(ω)e−iωl

= e−iω(L−1)J

(
1

L

L−1∑

k=0

w̃k(ω)e−iωk
)∗

= e−iω(L−1)Jδ̄
∗

(4.B.7)
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By using these facts, along with (4.B.5), we can write

(aHMR−1aM )2 · E [α̂Capon − α]

≈ E
[
(aHMR−1aM )

(
− 1

2
aHMR−1(α∗δ̄ + α̃∗δ̃)(aHMR−1δ̄)

−1

2
(aHMR−1aM )(αδ̄

H
+ α̃δ̃

H
)R−1δ̄

)

+(aHMR−1δ̄)
(1
2
aHMR−1(α∗δ̄ + α̃∗δ̃)(aHMR−1aM )

+
1

2
(aHMR−1aM )(αδ̄

H
+ α̃δ̃

H
)R−1aM

)]

=
1

2
E
[
α∗(aHMR−1δ̄)2(aHMR−1aM ) + α̃∗(aHMR−1δ̄)(aHMR−1δ̃)(aHMR−1aM )

+α(aHMR−1aM )
∣∣∣aHMR−1δ̂

∣∣∣
2

+ α̃(aHMR−1aM )(aHMR−1δ̄)(δ̃
H
R−1aM )

−α∗(aHMR−1aM )(aHMR−1δ̄)2 − α̃∗(aHMR−1aM )(aHMR−1δ̃)(aHMR−1δ̄)

−α(aHMR−1aM )2(δ̄
H
R−1δ̄) − α̃(aHMR−1aM )2(δ̃

H
R−1δ̄)

]

=
1

2
α(aHMR−1aM )E

[∣∣aHMR−1δ̄
∣∣2 − (aHMR−1aM )(δ̄

H
R−1δ̄)

]
(4.B.8)

By the Cauchy-Schwartz inequality, the quantity between the curly parentheses in
(4.B.8) is negative and so is its expectation. Hence part (a) of the theorem follows.

The bias for the forward-only Capon spectral estimate, α̂F-Capon, can be obtained
by replacing the forward-backward sample covariance R̂fb in (4.B.3)–(4.B.5) by the

forward-only sample covariance matrix R̂f , and following the lines of (4.B.8). The
result is as follows (to a second-order approximation):

(aHMR−1aM )2E
[
α̂F-Capon − α

]

≈α(aHMR−1aM )E
[ ∣∣aHMR−1δ̄

∣∣2 − (aHMR−1aM )(δ̄
H
R−1δ̄)

]. (4.B.9)

Hence to within a second-order approximation, the bias of the forward-backward
Capon is indeed one half that of the forward-only Capon, which proves part (b) of
the theorem.

Finally, to show part (c) of the theorem, note that

α̂APES − α =
aHM Q̂−1δ̄

aHM Q̂−1aM

≈ −aHMQ−1(Q̂ −Q)Q−1δ̄

aHMQ−1aM
+

aHMQ−1δ̄

aHMQ−1aM

+
(aHMQ−1δ̄)aHMQ−1(Q̂ −Q)Q−1aM

(aHMQ−1aM )2

(4.B.10)
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Therefore,

(aHMQ−1aM )2E
[
α̂APES − α

]
≈ E

[
− (aHMQ−1Q̂Q−1δ̄)(aHMQ−1aM )

+(aHMQ−1Q̂Q−1aM )(aHMQ−1δ̄)
]

(4.B.11)

Next note that

Q̂ = R̂−GGH = R̂− 1

2

(
ḡḡH + g̃g̃H

)

= |α|2aMaHM +
1

2
α∗δ̄aHM +

1

2
α̃∗δ̃aHM +

1

2
αaM δ̄

H
+

1

2
α̃aM δ̃

H

+
1

2L

L−1∑

l=0

(
w̄l(ω)w̄H

l (ω) + w̃l(ω)w̃H
l (ω)

)
− |α|2aMaHM − 1

2
αaM δ̄

H − 1

2
α∗δ̄aHM

−1

2
α̃aM δ̃

H − 1

2
α̃∗δ̃aHM − 1

2

(
δ̄δ̄

H
+ δ̃δ̃

H
)

=
1

2L

L−1∑

l=0

(
w̄ω(l)w̄H

ω (l) + w̃ω(l)w̃H
ω (l)

)
− 1

2

(
δ̄δ̄

H
+ δ̃δ̃

H
)

(4.B.12)

Using again the assumption of zero third-order moments of w(n) and combining
(4.B.11) and (4.B.12) yields

E {α̂APES − α} ≈ 0 (4.B.13)

and the proof is complete.

4.C Fast Matrix-Vector Multiplication

Let N0 be the smallest power-of-two integer larger than or equal to N , and let N̄0

be defined similarly. Define the N0N̄0 × 1 vector

x ,
[(

vec(X)
)T

01,N0N̄0−NN̄

]T

=
[
X(0, 0) · · · X(N − 1, 0)

· · · X(0, N̄ − 1) · · · X(N − 1, N̄ − 1) 01,N0N̄0−NN̄

]T
(4.C.1)

where X is the N × N̄ data matrix. Furthermore, let Ȳ be the (uniquely defined)
N0N̄0 ×N0N̄0 left circulant matrix that has x as its first column:

Ȳ =




y0 y1 · · · yN0N̄0−2 yN0N̄0−1

y1 y2 yN0N̄0−1 y0

...
. . .

...
yN0N̄0−2 yN0N̄0−1 yN0N̄0−4 yN0N̄0−3

yN0N̄0−1 y0 · · · yN0N̄0−3 yN0N̄0−2



. (4.C.2)
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Next, define the MM̄ × M̄N matrix

T1 ,




IM 0M,L−1

IM 0M,L−1

. . .

IM 0M,L−1


 (4.C.3)

(all elements not shown are equal to zero) and the L̄N × LL̄ matrix

T2 ,




IL
0M−1,L

IL
0M−1,L

. . .

IL
0M−1,L




. (4.C.4)

In (4.C.4), 0P,R denotes a P × R matrix of zeros, and IP stands for the P × P
identity matrix. Also, in the 1D case, T1 and T2 are identity matrices. Let

T̄1 ,
[
T1 0MM̄,N0N̄0−M̄N

]
(4.C.5)

and

T̄2 ,

[
T2

0N0N̄0−L̄N,LL̄

]
. (4.C.6)

Then
uHY = uHT̄1ȲT̄2 (4.C.7)

for any vector u, where Y is defined in (4.5.4). To see this, consider the following
M × L Hankel matrix:

Zm̄,l̄ ,




X(0, m̄+ l̄) X(1, m̄+ l̄) · · · X(L− 2, m̄+ l̄) X(L− 1, m̄+ l̄)
X(1, m̄+ l̄) X(2, m̄+ l̄) X(L− 1, m̄+ l̄) X(L, m̄+ l̄)

.

.

.
. . .

.

.

.
X(M − 2, m̄+ l̄) X(M − 1, m̄+ l̄) X(N − 3, m̄+ l̄) X(N − 2, m̄ + l̄)
X(M − 1, m̄+ l̄) X(M, m̄+ l̄) · · · X(N − 2, m̄+ l̄) X(N − 1, m̄ + l̄)




=




y(m̄+l̄)N y(m̄+l̄)N+1 · · · y(m̄+l̄)N+L−2 y(m̄+l̄)N+L−1

y(m̄+l̄)N+1 y(m̄+l̄)N+2 y(m̄+l̄)N+L−1 y(m̄+l̄)N+L

...
. . .

...
y(m̄+l̄)N+M−2 y(m̄+l̄)N+M−1 y(m̄+l̄)N+N−3 y(m̄+l̄)N+N−2

y(m̄+l̄)N+M−1 y(m̄+l̄)N+M · · · y(m̄+l̄)N+N−2 y(m̄+l̄)N+N−1




(4.C.8)

and note that

Y =




Z0,0 · · · Z0,L̄−1
...

. . .
...

ZM̄−1,0 · · · ZM̄−1,L̄−1


 (4.C.9)
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which leads to (4.C.7) after some calculation.
Next, let Υ be the N0N̄0 ×N0N̄0 unitary DFT matrix whose (k, l)th element is

equal to:

Υk,l = exp
(
− i2π

(k − 1)(l − 1)

N0N̄0

)
. (4.C.10)

Since Ȳ is a left circulant matrix, it follows that (see, e.g., [60, Chap. 8])

∆ , ΥȲΥ (4.C.11)

is a diagonal matrix. Hence

uHY = uHT̄1Υ∆ΥT̄2 (4.C.12)

for any vector u, where all matrix-vector products can be evaluated by using the
fast Fourier transform (FFT). It follows that the product uHY can be computed in
O
(
NN̄ log(NN̄)

)
floating point operations. The products Yu, uHỸ and Ỹu can

be treated similarly.

4.D Fast Multiplication of Trigonometric Polynomials

Let n0 be the smallest power-of-two integer larger than np + nq , and let n̄0 be
defined similarly. Furthermore, let

P (η, η̄) =

np−1∑

k=0

n̄p−1∑

k̄=0

p∗np−1−k,n̄p−1−k̄ · exp

(
−i2π

(kη
n0

+
k̄η̄

n̄0

))

Q(η, η̄) =

nq−1∑

k=0

n̄q−1∑

k̄=0

qk,k̄ · exp

(
− i2π

(kη
n0

+
k̄η̄

n̄0

))

R(η, η̄) =

np+nq−2∑

k=0

n̄p+n̄q−2∑

k̄=0

rk−np+1,k̄−n̄p+1 · exp

(
− i2π

(kη
n0

+
k̄η̄

n̄0

))

(4.D.1)

be the 2D DFTs of the coefficient vectors in the lemma’s statement. By the 2D
inverse DFT theorem we have that

rk−np+1,k̄−n̄p+1 =
1

n0n̄0

n0−1∑

η=0

n̄0−1∑

η̄=0

R(η, η̄) · exp

(
i2π
(kη
n0

+
k̄η̄

n̄0

))
. (4.D.2)

Next note from (4.8.10), (4.8.11) and (4.8.12) that

rk,k̄ =

np−1∑

l=0

nq−1∑

m=0
m−l=k

(n̄p−1∑

l̄=0

n̄q−1∑

m̄=0

m̄−l̄=k̄

p∗l,l̄qm,m̄

)

(4.D.3)
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which is recognized as a 2D convolution. Using (4.D.3) it can be verified that

R(η, η̄) = P (η, η̄)Q(η, η̄). (4.D.4)

The proof is now concluded by observing that rk,k̄ can be computed in the
following way:

1. Compute P (η, η̄) and Q(η, η̄) in (4.D.1) using the 2D FFT.

2. Compute R(η, η̄) according to (4.D.4).

3. Compute rk,k̄ according to (4.D.2) by using the 2D (inverse) FFT.

The polynomials r̃(ω, ω̄) and r̂(ω, ω̄) are treated in a similar way.

4.E Fast Cholesky Factorization of R̂−1
fb

The fast Cholesky factorization of R̂−1
fb is based on the concept of displacement rank

[61], [34]. Let Φ be an arbitrary positive definite P × P matrix, and let ∆r be a
P × P matrix with ones on its rth diagonal below the main diagonal, and zeros
everywhere else. We say that the displacement rank of index r of the matrix Φ is
equal to

ρr(Φ) , rank(Φ −∆rΦ∆T
r ). (4.E.1)

If Φ is a P × P positive definite matrix with displacement rank of index r equal
to ρ, then a simple eigen-decomposition shows that there exist a P × ρ matrix G,
which is necessarily of full column rank, and a unitary ρ×ρ diagonal matrix F such
that

Φ− ∆rΦ∆T
r = GFGH . (4.E.2)

The triplet {G,F, r} will be referred to as a displacement factorization of R. As
an aside, note that the displacement factorization of a matrix Φ is not unique, but
it determines the matrix uniquely. This follows from the Lyapunov theorem (see,
e.g., [62]) since all eigenvalues of ∆r are equal to zero.

A displacement factorization of the forward sample covariance matrix for the
1D case can be found in [63]. A corresponding result for the 2D case was first
established in [32] and is stated next without proof.

Lemma 4.A: Partition R̂fb as

R̂fb =




R̂0,0 · · · R̂0,M̄−1
...

. . .
...

R̂M̄−1,0 · · · R̂M̄−1,M̄−1


 (4.E.3)
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where each block R̂m̄1,m̄2 is of dimension M × M (in the 1D case, R̂m̄1,m̄2 are
scalars), and let Zm̄,l̄ be defined by (4.C.8). Let

G =




R̂
1/2
0,0 0M,M 0M,L 0M,L 0M,L 0M,L

R̂1,0R̂
−1/2
0,0 R̂1,0R̂

−1/2
0,0 JZM̄−2,0 JZM̄−1,L̄−1 Z0,0 Z1,L̄−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R̂M̄−1,0R̂
−1/2
0,0 R̂M̄−1,0R̂

−1/2
0,0 JZ0,0 JZ1,L̄−1 ZM̄−2,0 ZM̄−1,L̄−1




(4.E.4)
where JM is a reversal matrix. Furthermore, let Ψ be the following (2M + 4L) ×
(2M + 4L) diagonal matrix:

Ψ =




IM
−IM

IL
−I2L

IL



. (4.E.5)

Then {G,Ψ,M} is a displacement factorization of R̂fb (in particular this implies

ρM (R̂fb) = 2M + 4L in the 2D case; hence ρM (R̂fb) = 6 in the 1D case).

An interesting consequence of Lemma 4.A is that R̂fb is fully parameterized by
O(MM̄N) parameters and can hence be stored using O(MM̄N) bits of memory
(O(M̄ ) in the 1D case). This is so since the displacement factorization determines
the covariance matrix uniquely (cf. the remark following (4.E.2)).

The article [32] also showed the following useful extension of Lemma 4.A.

Lemma 4.B: Let G and Ψ be defined as in Lemma 4.A, and let

Ĝ =

[
R̂

−1/2
0,0 R̂

−1/2
0,0 0M,4L

0(M̄−1)M,M 0(M̄−1)M,M 0(M̄−1)M,4L

]
. (4.E.6)

Furthermore, let G̃ =
[
GT ĜT

]T
. Then {G̃,Ψ,M} is a displacement factoriza-

tion of the matrix

R̃ ,

[
R̂fb I
I 0

]
. (4.E.7)

By using the technique in Section 4.C, the blocks R̂m,0 in (4.E.4), and hence
the displacement factorizations in Lemmas 4.A and 4.B, can be computed from the
data in O

(
M3M̄ + MNN̄ log(NN̄)

)
operations. This is so since only the first M

columns, or equivalently the first M rows, of R̂fb are needed.

Having obtained the factorizations of R̂fb, [32] demonstrated that we can obtain

the columns of the R̂
−1/2
fb by applying the generalized Schur algorithm [33], [34], to

the factorization of R̃ in Lemma 4.B. This result is stated next.
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Theorem 4.A: Let Φ be an arbitrary positive definite P ×P matrix. Assume that
{G,Ψ, r} is a displacement factorization of the matrix

[
Φ I
I 0

]
(4.E.8)

where G is 2P×ρ. Then the following procedure yields a sequence of vectors {l̂k}Pk=1

which equal the columns of Φ−1/2.
Start with G1 = G and perform the following steps for k = 1, . . . , P :

1. Let gHk be the top row of Gk.

2. Put

lk =
GkΨgk

gHk Ψgk
(4.E.9)

and let l̂k be the P last elements of lk.

3. Let Gk+1 be defined through

[
×1,ρ

Gk+1

]
= Gk−lkg

H
k +




0min(r,P−k+1),1 · · · 0min(r,P−k+1),1

(lkg
H
k )1,1 · · · (lkg

H
k )1,ρ

...
...

(lkg
H
k )P−k−r+1,1 · · · (lkg

H
k )P−k−r+1,ρ

0r,1 · · · 0r,1
(lkg

H
k )P−k+2,1 · · · (lkg

H
k )P−k+2,ρ

...
...

(lkg
H
k )P−r,1 · · · (lkg

H
k )P−r,ρ




(4.E.10)

where ×P,R denotes a P ×R block of no interest.

Note that the application of the algorithm to our problem, given the displace-
ment factorization {G̃,Ψ,M} in Lemma 4.B, requires O(M 2M̄2N) floating point
operations.

Finally we note also that a stabilized version of the generalized Schur algorithm,
operating at approximately the same complexity as the generalized Schur algorithm
presented above, has been proposed in [64]; however, no numerical instability prob-
lems have been observed in the experiments performed to date.
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[55] T. Söderström and P. Stoica, System Identification. Hemel Hempstead, UK:
Prentice Hall International, 1989.

[56] E. G. Larsson, The ubiquitous signal processing: applications to communications,
spectral analysis and array processing. PhD thesis, Uppsala University, Uppsala,
Sweden, 2001.

[57] A. Jakobsson, T. Ekman, and P. Stoica, “CAPON and APES spectrum esti-
mation for real-valued signals,” in Proc. IEEE Digital Signal Processing Workshop,
Aug. 1998.

[58] P. Stoica and T. Sundin, “Nonparametric NMR spectroscopy,” Journal of Mag-
netic Resonance, vol. 152, pp. 57–69, 2001.

[59] Z.-S. Liu, R. Wu, and J. Li, “Complex ISAR imaging of maneuvering targets
via the Capon estimator,” IEEE Trans. Signal Processing, vol. 47, pp. 1262–1271,
May 1999.

[60] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal
Processing. Upper Saddle River, NJ: Prentice-Hall, 2000.

[61] T. Kailath and A. H. Sayed, “Displacement structure: Theory and applications,”
SIAM Review, vol. 37, pp. 297–386, 1995.

[62] W. J. Rugh, Linear System Theory. Upper Saddle River, NJ: Prentice-Hall,
1996.

[63] J. Chun, T. Kailath, and H. Lev-Ari, “Fast parallel algorithms for QR and
triangular factorization,” SIAM Journal of Scientific and Statistical Computation,
vol. 8, no. 6, pp. 899–913, 1987.

[64] S. Chandrasekaran and A. H. Sayed, “Stabilizing the generalized Schur algo-
rithm,” SIAM J. Matrix Analysis and its Applications, vol. 17, pp. 950–983, 1996.

[65] R. Wu, Z.-S. Liu, and J. Li, “Time-varying complex spectral analysis via recur-
sive APES,” IEE Proc. – Radar, Sonar and Navigation, vol. 145, pp. 354–360, Dec.
1998.




