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Rates Using Kalman 

Tracking Filters 

The analysis of the periodic components in noise and vibration signals measured on 
rotating equipment such as car power trains, must be done more and more under 
rapid changes of an axle, or reference RPM. Normal tracking filters (analog or digital 
implementations) have limited resolution in such situations; wavelet methods, even 
when applied after resampling the data to be proportional to an axle RPM, must 
compromise between time andfrequency resolution. The authors propose the applica­
tion of nonstationary Kalman filters for the tracking of periodic components in such 
noise and vibration signals. These filters are designed to accurately track signals with 
a known structure among noise and signal components of different, "unknown," 
stmcture. The tracking characteristics of these filters, i.e., the predicted signal ampli­
tude versus time values versus exact signal amplitude versus time values, can be 
tailored to accurate tracking of harmonics buried in other signal components and 
noise, even at high rates of change of the reference RPM. A key to the successful 
construction is the precise knowledge of the structure of the signal to be tracked. For 
signals that vary with an axle RPM, an accurate estimate of the instantaneous RPM 
is essential, and procedures to this end will also be presented. © 1995 John Wiley & 

SOliS, illc. 

INTRODUCTION 

This article investigates the application of nonsta­

tionary Kalman filters to track harmonics and or­

ders from signals measured on rotating equipment 

using a constant sample rate. This approach en­

ables the analysis of orders even at high rates of 

change, or slew rate, of a reference RPM. This 

is important in such applications as analyzing data 

from a standard exterior pass-by-noise test 
(1S0362) that typically only lasts 2 s. Also some 

phenomena in rotating equipment only become 

apparent at operating conditions involving rapid 

change of speed. This can be due to nonlineari­

ties, load dependent system dynamics as is preva­

lent in torsional systems, and operating require­

ments such as in the spindown through critical 
speeds of centrifuges. 
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Real time analog and digital tracking filters 

have limitations of resolution in such situations, 

due to transients and excessive processing re­

quirements in digital implementations (Potter and 

Gribler, 1989). Resampling of recorded signals to 

achieve periodicity with respect to the reference 

RPM following by Fourier analysis may require 

excessive oversampling of the original signal, es-
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pecially when tracking fractional orders. It can 

be nearly impossible to resample orders that are 

not expressible as fractions of small composite 

integers. Fourier analysis requires stationarity 

over longer time periods for good frequency reso­

lution; and modern wavelet analysis, even when 

applied to resampled data, are subject to an un­

yielding compromise between frequency and 

time resolution. 

The authors propose the application of nonsta­

tionary Kalman filters for the tracking of har­

monic components in noise. Such filters have 

been employed very successfully in control and 

guidance systems since 1960, with particular ap­

plication to avionics and navigation (Kalman, 

1960; Kalman and Bucy, 1961). These filters can 

accurately track signals of known structure 

among noise and other signal components with 

different structure. For signals that vary with an 

axle RPM, an accurate estimate of the instanta­

neous frequency is essential; procedures to this 

end, based on the availability of a tachometer 

channel, will also be presented. 

MATHEMATICAL BACKGROUND 

A Kalman filter is a computational procedure that 

tracks a signal of known non stationary structure, 

or the state of a nonstationary dynamic system 

from noisy measurements. The usual formula­

tions are couched in the language of modern con­

trol theory, because the original developments 

and most of the engineering applications have 

been within the control and guidance field. We 

choose to develop a Kalman filter to track sine 

waves from signals sampled at a constant rate 

as an alternative to more traditional analog and 

digital techniques because it provides a simple 

formulation and a potential for tracking sine 

waves accurately at high slew rates. This version 

allows for the standard predictor form of the Kal­

man filter, highly useful in real time applications 

such as shaker control and avionics, but also for 

a global least squares best linear unbiased estima­

tor of the system state, best suited for postpro­

cessing and analysis of archival data. 

The application of the Kalman filter for sine 

tracking is done in three stages, RPM determina­

tion, waveform tracking, and amplitude/phase 

determination, even though these processes may 

be done in lock step for real time implemen­

tation. 

Waveform Tracking 

Assuming that we know the RPM and the order 

that we want to extract from a measurement chan­

nel, the Kalman filtering consists of setting up 

and solving for the waveform, optionally in a re­

cursive manner, of a sparse set of linear least 

squares equations, the components of which we 

call the structural and the data equations. 

Structural Equation. A sine wave x(t) of fre­

quency W with arbitrary amplitude and phase, 

sampled at even time increments !1t, satisfies the 

second-order difference equation 

x(n !1t) - 2cos(21TW !1t)X«11 - 1)!1t) (1) 

+ X«11 - 2) !1t) = 0, 

which we normally write 

x(n) - c(n)x(n - I) + x(n - 2) = 0, (2) 

dropping the time increment, !1t, from the equa­

tions. We note that when the instantaneous fre­

quency, w, is known, Eq. (2) is a linear, frequency 

dependent constraint equation on the sine wave 

that we call the structural equation of the Kalman 

filter. In our application where we are tracking a 

sine wave of changing frequency contaminated 

with noise and other sinusoids, we introduce a 

nonhomogeneity term, sen), that allows the sine 

wave to change its amplitude and phase as well as 

frequency slightly over the time points involved in 

the equation. This now becomes 

x(n) - c(n)x(n - I) + X(11 - 2) = sen), (3) 

where c(n) = COS(21TW !1t). The right-hand side 

of Eq. (3) is a deterministic, but unknown term 

that allows deviations from a true stationary sine 

wave. In particular, if the sine wave is locally 

amplitude modulated by a slow sine offrequency 

w", trigonometric identities show that 

2sin(21Twt)sin(21Twat) = COS(21T(W - w)t) 
(4) 

- COS(21T(W + w)t). 

This equation shows that when the amplitude 

changes, the target wave is a superposition oftwo 

waves with slightly higher and lower frequencies. 

A first-order expansion of Eq. (4) gives a term 

that may be lumped into the right-hand side of 

Eq. (3). It is useful to define the measures seen) 



as the standard deviation of the nonhomogeneity 

of the structural equation, Eq. (3). 

Data Equation. Instead of observing x(n), we 

measure the signal yen) that is assumed to contain 

both the signal that satisfies the structural equa­

tion as well as noise and other periodic compo­

nents. Formally, we write this as 

yen) = x(n) + YJ(n), (5) 

where YJ(n) is a signal component containing ran­

dom noise and periodic components at other fre­

quencies than the target signal. Here we also de­

fine s1J(n) as the standard deviation of the nuisance 

component YJ(n). 

Least Squares Equation. We see that at any point 

of time n, Eqs. (3) and (5) implicitly provide linear 

equations for {x(n) x(n - 1) x(n - 2)}. Rear­

ranging these equations gives us the un­

weighted form 

-c(n) 
[

x(n - 2)l 
I B(n) 

x(n - I) = J [yen) - YJ(nJ, 
x(n) 

(6) 

with the structural equation as the top row and 

the data equation in the bottom. Writing the ratio 

of the standard deviation functions of the right­

hand side of Eq. (6) as 

s/n) 
r(n) = -(-) , 

s1J n 
(7) 

allows us to make the make the error in Eq. (6) 

isotropic by applying the weighting r(n), that is, 

-c(n) 
1 } x(n _ I) 

r(n) 
[

x(n - 2)l 

x(n) 

[ 
B(n) ] 

- r(n)( yen) - YJ(n)) . 

(8) 

Roughly speaking, a least squares system weigh­

ted such that isotropic error occurs will give us 

the minimum variance unbiased estimates of the 

system state as long as the error terms have lo­

cally zero means. Deviating from this particular 
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form of weighting will affect the estimates of sys­

tem state; applied to the tracking application, it 

will influence the tracking charcteristics of the 

filter; that is, this weighting may also be used to 

enforce adherence to the structural equation by 

choosing a small value for r(n) , leading to a filter 

that is highly discriminating in frequency, but 

which takes a long time to converge in amplitude. 

Conversely, fast convergence with low frequency 

resolution is achieved by choosing r(n) large. This 

corresponds also to the observation from Eq. (4) 

that says that rapid amplitude variations imply 

frequency deviations to either side of the 

tracked frequency. 

Applying Eq. (8) to all observed time points 

will give us a global system of overdetermined 

equations for the desired waveform x(n) that may 

be solved using standard least squares techniques 

such as normal equations, QR decomposition, or 

the singular value decomposition (SYD). Inspec­

tion ofEq. (8) shows that the normal equations are 

banded, allowing for very fast solution schemes. 

Global versus Predictor Solutions. The banded 

form ofthe least squares equation, Eq. (8), entails 

that an incremental solution is readily available. 

To this end, one simply solves the equations up 

to time n and uses the estimated value of x(n) as 

a state estimate for that time point. To obtain an 

estimate for time in the next time step, one simply 

adds the next block of equations for time n + 1 

as in Eq. (8), and using a recursive argument, 

obtains the estimate for x(n + 1) from the new 

equations and the old estimate of x(n). This is 

the standard procedure from the modern control 

procedures where a current state estimate is 

needed for proper closing of the control loop. 

This formulation of Kalman filtering may be found 

in a number of textbooks, see e.g. Giordano and 

Hsu (1985) and Goodwin and Sang Sin (1984). 

It may be argued from a probability theory 

that the interior points of the time series x(n) are 

determined with less statistical variability than 

the end points. From a practical point of view this 

translates into developing a smoothed estimate or 

prediction of the system state at time n by includ­

ing data points for up to time n + p, where p is 

a nonnegative integer. The specific application 

will determine the trade-off between the lag p of 

the prediction, and the variability of the predic­

tion. For many applications, including postpro­

cessing offield data, the optimal procedure would 

be to include the entire data set in a global estima­

tion. Figure 1 shows the prediction error from a 
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0.1 5 ,--- --~---~ --~-- - ~--_, 

-0.1 

FIGURE 1 Waveform prediction erro r wi th Gauss­

ian noi se. 

track of a s ine wave whose frequency do ub les in 

the analysis window. The signal is contaminated 

wit h Gaussian noise whose standard deviation is 

the same as the amplitude of the sine . Figure 2 

shows the prediction error when the contami­

nants are ha rmonics of the tracked wave. Both 

of these figure s illustrate the higher va riabilit y at 

the end points. 

Amplitude / Phase Determination 

For the purpose of order tracking, the fi ltered 

waveform is most convenientl y described in 

terms of amplitude and phase with respect to a 

reference such as a tachometer channel. Because 

the tracked signal in our formu lation is a s ine 

wave x(n) wi th known frequency as a function of 

time locally at t ime n , the cosine and sine compo-

-0.0 .3 o~ - ---:::-- -- -c------:-- ---:-----:', 0 

FIGURE 2 Waveform prediction error with ha r­

monic noi se. 

nent s are given through the equation 

{ " 
x(n) = COS(21T t:o w(k) 6.r) 

(9) 

II } [0(11) ] 
sin (21T ~ w(k) 6. ( . 

k=O ben) 

Assuming that the amplitude and p hase a re locally 

co nstant, a leas t squares overdetermined system 

of eq uations may be constructed by considering 

Eq . (9) fo r a number of time points ne ighboring 

11 . Stric tly speaking, onl y two equations a re nec­

essary; but , considering the impreciseness of the 

track ing prediction , a t least enough time points 

to cover a comple te period should be used. These 

equa tions are known from expe rimental dynam­

ics as the Vandermonde equation s, eve n though 

our formul ation considers frequ ency variation 

over the data point s used in the estimation (Void 

et aI. , 1982). 

RPM Determination 

Given that the Kalman filter has a high capacity 

for trac king a target sine wave contamina ted with 

high levels of noi se, it beco mes crucial that the 

instantaneous frequenc y, or RPM of the system 

be es timated with a high degree of precision , lest 

we track the wrong frequenc y. The normal way 

of estimating frequenc y is to use a tachometer or 

any other transducer th at gives a c lean signal wi th 

a periodic waveform that is direct ly related to the 

ta rget sine wave . A typical s ignal wou ld be the 

ignit ion pu lses in a combu stion engine. 

Period Determination. To determine the instan­

taneous frequ ency from a tachometer c hanne l, 

the customary procedure is to identify a recurrent 

eve nt that defines the end of a period. Such events 

could be consecutive downcrossings of the mean , 

possibly with a ce rtai n hysteres is level to prevent 

premature ind ications fro m noi se or higher har­

monics . Expe rience indicates that each type of 

tachometer signal warrants some user setup to 

se lect the best period detect ion procedure. 

The sampli ng interval 6.( of the tachometer 

channe l dic tates direc tl y the standard deviat ion 

of the estima te of the pe riod because the e rror in 

the determination of any time domain event is 

uniforml y di stributed on an interval with length 

M. It is c learly desirab le to sample the tach chan­

nel at ve ry high frequencies to obtain a small 



stati stical variabili ty in the period estimation. If 

a high sampling rate is expensive or awkwa rd 

to obtain , one possibili ty is to use samplll1g ra te 

interpolation based on finite impu lse response fil­

te rs (see e.g. , Oppenheim and Schafer , 1975). The 

usage of interpolation fi lters is predicated b y the 

sampl ing theorem that says that any band limited 

signal that has been sampled at a frequency higher 

than twice the max imum freq uency present in the 

signa l may be reconstructed in the time domain 

to any desired degree of t ime resolution, a lbeit at 

computationa l ex pense. The noise fl oor of the 

tachometer channe l should be considered when 

choosing an interpolation rate because the time 

resolution is only a component in the accuracy 

of the period est imat ion . 

To illu strate the effect of sampling ra tes on the 

period est imates, a periodic signal that doub les 

in frequency in lO s was ana lyzed for downcross­

ings at a coarse sampl ing rate of 200 H z , corre­

sponding to M = 0.005 s. The estimated period 

length is plotted in Fig. 3. The data were then 

resampled at 1,600 H z (6.1 = 0.000625 s) usi ng 

a d igital interpolation filter. Figure 4 shows the 

improvement in the pe riod es timate wit h the in­

creased time resolut ion. 

Spline Smoothing of Period Estimates. Because 

a ll mechanical systems have some ine rtia and 

fle xibilit y assoc iated with the m, it is reasonable 

to ass ume tha t the period will have certain 

smoothness properties as a function of time. We 

ex pect the period to be a cont inuous function , 

and in most cases also to have a continuou s first 

derivative. Cubic splines sati sfy these require­

ments , so we propose to subdivide the observa-

0.055 r--r rrr-~ ---~--~---~--, 

0.04 

0.0 3 5 

5 

FIGURE 3 Pe riod est imate with coa rse sampling 

(LlI) . 
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0.07 '---~---'---~---'- -- I 

0 .065 

0 .06 

0.055 

0.045 

0.030L-------::----:-------:::--~;:;_- - ,. 

FIGURE 4 Period estima te with fine sampling (LlI IS). 

tion window into appropriate in te rva ls and pe r­

forming a least squa res fit of a cubic spl ine to the 

est imated pe riod function. Cubic splines a re quite 

fle xible interpolants and a lso do not have the nu­

merica l instabi litie s assoc iated with high-orde r 

pol ynomia ls. For a thorough discu ss ion on 

splines see de Boor (1978). 

Other smoothing techniques are a lso poss ible , 

including moving average filters and eve n Kalman 

filtering , but our experience indicates that the 

spline smoothing is often sufficient. Figure 5 

shows a spline function with three segment s inte r­

polating the period estimate of Figure 3 with the 

coarse time resolution. 

EXAMPLES 

We wi ll il lust rate the applica tion of the Ka lman 

order trac king to both anal ytica l and acquired 

data. In the sec tion trea ti ng the a nalytical data 

0 .07 ,-- -~---_ --_---_--, 

FIGURE 5 Period estimate with spline inte rpolant. 
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we will demonstrate various phenomena both fo r 

fast Fourier transform (FFT) techniques as well 

as fo r the Kalman filtering . Because we know the 

" right " answers for the ana lyt ical data , thi s is 

where we can develop intuition about the app lica­

tion of the Kalman filtering. 

In the section with experime ntal automotive 

data we wi ll restrict the exposi tion to a graph ical 

comparison of the FFT and the Kalman result s 

and some tentative conclusions. 

Analytical Experiments 

This section will look at the properties of the 

Kalman filter from several points of view. By 

inspection of Eq. (8) one can see that the inhomo­

geneity term e(n) has locall y a zero mean as long 

as the amplitude of the target sine wave is con­

stant. This translates into excellent tracking prop­

erties of signals wi th slowly varying amplitude 

almost independently of slew rate . As long as 

the RPM function is well determined then , the 

limiting factor would be amplitude tracking. 

Analytical Square Wave. This example uses an 

analytical square wave that has harmonics of odd 

orders only and where each order has constant 

amplitude. The functional form in continuous 

time is given by 

x ( 1)< ( r ) 
set) = I -2~ cos 271" J wet) dt . 

<=0 h + I 0 

( 10) 

A sampled version of this sq uare wave with the 

first seven harmonics is shown in Fig. 6. 

We now track the first harmonic of one case 

of this square wave where the frequency doubles 

0.6 

0.4 

0. 2 

-0 . 2 

-0.4-

-O.B 

-1 
0 0.1 

FIGURE 6 Sampled square wave with seven har­

monics. 

5.-----~------ ~----~ ------~----_, 

2 

10 

FIGURE 7 Percent tracking error with data bias 

(r(n) = 11 10). 

in 10 s. Figure 7 shows the relative error in the 

tracking with weighting 1110, giving a filter with 

broader frequency range acceptance than the fil­

ter shown in Fig. 8 that was generated with the 

weighting r(l1 ) = 1150. The latter choice of weight­

ing is clearly superior for this example where the 

amplitude of the ta rget harmonic is constant. 

The next experiment was conducted with a 

constant frequency Kalman filter applied to the 

square wave of Fig. 6. This constant frequency 

was selected such that it would be crossed by the 

first two odd harmonics of this signal. Two runs 

were made , one with weighting 1/60 for rapid 

convergence , and one with weighting 11 150 for 

better frequency resolu tion . These two runs are 

plotted in Fig . 9 where it is seen that the data 

biased (1160) weighting gives a higher dynamic 

range and better definition of the order crossings 

2 

1 .5 

0.5 

!J, .'I~ 0 

II' "11 

-0. 5 

- 1 
0 6 

FIGURE 8 Percent tracking erro r with structural 

bias, (r(n) = 1150). 



FIGURE 9 Harmonic run-through of co nstan t filters 

with weigh ting 1/60 and 1/150. 

than the st ructure biased equation that predomi­

nant ly shows the transients of slow co nvergence. 

The square wave of F ig. 6 was then a mplitude 

modulated with a n offset sq uared low freq uency 

sine as shown in F ig. 10. This data then has the 

form of Eq. (4) , impl ying that the each harmonic 

is the superposi t ion of two s ine waves offrequen­

cies s lightl y above and below the nom inal fre­

quency. The lowes t harmonic waveform was 

tracked with weighting 11 10 and 11 100 , respec­

t ively, and the tracking e rror plotted in Fig. 11 . 

The data weighted (II 10) filter clearly gives the 

best resu lts , due to its rapid convergence. For 

thi s particula r data set where the only contami­

na nt s are the nui sance harmonics of the targe t 

s ine wave, sharpness of the filter in frequenc y 

is not really requi red nor desirable because the 

harmonics are well separated in frequency and 

we do want to captu re th e energy in the ampli tude 

2 

2 B 

FIGURE 10 Modulated square wave. 
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0.04 

FIGURE 11 Tracking error of first harmonic wit h 

weighting 1/1 0 (top) a nd 1/ 100. 

modulation side bands. Addi ng white noise into 

the data wou ld require a sharpe r filter , and hence 

a trend toward more st ructural weighting . The 

eq ui va le nt tracki ng e rro rs with 50% Gaussian 

noise is shown in Fig. 12. In thi s plot we see the 

leakage of e nergy from the s ide bands with the 

data weighting (1 / 10) dominating the waveform 

prediction error; whe reas the sharper filter wi th 

weighting 1/ I 00 has a n error roughly the same as 

for the s igna l without the broadband Gaussian 

nOi se. 

Automotive Example 

We will look here at experimentall y acquired data 

and analyze these wi th both t rad it iona l digital 

FFT based methods a nd wi th the Kalman filter­

ing approach. 

0.4 

0.2 

0.3 ,---~ ---~--~---_ ----, 

0.2 

-0.2 

FIGURE 12 Tracking error of first harmonic of 

square wave with 50% Gauss ia n noi se with we ight ing 

1/ 10 (top) a nd 1/ 100 (bottom). 
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2.5 ~ 

2 

Elapsed time (5) 

FIGURE 13 RPM of vehicle as function of elapsed 

time. 

Vehicle Runup. The vehicle in question was pow­

ered by a four cylinder combustion engine and 

was taken through the speed range of 1000-4900 

RPM in roughly 13 s as shown in Fig. 13. 

A microphone was used as the response trans­

ducer, and using a FFT-based postprocessing sys­

tem we extracted the level of the second order 

and fourth order as shown in Figs. 14 and 15. 

This plot was made using 80% overlap processing 

that tends to smear the frequency information, 

but also smoothes out the jitter due to short FFT 

block lengths. 

We then tracked using the Kalman filter tech­

nique with the second and the fourth order as 

waveforms, and then, using the Vandermonde 

equation, Eq. (9), calculated amplitude as a func­

tion of RPM. The weighting function was set to 

1/200 as a compromise between amplitude con-

I" )i0' 
::(If~J1/~ ~ 

:: L-~ _---::--_~______:_---; 
FIGURE 14 Decibel amplitude of second order 

(FFT based). 

\ I 
. I 

IMlh~ ~A/ i ~'i I~II \ 

40 L, ------~------~------~~--~~ 

FIGURE 15 Decibel amplitude of fourth order 

(FFT based). 

vergence and frequency discrimination. The or­

ders are plotted in Figs. 16 and 17. 

We notice a good overall agreement between 

the orders as estimated with FFTs and Kalman 

filters, but with a clear edge in resolution and 

dynamic range with the Kalman approach, espe­

cially for the fourth order. 

CONCLUSIONS 

Under rapid changes of operating conditions, the 

accurate analysis of harmonic and order compo­

nents from noise and vibration measurements on 

rotating equipment remains a challenge for the 

automotive engineer. 

The accuracy and resolution obtained with 

most digital and analog tracking filters will de-

~
' 

l\ 

A./ \ r\} ,~ I 

r ~ I~ V I VV 

::~ Nfl V 

40,L ______ ~ ______ ~------~------~ 

FIGURE 16 Decibel amplitUde of second order (Kal­

man, filtering). 



; 

75 ~ 

FIGURE 17 Decibel amplitude of fourth order (Kal­

man filtering). 

grade quickly as the rate of change of a reference 

axle or RPM increases. The authors have devel­

oped a procedure for accurate analysis of har­

monic and order components under such con­

ditions. This procedure entails the transient re­

cordings at constant sample rate of the signals, 

followed by analysis using an adaptive, nonsta­

tionary filter based on a Kalman filter formu­

lation. 

The tracking characteristics of these filters, i.e. 

the predicted signal amplitude versus time values 

versus exact signal amplitude versus time, can 

be tailored to track harmonics accurately with 

rapidly changing amplitude and phase over time, 

and under conditions of high slew rate. Also, as 
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the analysis procedure is a true filtering method, 

it enables the extraction of order and harmonic 

information at a speed that equals the original 

sample rate of the signals. 
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