
High-resolution reservoir characterization using deep 

learning aided elastic full-waveform inversion: The North 

Sea field data example

Journal: Geophysics

Manuscript ID GEO-2019-0340.R2

Manuscript Type: Machine Learning and data analytics for geoscience applications

Keywords:
artificial intelligence, full-waveform inversion, North Sea, reservoir 

characterization, VTI

Area of Expertise: Anisotropy, Seismic Inversion

 

GEOPHYSICS

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 

© 20  Society of Exploration Geophysicists.20

D
o
w

n
lo

ad
ed

 0
2
/1

2
/2

0
 t

o
 1

0
9
.1

7
1
.1

3
7
.2

1
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2019-0340.1&domain=pdf&date_stamp=2020-01-28


High-resolution reservoir characterization using deep

learning aided elastic full-waveform inversion: The North

Sea field data example

Zhen-dong Zhang[1] and Tariq Alkhalifah[1]

1 Department of Physical Science and Engineering,

King Abdullah University of Science and Technology,

Thuwal 23955-6900, Saudi Arabia.

Email: zhendong.zhang@kaust.edu.sa

(January 15, 2020)

Running head: MLeFWI

1

Page 1 of 45 GEOPHYSICS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 

© 20  Society of Exploration Geophysicists.20

D
o
w

n
lo

ad
ed

 0
2
/1

2
/2

0
 t

o
 1

0
9
.1

7
1
.1

3
7
.2

1
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



ABSTRACT

Reservoir characterization is an essential component of oil and gas production, as well as

exploration. Classic reservoir characterization algorithms, both deterministic and stochas-

tic, are typically based on stacked images and rely on simplifications and approximations

to the subsurface (e.g., assuming linearized reflection coefficients). Elastic full-waveform in-

version, which aims to match the waveforms of pre-stack seismic data, potentially provides

more accurate high-resolution reservoir characterization from seismic data. However, full-

waveform inversion can easily fail to characterize deep-buried reservoirs due to illumination

limitations. We present a deep learning aided elastic full-waveform inversion strategy using

observed seismic data and available well logs in the target area. Five facies are extracted

from the well and then connected to the inverted P- and S-wave velocities using trained

neural networks, which correspond to the subsurface facies distribution. Such a distribu-

tion is further converted to the desired reservoir-related parameters such as velocities and

anisotropy parameters using a weighted summation. Finally, we update these estimated

parameters by matching the resulting simulated wavefields to the observed seismic data,

which corresponds to another round of elastic full-waveform inversion aided by the a priori

knowledge gained from the predictions of machine learning. A North Sea field data exam-

ple, the Volve Oil Field data set, indicates that the use of facies as prior helps resolve the

deep-buried reservoir target better than the use of only seismic data.

Keywords: Deep learning, Elastic, VTI, Inversion.
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INTRODUCTION

A reservoir is defined as a subsurface body of rock having sufficient porosity and permeabil-

ity to store and transmit fluids. It is a critical component of a complete petroleum system,

and thus, its high-resolution characterization is one of the main objectives of geophysical

surveys. The majority of seismic methods, currently used for reservoir characterization

are interpretation-based approaches (Partyka et al., 1999; Zhang et al., 2019). Seismic at-

tributes, extracted from stacked images or pre-stack seismic data, are often converted to

reservoir-related properties such as a fluid identifier or facies (Chopra and Marfurt, 2007).

Extracting seismic attributes from migrated images is an easily-solvable linear inversion,

but it requires true-amplitude imaging, which is also challenging in practice. The stochas-

tic reservoir characterization, which aims to match the pre-stack seismic data, requires a

reduction in the dimension of seismic attributes for affordable computation (Eidsvik et al.,

2004).

An alternative high-resolution reservoir characterization approach is to estimate the

reservoir-related properties by matching the resulting simulated waveforms to the observed

seismic ones. Elastic full-waveform inversion (FWI) has been used for fractured reservoir

characterization in ideal scenarios, in which the background models were known (Zhang

et al., 2017). The effective parameters such as the weaknesses or the orientations of fractures

can be estimated by matching the waveforms of pre-stack seismic data. Such a waveform

inversion strategy faces two main obstacles in solving practical problems (Virieux and Op-

erto, 2009; Yang et al., 2013; Hu et al., 2018): (1) simulated waveforms are often not close

to the observed ones due to the incomplete physics used in the simulation; and (2) crosstalk

or leakage between different model parameters. Wave equations, either in an acoustic or

3
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even an elastic approximation, can mainly provide accurate traveltime/phase information,

but often fails to accurately represent the amplitudes due to the incomplete physics. Seis-

mic anisotropy often ignored to simplify data processing, can have a significant influence

on seismic data (Tsvankin et al., 2010). The elimination of crosstalk between multiple pa-

rameters can be partially achieved by choosing an optimal parameterization (Operto et al.,

2013; Alkhalifah and Plessix, 2014; Alkhalifah, 2016; Zhang and Alkhalifah, 2017; Guitton

and Alkhalifah, 2017). Meanwhile, a relatively large offset/depth ratio is needed to sepa-

rate the contributions from different parameters (scattering angle dependency, Alkhalifah

(2014)). Limited by the acquisition spread and the decay of signals at the far-offsets, not all

the anisotropy parameters especially at the reservoir depth can be retrieved from surface-

collected seismic data. For example, the Thomson parameter ǫ acts as mainly an absorber

of the inaccurate amplitudes due, for example, to ignoring density in the parameterization

of vh, vs, ǫ and η (Guitton and Alkhalifah, 2017). The interpretation of seismic data on

their own will provide incomplete information due to the non-uniqueness and the limited

spatial resolution. However, additional measurements that may illuminate the reservoir

with additional coverage and resolution can provide considerable value (Hu et al., 2009; Li

et al., 2017).

A facies-constrained elastic full-waveform inversion strategy can effectively reduce the

crosstalk between different parameters by incorporating known facies (Zhang et al., 2018b).

Facies, defined as groups of seismic properties and conformity layers that share a particular

relationship with geological and lithological properties, can be obtained from wells, sedi-

mentary histories or other investigations (Kemper and Gunning, 2014). Estimated models

from surface seismic data and those extracted facies from other geophysical surveys, like

well logs, are often measured at very different scales and there are no explicit formulas to

4
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handle the variation in scales. Previously, a Bayesian-based inversion was used to connect

the different information in a statistical matter (Zhang et al., 2018b). However, recently

emerging machine learning algorithms can do a better job in finding statistical relationships

between different types of data (Guitton, 2018; AlRegib et al., 2018; Di et al., 2018; Wu

et al., 2019; Zhang and Alkhalifah, 2019). In our proposed approach, we train deep neural

networks (DNNs) to build the connection between the estimated models from seismic data

and the known facies. In this way, a list of facies is mapped on to a 2D/3D inverted model,

which is also known as the facies distribution. The facies distribution can be converted to

desired parameters such as velocities and anisotropy parameters. We then use the converted

model parameters as a priori for another round of elastic FWI.

In this paper, we start by using a correlation-based elastic FWI to obtain vp and vs. Then

we calibrate the measured depth of one nearby well using the checkshot information and

extract a list of facies from the well. The anisotropy parameters, ǫ and η, are calculated using

Backus averaging. Three vertical profiles of estimated vp, vs and the corresponding facies

are selected as input data features and labels for the deep neural networks, respectively.

The trained DNNs are used to estimate the facies distribution. Finally, we convert the

distribution to their respective (from the well) parameterization in terms of vh, vs, ǫ and

η and conduct another round of elastic FWI. A hierarchical anisotropy inversion using the

estimated vp and vs as input is added for comparison. A two-component ocean-bottom-cable

(OBC) data from the North Sea is used to evaluate the proposed method.

5
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CORRELATION BASED ELASTIC FWI

To avoid the often unreliable amplitudes, we use the global correlation as our objective

function (Choi and Alkhalifah, 2012), which is given by

Jd(m
i) = −

∑

s

∑

r

û · d̂, (1)

where û = u

||u|| and d̂ = d

||d|| are normalized predicted and observed data, respectively. Jd

is the corresponding data misfit for the model mi. The indexes s and r correspond to the

source and receiver locations, respectively.

The inverse problem is solved using the first-order elastic wave equation (Vigh et al.,

2014), which is given by




ρI3 0

0 C−1



∂Ψ(x, t)

∂t
−




0 ET

E 0


Ψ(x, t)− f(xs, t) = 0, (2)

where Ψ(x, t) = (v1, v2, v3, σ1, σ2, σ3, σ4, σ5, σ6)
T is a vector containing three particle veloci-

ties and six stresses, I3 is a 3x3 identity matrix. C is the stiffness matrix, E denotes spatial

differentiation, and f(xs, t) is the source, located at xs.

To obtain the gradient function of the proposed objective function, we take its derivative

with respect to the model parameters as follows (Zhang et al., 2018a)

∂Jd
∂m

=
∑

s

∑

r

∂u

∂m
·

(
1

||u||

(
û
(
û · d̂

)
− d̂

))
. (3)

For the parameterization of Cij , the Fréchet derivative,
∂u(Cij ,x,t)

∂Cij
, is given by Vigh et al.

(2014):

6
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∂u(Cij , s, x, t)

∂Cij
=

(
C−T ∂C

∂Cij
C−1

(
∂σ

∂t
− f

))T

i=1,...6;j=i,...,6

and

(
∂C

∂Cij

)

pq

=





1, p = i, q = j

1, p = j, q = i

0, otherwise

,

(4)

where σ denotes the stress component of the forward-propagated wavefield. ∂C
∂Cij

is a six-

by-six matrix with elements defined in equation 4. Here we use the parameterization of Cij ,

but the gradients for other parameters such as vp and vs can be derived using the chain

rule. The model is updated iteratively using the l-BFGS method (Liu and Nocedal, 1989),

which is written as

m = m0 − αH−1g, (5)

where α is the step length calculated by a standard line-search method, andH is the approx-

imated Hessian matrix. m0 and g are vectors of current model and gradient, respectively.

DEEP NEURAL NETWORKS

A deep neural network as indicated by its name has multiple hidden layers between the

input and output layers. It is nothing but a nonlinear system of equations that maps the

input into the output. With the input layer denoted as x, the kth hidden layer can be

expressed as ak = φk{Wk( ... φ1[W1x + b1]) ... + bk}, and the output layer is written as

y = Wl+1al+bl+1, where l denotes the last hidden layer. The input, x, can be raw data or

derived data features (e.g., vs/vp). The output, y, depends on the problem. For example,

it can be integers for classification problems. The data moves in one direction, from the

input layer, through the hidden layers and to the output layer in a feedforward fashion. In

7
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each hidden layer, φ denotes the activation function, which defines the output of that node

with a fed input. The activation function can be the sigmoid, rectified linear unit (ReLu) or

some other functions. The training process updates W and b for each layer to seek a more

accurate mathematical manipulation capable of mapping the input to the output using a

loss function of sparse softmax cross entropy (Glorot et al., 2011). Our designed DNNs use

three features, vp, vs and vs/vp, and classified facies as inputs for the training, which are

from the conventionally inverted models and the well logs, respectively. Four hidden layers

with 256 nodes in each layer are deployed as shown in Figure 1. A ReLu activation function

is used (Nair and Hinton, 2010). For each layer, we use a random dropout of 10% to avoid

overfitting (Srivastava et al., 2014). Besides, a random data augmentation is applied to

balance the proportion of different facies in training the data (Krizhevsky et al., 2017). A

total of 2158 training data and 704 test data are used in the training and validation of the

network, respectively. A batch size of 128 and 10000 total training steps helped us invert

for the network parameters. The Adam gradient is used to update the weighting matrix of

neural networks. In our application, we output the probabilities for all facies instead of one

specific kind. After obtaining the percentages of being a certain facies, we can calculate

the subsurface facies distribution (converted to vh, vs, ǫ and η) by a weighted summation

over nf facies, mp =
∑nf

i=1 pimi. mp denotes averaged P-, S-wave velocities or anisotropy

parameters, which is equivalent to the posterior expectation in Zhang et al. (2018b). pi

and mi are probabilities estimated by the trained DNNs and the known facies, respectively.

Such a weighted summation avoids potential bias caused by a particular kind of facies when

the DNNs fail. Besides, it can be used to interpolate between different facies. In practice,

we can never know all the facies in the subsurface and we do not need to know all of them in

our proposed method. The probabilities act as interpolation weights for the known facies.

8
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If the corresponding facies for certain pairs of vp and vs is not available as prior knowledge,

the averaged parameters still have a chance of being (or close to) the correct ones through

interpolation.

FACIES CONSTRAINTS

In a previous study (Zhang et al., 2018b), the facies distribution is converted to desired

parameters used in inversion, which are then used as model constraints. The process can

be expressed as

Jreg(m
i) = Jd(m

i) + β||mi −mp||2, (6)

where Jd(m
i) measures the data mismatch (equation 1), mi andmp denote the inverted and

prior models, respectively. β balances the amount of seismic data matching and utilizing

the known facies in this case. The choice of β is case dependent. Mathematically, it can

be determined by the L-curve method (Hansen and OLeary, 1993). However, in practice,

seismic data can be very noisy for land acquisition and we may use a relatively large β,

which means the extracted facies are trusted more in inversion. For high-quality seismic

data, such as marine data, we might choose a relatively small β to assign a larger weight to

seismic-data matching.

Seismic facies can be obtained from different sources such as well logs, core analysis and

sedimentation history. Here, we extract a list of facies from the P- and S-wave velocity well

log as shown in Figure 2. The reservoir is located at 2.75-3.12 km depth, with an overlying

seal rock. The well log covers the depth around the reservoir layer and the well is slightly

deviated. We calibrate the depth of the top and bottom of the dominant layers using the

checkshot (red line). Five facies are extracted from the reservoir area by manually grouping

9

Page 9 of 45 GEOPHYSICS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 

© 20  Society of Exploration Geophysicists.20

D
o
w

n
lo

ad
ed

 0
2
/1

2
/2

0
 t

o
 1

0
9
.1

7
1
.1

3
7
.2

1
0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



the velocities. We only extract the dominant facies in the target area. More experienced

interpreters can utilize more advanced classifications of facies and include more desirable

model parameters, i.e., porosity and fluid identifier. The interpreted facies are used as labels

in supervised learning. We then calculate the anisotropy parameters ǫ and η using Backus

averaging (Berryman et al., 1999) as shown in Figure 3 to upscale the sonic well velocities.

The delineated facies have different combinations in terms of vp, vs, ǫ and η as listed in

Table 1. The listed parameter values are the averaged values within the facies. The seal

rock has a strong anisotropy, while the reservoir layer is almost isotropic.

The DNN takes inverted vp, vs and vs/vp as input; the facies list is then mapped to the

output of DNN, which is the spatial distribution of facies, and result in the estimated model

parameters. The estimated facies distribution might include errors at the early stages of the

inversion and can be improved by matching the observed seismic data in another scenario of

FWI. The workflow of the proposed method is summarized in Figure 4. We first obtain the

initial estimates for vp and vs using elastic FWI and a list of known facies in the target area.

Then we train the deep neural networks to map the known facies to the initially estimated

vp and vs and obtain the distribution of any desired models (vp, vs, ǫ and η in our case).

Finally, we use the smoothed version of such models as an input model for another round

of elastic FWI. We can update the facies distribution and models iteratively by applying

multiple nested inversions.

NUMERICAL EXAMPLE

We apply the proposed inversion strategy to a 2D line of the Volve data set. The seal layer

and the reservoir, located at 2.75-3.12 km depth, are the main imaging goals. We use the

raw data set with limited processing applied that includes polarity correction, instrumental
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deconvolution and data quality control. For the inversion, we use 240 shots and 240 two-

component receivers distributed evenly at 50 m and 25 m, respectively. The length of the

ocean-bottom cable (OBC) is 6 km and the sources are evenly distributed along a 12 km

line just below the sea surface. A modified free-surface boundary condition, which can

suppress strong surface waves, is used in the simulation (He et al., 2016). We convolve

the observed data with the half-order differentiation of the known wavelet, and thus, we

avoid source estimation, while correcting the phase discrepancy between the 3D acquisition

and the 2D simulation (Pica et al., 1990; Yoon et al., 2012). The initial model is a 1D

smoothed version of the model provided by the data owners, and shown in Figure 5. Only

one frequency band (2-12 Hz) is used for the inversion. We first conduct an isotropic elastic

FWI using the primary arrivals to improve the 1D initial model (not shown here) and then

we use the full data to refine the inverted isotropic model as shown in Figure 6. We apply

a hierarchical vertical transverse isotropic (VTI) inversion (Oh and Alkhalifah, 2018), in

which we use the parameterization vh, vs, ǫ and η as shown in Figure 7. The high-velocity

seal and the relatively low-velocity layer appear in the inverted results. Finally, we train

deep neural networks to build the connection between the estimated vp and vs (Figure 6)

and the extracted facies (Table 1). As mentioned above, we use a four-layer deep neural

network and each layer has 256 nodes with a 10% random dropout. The input features are

vp, vs and vs/vp and the outputs are probabilities of being one of the known facies. We use

three vertical profiles from the estimated vp and vs (Figure 6) to generate the training data

set. The three lines are located at X=4.5, 6.0 and 7.5 km to cover possible illumination

variations. The selection of such a training set should consider the diversity of inversion

patterns (structure and illumination variations) and include as much as possible unique

patterns (i.e., facies) for efficient training. A vertical line located at X=6.75 km is used
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to generate the test data set. The training loss and the test accuracy history after every

100 steps are plotted in Figure 8. The training set accuracy is about 0.9, while the test set

accuracy stays around 0.7. This often indicates that the training data are not over-fitted.

After training, we use all the model pixels to estimate the subsurface facies distribution. The

distribution is further converted to vh, vs, ǫ and η using the proposed weighted summation,

shown in Figure 9. We slightly smooth the converted model (below 2.5 km) and merge it

into the model from the VTI inversion (above 2.5 km) and generate a new initial model for

another VTI inversion. The updated model is shown in Figure 10. The high-velocity seal

rock with a strong anisotropy above a low-velocity zone is improved. Also, our proposed

inversion managed to obtain a high-resolution ǫ and a lower-resolution η at the reservoir

depth, which was guided by the data. Usually, η in the deeply buried seal rocks is not

recoverable from the seismic data with limited offsets since it requires a relatively large

offset/depth ratio (Alkhalifah and Plessix, 2014). The interleaved predicated and observed

vertical- and horizontal-component data plot (Figure 11) of the initial model indicates that

the initial model can provide reasonably good prediction in the near offsets. The inversion

considering isotropic elasticity helps to match the data in the far offsets and recovers some

dominant reflections as shown in Figure 12. The interleaved data comparisons indicate that

adding anisotropy effects can help us obtain simulated data that match the observed data

even better (Figures 12 and 13). The deep learning aided approach can help improve the

matching of deep reflections (Figures 13 and 14). A zoomed-in view of the marked area

is shown in Figure 15. We can find the improvements in phase matching marked by the

arrows. We plot the data-matching history for the different inversion scenarios as shown

in Figure 16. It shows that the isotropic inversion reduces the data misfit by 40% and

the follow-up deep learning aided inversion can further reduce the data misfit by about an
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additional 5%. The data mismatch suddenly increases after adding facies constraints, but it

reduces to the same level as the hierarchical VTI inversion after few iterations of inversion.

The inversion stops when the updates cannot satisfy the Wolfe line-search condition (Wolfe,

1969). The facies distribution was estimated once in this example. We also compare the

inverted vertical P-wave velocities with the one from the checkshot nearby in Figure 17.

The isotropic elastic FWI seems to be able to improve the initial model but with a low-

resolution. There are some further improvements after considering the anisotropic effects

but the improvements are still mild unless the facies information are used as constraints.

The estimated vertical P-wave velocity using the proposed approach is close to the one

from the checkshot in the target depth. Remarkably, we did not use well logs or checkshots

as direct model constraints in the proposed inversion. Also, we were given an inverted

VTI model as shown in Figure 18, which was obtained using a layer-stripping tomography

approach. To plot our inverted and their reference models using the same color scale, we clip

the high values of vh and vs in Figure 18. A vertical-profile comparison of the parameters

in terms of vh, vs, ǫ and η between the proposed inversion and the provided reference model

is shown in Figure 19. The facies constraints are only applied around the reservoir area

(below 2.3 km depth), where the well logs are available. The horizontal velocities (vh)

have a reasonable match with those predicted by the data providers. There is a depth

mismatch due to the lack of background ǫ information. The inverted vs does not match the

reference model well without the facies constraints (e.g., the shallow area), which might be

caused by the ignorance of S-wave anisotropy. For the deep area with facies constraints,

the inverted vs is closer to the reference model. Otherwise, the inverted vs might have

crosstalks with vp due to the limited scattering angles. The inverted ǫ has high resolution

and it often acts as an absorber of phenomena not addressed in our approximation, like
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density variations (Guitton and Alkhalifah, 2017). The inverted anisotropy parameters are

closer to those derived using Backus averaging (Figure 3), which have a discrepancy with

the reference model. We use the provided tomographic based, and well assisted, model to

provide an opportunity to assess our results. We do not expect, what we refer to them

as, a reference model to exactly represent the Earth, as they are vulnerable to their own

limited assumptions of the Earth. In our inverted results, we obtain large η in the shallow

part, and though they are not part of the region covered by the well information, the eta

inversion, considering the large offset to depth ratio in the shallow part, might be accurate.

The matching of the moveout at the far offset also seems to support that.

DISCUSSION

We use deep neural networks to classify the initially inverted elastic model using three

inputs, the inverted vp, vs and vs/vp at the wells. The classification in terms of facies are

used to map the facies information, which may include even anisotropic information from the

well, to the rest of the model area. The mapping process is based on a statistically weighted

contribution of the facies to every grid point in the model. We use these mapped parameters

as an a priori for the next round of anisotropic elastic inversion. The inputs to the neural

network can include additional inverted parameters, and even uncertainty information. The

additional input information is expected to improve the statistical distribution of the facies.

In addition, the identified facies can include additional information extracted from the well,

such as the Q factor or orthorhombic anisotropy information. All of which can be used to

constrain the inversion considering more complete physics, like an orthorhombic viscoelastic

inversion. The structural constraints can enhance the similarity in geometry between vp, vs

and the anisotropic parameters, which may be also helpful for the mapping in the example.
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One of the possible limitations, in this case, is that the actual vp and vs may have different

structures due to fluid content.

The DNN is expected to learn some aspects of the varying illumination and amplitude

characteristics of the inverted model, specifically near the well locations. It may, however,

suffer in areas that are not represented by illumination features covered by the well locations,

like at edges of the model. A well-behaved elastic or even anisotropic inversion, in terms

of illumination distribution, is important to the application of this DNN. DNN learns from

what is used as input and output in the training set. If we are missing features in the training

set, DNN will find it hard to predict those features. For example, in the area with strong

lateral variations, we might need more wells to obtain the needed facies information. The

weighted summation might help interpolate the inter-medium values for the missing facies.

Also, the extracted list of facies (Table 1) uses the mean values for each model parameter,

which has an implicit Gaussian-distribution assumption to the measurements within one

facies (Zhang et al., 2018b). For non-Gaussian distributions, we may need to modify the

weighted summation to take the actual distribution into consideration. Otherwise, we can

use finer layers (more labels) to maintain the Gaussian assumption.

It is known that not all the model parameters are resolvable by only matching the

surface-collected seismic data, especially for field data applications. For better characteri-

zation of the subsurface, more model parameters are needed, which requires utilizing more

data such as well logs as complementary to seismic data. Usually, well logs are available

along with seismic data corresponding usually to a target reservoir area. One of the diffi-

culties in utilizing well log data is that seismic data and well logs reflect the Earth at two

different scales and there are no explicit equations to connect them. Deep neural networks

are capable of building such connections in a statistical sense. The extraction of facies is
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not limited to well logs. More experienced interpreters can do this job better in practice.

The extraction of facies in a strongly heterogeneous area might be challenging in practice.

However, most sedimentary reservoirs have mild lateral structural variations. With lim-

ited prior information, we still have a chance to improve the estimation by matching the

observed seismic data.

CONCLUSIONS

We develop a framework to invert for a relatively high-resolution anisotropic description

of the reservoir by utilizing surface seismic and facies information from a well, and using

deep neural networks (DNNs) to connect them statistically. We applied this DNN-assisted

elastic full waveform inversion on OBC data from the North Sea and obtained a reasonable

inversion of the reservoir region. The comparison with the well information, as well as the

reference model provided with the data, reveal the ability of the approach in mapping the

well information to the rest of the model space.
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1 List of facies in the target area.
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LIST OF FIGURES

1 The Neural Network architecture. Three features are used in the input layer. Four

hidden layers with 256 nodes are fully connected neural networks with a dropout rate of

10%. The output layer provides probabilities of being certain facies for the current input.

2 A depth-calibrated well log and the extracted facies. Five dominant facies are

extracted at the target depth.

3 Calculated anisotropy parameters in terms of ǫ and η using Backus averaging.

They’re used to provide the facies information.

4 The workflow for the proposed inversion method. The facies distribution and the

regularly inverted models can be updated, iteratively.

5 The initial 1D models.

6 The inverted models using an isotropic elastic FWI. a) vp and b) vs.

7 The inverted models using the anisotropic elastic FWI. a) vh, b) vs, c) ǫ and d) η.

8 Normalized training loss at every 100 steps. A total of 90% training loss is achieved

with a random dropout of 10% for each layer, while the validation accuracy stays around

70%.

9 The predicted facies distribution after training. They are converted to the param-

eters of a) vh, b) vs, c) ǫ and d) η. The number of colors is not equal to the number of

faceis since the weighted summation can generate more parameter values in between and

also different faceis can have the same value for certain parameters.

10 The inverted models using the anisotropic elastic FWI with facies constraints. a)
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vh, b) vs, c) ǫ and d) η.

11 A shot gather displaying interleaved predicted and observed data using the initial

vp and vs as shown in Figure 5. a) Vertical and b) horizontal components. The dashed

rectangular indicates the zoomed-in view plotted in Figure 15.

12 A shot gather displaying interleaved predicted and observed data using the esti-

mated vp and vs from isotropic inversion as shown in Figure 6. a) Vertical and b) horizontal

components.

13 A shot gather displaying interleaved predicted and observed data using the esti-

mated vh, vs, ǫ and η from hierarchic VTI inversion as shown in Figure 7. a) Vertical and

b) horizontal components.

14 A shot gather displaying interleaved predicted and observed data using the deep

learning aided VTI inversion as shown in Figure 10. The matching of reflections of the

vertical component are improved compared to the hierarchical VTI inversion (Figure 13).

a) Vertical and b) horizontal components.

15 A zoomed-in view of the vertical-component of the shot gathers. a), b), c) and

d) are corresponding to the marked areas in Figures 12, 13, 14 and 16, respectively. The

arrows mark the improved phase matching.

16 Data matching history. There are three sequential inversions: 1) isotropic first

arrival FWI, 2) isotropic full data FWI and 3) VTI inversions. The VTI inversions are

parallel inversions: one is the hierarchical VTI inversion and another one is the proposed

machine-learning aided inversion. The isotropic inversion reduces the data misfit by 40%

and the follow-up deep learning aided inversion can further reduce the data misfit by about

an additional 5%.
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17 Vertical P-wave velocity profiles at X=5.25 km.

18 The reference VTI model provided by Equinor. a) vh, b) vs, c) ǫ and d) η. They

are obtained using the layer-stripping tomography technique.

19 A vertical-profile comparison of the parameters in terms of vh, vs, ǫ and η between

the proposed inversion and the provided reference model at location X=5.25 km. The facies

constraint is only applied below 2.3 km due to the availability of well log data.
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Table 1: List of facies in the target area. 

 

 f1 f2 f3 f4 f5 

𝒗𝒑 3.45 4.2 4.0 3.1 4.1 

𝒗𝒔 1.7 2.4 2.2 1.5 2.4 

𝜖 0.01 0.1 0.0 0.07 0.05 

𝜂 0.05 0.3 0.0 0.1 0.1 
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Figure1: The Neural Network architecture. Three features are used in the input layer. Four hidden layers 

with 256 nodes are fully connected neural networks with a dropout rate of 10%. The output layer provides 

probabilities of being certain facies for the current input. 
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Figure2: A depth-calibrated well log and the extracted facies. Five dominant facies are extracted at the 

target depth. 
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Figure3: Calculated anisotropy parameters in terms of $\epsilon$ and $\eta$ using Backus averaging. 
They're used to provide the facies information. 
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Figure4: The workflow for the proposed inversion method. The facies distribution and the regularly inverted 

models can be updated, iteratively. 
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Figure5: The initial 1D models. 
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Figure6: The inverted models using an isotropic elastic FWI. a) $v_p$ and b) $v_s$. 
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Figure7: The inverted models using the anisotropic elastic FWI. a) $v_h$, b) $v_s$, c) $\epsilon$ and d) 
$\eta$. 
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Figure8: Normalized training loss at every 100 steps. A total of 90% training loss is achieved with a random 

dropout of 10% for each layer, while the validation accuracy stays around 70%. 
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Figure9: The predicted facies distribution after training. They are converted to the parameters of a) $v_h$, 
b) $v_s$, c) $\epsilon$ and d) $\eta$. The number of colors is not equal to the number of faceis since the 

weighted summation can generate more parameter values in between and also different faceis can have the 
same value for certain parameters. 
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Figure10: The inverted models using the anisotropic elastic FWI with facies constraints. a) $v_h$, b) $v_s$, 
c) $\epsilon$ and d) $\eta$. 
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Figure11: A shot gather displaying interleaved predicted and observed data using the initial $v_p$ and 
$v_s$ as shown in Figure \ref{fig5}. a) Vertical and b) horizontal components. The dashed rectangular 

indicates the zoomed-in view plotted in Figure \ref{fig15}. 
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Figure12: A shot gather displaying interleaved predicted and observed data using the estimated $v_p$ and 
$v_s$ from isotropic inversion as shown in Figure \ref{fig6}. a) Vertical and b) horizontal components. 
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Figure13: A shot gather displaying interleaved predicted and observed data using the estimated $v_h$, 
$v_s$, $\epsilon$ and $\eta$ from hierarchic VTI inversion as shown in Figure \ref{fig7}. a) Vertical and b) 

horizontal components. 
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Figure14: A shot gather displaying interleaved predicted and observed data using the deep learning aided 

VTI inversion as shown in Figure \ref{fig10}. The matching of reflections of the vertical component are 

improved compared to the hierarchical VTI inversion (Figure \ref{fig13}). a) Vertical and b) horizontal 

components. 
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Figure15: A zoomed-in view of the vertical-component of the shot gathers. a), b), c) and d) are 

corresponding to the marked areas in Figures \ref{fig12}, \ref{fig13}, \ref{fig14} and \ref{fig16}, 

respectively. The arrows mark the improved phase matching. 
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Figure16: Data matching history. There are three sequential inversions: 1) isotropic first arrival FWI, 2) 

isotropic full data FWI and 3) VTI inversions. The VTI inversions are parallel inversions: one is the 

hierarchical VTI inversion and another one is the proposed machine-learning aided inversion. The isotropic 

inversion reduces the data misfit by 40% and the follow-up deep learning aided inversion can further reduce 

the data misfit by about an additional 5%. 
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Figure17: Vertical P-wave velocity profiles at X=5.25 km. 
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Figure18: The reference VTI model. a) $v_h$, b) $v_s$, c) $\epsilon$ and d) $\eta$, obtained using the 
layer-stripping tomography technique. 
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Figure19: A vertical-profile comparison of the parameters in terms of $v_h$, $v_s$, $\epsilon$ and $\eta$ 
between the proposed inversion and the provided reference model at location X=5.25 km. The facies 

constraint is only applied below 2.3 km due to the availability of well log data. 
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