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Marine plastic debris serve as substrates for the colonization of a variety of prokaryote
and eukaryote organisms. Of particular interest are the microorganisms that have
adapted to thrive on plastic as they may contain genes, enzymes or pathways involved
in the adhesion or metabolism of plastics. We implemented DNA metabarcoding with
nanopore MinION sequencing to compare the 1-month-old biomes of hydrolyzable
(polyethylene terephthalate) and non-hydrolyzable (polyethylene) plastics surfaces vs.
those of glass and the surrounding water in a Mediterranean Sea marina. We sequenced
longer 16S rRNA, 18S rRNA, and ITS barcode loci for a more comprehensive
taxonomic profiling of the bacterial, protist, and fungal communities, respectively.
Long read sequencing enabled high-resolution mapping to genera and species. Using
previously established methods we performed differential abundance screening and
identified 30 bacteria and five eukaryotic species, that were differentially abundant
on plastic compared to glass. This approach will allow future studies to characterize
the plastisphere communities and to screen for microorganisms with a plastic-
metabolism potential.

Keywords: DNA metabarcoding, nanopore, MinION, plastic microbiome, marine fungi, differentially abundant
species, plastisphere

INTRODUCTION

Marine plastic debris is a growing global pollution concern, as it jeopardizes aquatic life through
entanglement, ingestion, or introduction of toxic chemicals [reviewed in Amaral-Zettler et al.
(2020)]. Most plastic polymers persist for a long time in the oceans. As such, they serve as
substrates for the colonization of a variety of marine organisms and the establishment of complex
microorganism communities (Jacquin et al., 2019). This new human-made ecosystem is referred
to as the plastisphere and includes a distinct biota from that of its surrounding waters (e.g., Zettler
et al., 2013; Bryant et al., 2016; De Tender et al., 2017). Some marine bacteria inhabiting marine
plastic debris have capabilities to degrade plastic polymers [reviewed in Roager and Sonnenschein
(2019)] and few were shown to utilize plastics as their carbon food source (Sudhakar et al., 2008;
Harshvardhan and Jha, 2013; Auta et al., 2017).
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A suitable approach to investigate the assembly of the
plastisphere communities is incubation experiments, where
surfaces made of known materials are suspended in water for
predefined time periods, either at sea (e.g., Eich et al., 2015;
Oberbeckmann et al., 2016; Pollet et al., 2018; Pinto et al., 2019;
Dudek et al., 2020) or in marine microcosms (e.g., Ogonowski
et al., 2018; Kirstein et al., 2019). To identify organisms that
preferentially colonize plastic debris, as opposed to general
surface colonizers, reference substrates such as glass are often
used (Oberbeckmann et al., 2016; Kirstein et al., 2018, 2019;
Ogonowski et al., 2018; Pinto et al., 2019). The identification
of organisms is usually done with DNA metabarcoding based
on relevant genetic loci. Most plastisphere microbiome studies
have used the hypervariable V3–V5 region of the 16S rRNA
gene for metabarcoding of bacteria and the V4 or V9 regions of
the 18S rRNA gene to identify eukaryotes [reviewed in Jacquin
et al. (2019) and Latva et al. (2021)]. However, in most cases, the
mapping of these relatively short (less than 0.5 Kbp) sequences to
the databases could not resolve lower taxonomic levels and could
not identify species. Additionally, the 18S rRNA gene barcodes
and primers are limited in their coverage and do not cover certain
phylogenetic groups such as fungi (Leray and Knowlton, 2016;
Davidov et al., 2020). To date, only a handful of studies have
assessed the fungal component of the plastisphere (De Tender
et al., 2017; Kettner et al., 2017; Amend et al., 2019; Davidov et al.,
2020; Lacerda et al., 2020; Yang et al., 2020; Xue et al., 2021).

We have previously established the Nanopore MinION
as a tool for taxonomic metabarcoding of the plastisphere
communities up to the species level (Davidov et al., 2020). In
this continuation study we implemented a similar metabarcoding
approach for the comprehensive high-resolution identification
of marine prokaryotes and eukaryotes, including fungi. The
current study had a modified experimental setup for testing the
taxonomic composition of the biofilm on PE and PET versus
glass reference, all with five replicates. This allowed us to identify
organisms that were significantly more abundant on plastic.

MATERIALS AND METHODS

Experimental Setup
Two 17 × 26 mm flat pieces of each of the three materials
were used, polyethylene (PE) from plastic food bags (Ziploc),
polyethylene terephthalate (PET) from transparent drinking
water bottles (Coca-Cola, 1.5 L) and glass microscope slides
(Marienfeld). The surfaces were tied with a fishing line to a
straw and secured with plastic beads to create the “mobile”
structures. Five mobiles were then secured along the dock in
Herzliya Marina, Israel (32◦ 09′ 38.8′′ N 34◦ 47′ 35.0′′ E) such
that the surfaces were submerged∼0.5 m below the water surface
(Figure 1). After 1 month each material from the mobile was
sampled for DNA extraction and metabarcoding or microscopy.

Sample Collection and DNA Extraction
Each of the mobile materials were sampled in its entirety,
gently washed three times for 5 min with filtered seawater to
remove unbound material and separately processed in each of
the subsequent assays and procedures described below. Seawater

was sampled in proximity to each of the mobiles (five times)
using sterile sampling bottles. 0.5 L of the sampled water was
filtered on 0.22 µm polyethersulfone membrane (Millipore)
using a 20 L/min pump (MRC). DNA was extracted using the
phenol–chloroform extraction method (Debeljak et al., 2017;
Supplementary Material, Protocol 1).

PCR Amplification and Clean Up
One sample of each material (water filters, PE, glass and
PET) from each mobile (five repeats) were subjected to
PCR amplification with three sets of primers to amplify
three barcode regions. The complete 16S rRNA gene was
amplified using 27F and 1492R primers (Weisburg et al.,
1991), with an expected product size of ∼1.5 kb. Primers
566F and 1289R (Hadziavdic et al., 2014) were used to
amplify the V4 and V5 regions of the 18S rRNA gene,
with an expected product size of ∼0.7 kb, and ITS86F and
ITS4R (Op De Beeck et al., 2014) were used to amplify
the fungal internal transcribed spacer 2 (ITS2) loci, with an
expected product size of ∼0.4 kb. The amplification parameters
and primer details are listed in Supplementary Material 1,
Table 1. The reaction volume was 50 µL with 25–75 ng
of template sample DNA. The PCR products were cleaned
with QIAquick PCR Purification kit (QIAGEN) to meet the
criteria of the MinION nanopore library preparation protocol
(Karamitros and Magiorkinis, 2018).

MinION Library Preparation and
Multiplexed Nanopore Sequencing
The sequencing libraries were prepared using the Native
barcoding amplicons protocol with EXP-NBD104 and SQK-
LSK109 kits (Oxford Nanopore Technologies) according to
Davidov et al. (2020). The 16S rRNA and 18S rRNA gene
sequencing libraries were loaded to the same MinION flow
cell in two batches: the first included the amplified 16S rRNA
and 18S rRNA gene DNA barcodes of replicates 1, 3, and 5
(12 multiplexed libraries in total), and the second included the
amplified 16S rRNA and 18S rRNA gene DNA barcodes of
replicates 2 and 4 (8 multiplexed libraries in total). The two
sequencing runs were separated by a washing step using EXP-
WSH002 Kit (Oxford Nanopore Technologies). Each library
was loaded onto to the MinION Nanopore Spot-on flow cell
(FLO-MIN106D, version R9) and sequenced until reaching ∼7
Giga nucleotides (∼4 M reads). The ITS2 sequencing library
was loaded to a new MinION flow cell and sequenced until
reaching ∼1.3 Giga nucleotides (∼1 M reads). Base-calling for
all libraries were done by the Guppy base calling software 3.3.3,
using MinKNOW program with the “high accuracy” option. Raw
reads were obtained in FAST5 and FASTq formats from which
“pass” quality reads were subjected to further analysis.

Sequence Analysis and Bioinformatics
Processing and analysis of reads was performed using
MetONTIIME pipeline and QIIME2 plugins (Bolyen
et al., 2019). The MetONTIIME pipeline was executed
using the script “Launch_MinION_mobile_lab.sh” and
“MetONTIIME.sh”. Configuration of MetONTIIME pipeline
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FIGURE 1 | Experiment location and set up. (A) Locations of the five replicates that were placed from south to north in Herzliya Marina, Israel (32◦ 09′ 38.8′′ N 34◦

47′ 35.0′′ E). (B) Each replicate consists of two 17 × 26 mm flat pieces of each of the three materials (PE,PET, and glass) tied with a fishing line to a straw and
secured with plastic beads. This “mobile” of materials was secured to the dock such that the surfaces were submerged ∼0.5 m below the surface and 6–8 m above
the marina bottom. (C) The materials after they were submerged for 30 days in Herzliya Marina water.

was performed using “config_MinION_mobile_lab“ R script.
Launch_MinION_mobile_lab.sh script was used for performing
basecalling, demultiplexing, quality filtering, adapters and
PCR primers trimming. This resulted in reads, filtered
by length, quality and separated by barcodes into files in
fastq format. Sequences were filtered based on read quality
(min_quality; 16S and 18S, 9–11; ITS2, 8), and read length
was restricted (amplicon_length X, lenfil_tol Y) based on
read length histograms, to give the following range: 16S,
1399–1599 nucleotides; 18S, 605–755 nucleotides; ITS2, 100–
1100 nucleotides. The following steps have been performed
separately for each barcode. The MetONTIIME.sh script was
run for performing dereplication, clustering and taxonomic
classification. Sequences were clustered into consensus sequences
with default MetONTIIME pipeline parameters (de novo
strategy, clustering threshold parameter perc-identity 1).
Consensus sequences of the 16S rRNA and 18S rRNA genes
were assigned based on SILVA 132 database (Quast et al., 2013).
The following parameters were used: taxonomic classifier Blast,
max_accepts 1, query coverage 0.8 and identity threshold 0.85.
Consensus sequences of the ITS barcode were classified against
UNITE database V8 (Nilsson et al., 2019) using taxonomic
classifier Blast, max_accepts 1, query coverage 0.8 and identity
threshold 0.7. We chose max_accepts 1 for faster analysis, after
testing 3 and 10 values for this command with raw data subsets
which came up with the same results. Then, the feature tables of
the used barcodes generated using the MetONTIIME pipeline
were combined using the q2-feature-table plugin of the QIIME2,
using the methods: merge, merge-seqs and merge-taxa. The code
used is included in Supplementary Material 2. The featured
tables were imported into R using phyloseq (R Core Team, 2018).

Sequences mapped to chloroplasts, mitochondria, eukaryotes,
and “unknown organisms” were removed from the 16S rRNA
gene analysis, while sequences mapped to bacteria (due to
mitochondrial DNA) and “unknown organisms” were removed
from the 18S rRNA gene and ITS analysis. Alpha diversity
was estimated by richness [observed Operational Taxonomic
Units (OTUs)], together with Shannon and Pielou diversity
indexes using phyloseq (McMurdie and Holmes, 2013). After
alpha diversity analysis, OTUs with a read count of 1 were
excluded and the remaining OTUs were normalized to relative
read abundance (dividing the number of reads for each sample
by the total reads count). All further analyses were based on
relative read abundance. For Beta diversity we used phyloseq
(McMurdie and Holmes, 2013) to perform principle coordinates
analysis (PCoA). This ordinated the sequences using the Bray–
Curtis distance matrix to visualize multivariate structures of the
communities. To test significant differences between the groups
Permutational multivariate analysis of variance (PERMANOVA)
tests were calculated using MicrobiomeAnalyst (Chong et al.,
2020). Stacked bar plots and heatmaps were produced using
MicrobiomeAnalyst (Chong et al., 2020) and Ampvis2 (Andersen
et al., 2018), respectively. We used limma (Ritchie et al., 2015)
to generate linear models and the voom function to transform
normalized counts to log2-counts-per-million (logCPM) and
estimate mean-variance of species between surface materials,
similar to Calgaro et al. (2020). As the five “mobile” replicates
were placed in slightly different locations within the marina,
the mean location variance was removed from all measurements
so the community differences due to surface type could be
better seen. OTU differential abundance was visualized using
Glimma (Su et al., 2017) and OTUs that had false discovery
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rate (FDR) adjusted p-value < 0.05 and log-fold-change of >0
were identified as differentially more abundant. Venn diagrams
were created with InteractiVenn tool (Heberle et al., 2015),
based on OTUs represented by at least two reads. All Nanopore
MinION filtered reads analyzed in this project were deposited
in the NCBI SRA database (Agarwala et al., 2016) under
BioProject PRJNA680232 (accession numbers: SRX9553811–
SRX9553850, SRX10393298–SRX10393305, and SRX11261845–
SRX11261863).

Biofilm Analysis and Microscopy
Scanning electron microscopy (SEM) was used to visualize
the broad composition and the morphology of the biofilms
on both PE and PET samples (Supplementary Material 1,
Protocol 2).For fungal identification, Lactophenol Cotton Blue
dye (Sigma-Aldrich) was applied to PE samples and visualized
under a light microscope (Supplementary Material 1, Protocol
3). A modified crystal violet method (Supplementary Material 1,
Protocol 4) was used for the indirect measurement of the relative
biofilm biomass on the experimental samples.

RESULTS

High Microbial Diversity Is Observed
Within the 1-Month-Old Biofilm
Within 30 days from submersion in the marina waters, all
substrates were heavily covered in biofilm (Figure 1C). The
biomass was similar on all surfaces, as indicated by the
crystal violet assay (Supplementary Material 1, Figure 1). SEM
imaging revealed that the plastic surfaces were mostly covered
with a likely bacterial biofilm (Figure 2A), probable exposed
bacteria (Figure 2B) and multiple diatom species (Figures 2C–
E). We were also able to identify single cell eukaryotes
(Figure 2E), bryozoans (Figure 2F) and fungal-like fruiting
bodies (Figure 2G). Furthermore, we observed multicellular
filaments (Figure 2H), of which some were identified as algae
based on the presence of chlorophyll and some were confirmed to
be fungi hyphae by Lactophenol Cotton Blue staining (Figure 2I).

The nanopore sequencing run produced an average of 25,235
16S rRNA gene reads, 80,125 18S rRNA gene reads, and 24,777
ITS reads per sample. The average read length was 1,428
nucleotides for 16S rRNA gene, 669 for 18S rRNA gene and 369
for the ITS barcode. However, while both 16S rRNA and 18S
rRNA gene amplicons had read length standard deviation of 24
and 20 accordingly, the ITS reads varied greatly in length with
standard deviation of 154.5 nucleotides. The mapping rates of the
ITS sequences to the reference databases were very low (3% on
average) compared to the 16S rRNA and 18S rRNA gene mapping
rates (both 99%), and the ITS sequences had a lower taxonomic
resolution (Supplementary Material 1, Table 2).

Community complexity parameters including richness
(number of observed OTUs), evenness (Pielou’s index) and
diversity (Shannon’s index) were obtained for each of the sample
types (water, PET, PE, and glass) based on 16S rRNA and 18S
rRNA gene reads (Supplementary Material 1, Figure 2). For
16S rRNA gene sequence analyses, the water had significantly
lower taxonomic evenness, contributing to lower OTU diversity

(Shannon’s index) in comparison to the surface samples
(Supplementary Material 1, Figure 2A). This agrees with
previous environmental studies that showed the same trend (De
Tender et al., 2015; Bryant et al., 2016; Didier et al., 2017). In
contrary, the 18S rRNA gene analysis resulted in no significant
difference among the samples in any of the diversity indexes
(Supplementary Material 1, Figure 2B). Previous 18S rRNA
gene based analyses report water communities as more diverse
(Didier et al., 2017; Kettner et al., 2019; Dudek et al., 2020).
Because of the low ITS mapping rates, we did not analyze the
alpha diversity parameters for fungi.

To assess the similarities in the community composition
between the samples, beta diversity analysis was performed
using a PCoA analysis (Figure 3). In both 16S rRNA and
18S rRNA gene analyses, the five water samples formed
distinctive clusters from the surface samples (Figures 3A–D).
PERMANOVA analyses confirmed the water samples were
significantly different from the other surfaces. In the ITS
analysis, while the water samples showed homogeneity among
themselves, they did not form a separate cluster from the other
samples (Figures 3E,F). Despite this, PERMANOVA analyses
confirmed the ITS water samples were significantly different
from the other surfaces. When excluding the water samples,
no distinct clusters were observed in any of the analyses
(Figures 3B,D,F).

Substrate Specificity of the 16S rRNA
Gene Microbial Communities
The filtered, high quality 16S rRNA gene sequences were
clustered into an average of 2,733 operational taxonomic units
(OTUs) for PET, 21,129 for PE and 4,163 for glass, corresponding
to 524, 754, and 677 classified organisms, respectively. The top
10 most abundant prokaryotic genera within each treatment,
that were identified based on the relative abundance of mapped
read counts, contain some different genera across the surfaces
(Figure 4A). Ekhidna, Muricauda, and Portibacter were included
in the top 10 most abundant genera on PE and not in the other
surfaces, whereas Rhodopirellula and OM60 clade were included
only in the PET top 10. Among the above genera, Muricauda, and
Rhodopirellula have been previously reported as hydrocarbon-
degrading bacteria (Jiménez et al., 2011; Didier et al., 2017;
Laso-Pérez et al., 2019; de Araujo et al., 2021).

To identify species with preference to plastic, we searched
for species with significantly higher read ratios in the PET and
PE samples as opposed to glass. Linear discriminant analysis of
our 16S rRNA gene sequences revealed 35 OTUs, corresponding
to 30 bacteria database matches, that were significantly more
abundant in the PE samples than in the glass samples (Figure 4B
and Supplementary Material 1, Figure 3). Of the 30 bacteria
matches, 9 were resolved at the species level and 10 at the genera
level (leaving 11 of higher taxonomic classification).

Among the bacterial species that showed significantly higher
read representation in the PE samples compared with the glass
and water samples, Muricauda sp. NBRC 112477 showed highest
significance values (adjusted p-value = 0.003) (Supplementary
Material 1, Table 3). We identified 3 other species of the
genus Muricauda, which matches with the top 10 genera for
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FIGURE 2 | Microscopy images of the microbial community on PE or PET surfaces from marine waters after 1 month. (A–H) SEM images; (A) Biological coverage
on PE surface after 1 month, (B) bacterial colonies on PET surface, (C,D) diatoms associated with biofilm on PE, (C) Fragilariopsis sp. (D) Amphora sp. (E–H)
Images from PET; (E) a single cell eukaryote, (F) Bryozoan, (G) fruiting body, (H) multicellular filaments. (I) Light microscopy image of a network of fungal hyphae
specifically stained with Lactophenol Cotton Blue.

PE (Figure 4A), and 2 species from the genus Winogradskyella,
which has been previously reported as a hydrocarbon degrading
genera (Wang et al., 2014). Other species that were significantly
differentially abundant on PE included Maritimimonas rapanae,
Robiginitalea myxolifaciens and Psychroserpens sp. MEBiC05023,
all from the Flavobacteriaceae family, and Marivirga tractuosa.
Of the unresolved sequences, Alcanivorax sp. is a well-known
degrader of alkanes and petroleum (Yakimov et al., 2019). It was
also recently shown that certain Alcanivorax species are able to
grow and form biofilms when PE is the main carbon source
(Delacuvellerie et al., 2019).

Substrate Specificity of the 18S rRNA
Gene Eukaryotic Communities
The high quality 18S rRNA gene sequences were clustered into
an average of 10,997 OTUs for PET, 11,608 for PE, and 7,956 for

glass, corresponding to 730, 735, and 506 classified eukaryotes,
respectively (Supplementary Table 2). Within the 18S rRNA gene
mapped reads, the genera with the highest relative abundance
across all surfaces was the bryozoan Amathia. However, there
were also differences between the top 10 most abundant genera
among the surfaces (Figure 5A). On PE, the most abundant
genera included Scytosiphon, a genus of brown seaweed, the
bryozoan Bugulina, the entoprocta Barentsia and the sabellid
polychaete Parasabella. On the other hand, the top 10 genera on
PET included the copepods genus Acartia, as well as the diatom
genus Nitzschia and the ciliate genus Dysteria.

Linear discriminant analysis of our 18S rRNA gene sequences
identified five OTUs, corresponding to four species and one
genus, with significantly higher read ratios in the plastic
samples compared to glass samples (Supplementary Material 1,
Table 4). These species included two brown algae; Petalonia
fascia and Scytosiphon lomentaria, with higher read ratios in both
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FIGURE 3 | PCoA of the Bray-Curtis dissimilarities among the plastisphere communities of the samples (N = 5 per treatment). (A,B) 16S rRNA gene microbiomes
with the water community (left) or without it (right). (C,D) 18S rRNA gene microbiomes with the water community (left) or without it (right). (E,F) ITS microbiomes with
the water community (left) or without it (right). Results of PERMANOVA for significance between groups are shown on each plot.
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FIGURE 4 | Substrate specificity of bacteria based on relative abundance of 16S rRNA gene mapped reads. (A) Relative abundance of top 10 abundant genera
within each treatment. Produced using MicrobiomeAnalyst (Chong et al., 2020). (B) Heatmap of the bacteria with higher relative mapped read abundance in the PE
samples Limma – voom was used to identify OTUs that had FDR adjusted p-value < 0.05 and log- fold- change of >0 on PET or PE compared to glass. The relative
abundance of their mapped reads was then plotted for all samples and replicates.
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FIGURE 5 | Substrate specificity of eukaryotes at the genus and species levels based on relative abundance of 18S rRNA gene mapped reads. (A) Relative
abundance of top 10 abundant genera within each treatment. Produced using MicrobiomeAnalyst (Chong et al., 2020). (B) Eukaryotes with higher relative mapped
read abundance in the plastic samples. Limma – voom was used to identify OTUs that had FDR adjusted p-value < 0.05 and log- fold- change of >0 on PET or PE
compared to glass. The relative abundance of their mapped reads was then plotted for all samples.

PET and PE samples. The benthic dinoflagellate Prorocentrum
emarginatum and the red alga Hydrolithon sp. had higher relative
representation in the PE samples, while reads mapped to the
diatom Haslea spicula were found in relative higher ratios in the
PET samples (Figure 5B).

Marine Fungi Communities on Plastic
Surfaces
For the identification of fungi we used the ITS2 barcode. The
ITS2 locus has been shown to be the most suitable taxonomic

barcode for the characterization of fungal communities and has
been previously used for the identification of fungi from marine
plastic debris (Op De Beeck et al., 2014; Davidov et al., 2020).
Due to the limitations of the available databases for marine fungi,
only 3% of the reads were mapped to reference sequences. Despite
this, our analysis still identified an average of 57 fungal OTUs in
the PET samples and 58 in the PE samples, of which 23 and 25,
respectively, were classified to the species level. We also identified
an average of 87 fungal OTUs in the glass samples and 114 in the
water samples, of which 29 and 41, respectively, were classified to
the species level (Supplementary Material 1, Table 2).
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FIGURE 6 | ITS fungal metabarcoding analysis. (A) Top 10 abundant fungi genera based on ITS metabarcoding. (B) Shared and unique fungal OTUs among the
surfaces and the water. (C) Fungi corresponding to the OTUs present only on PE, PET or PE, and PET.

Similar to the 16S rRNA and 18S rRNA gene based beta-
diversity analyses, the fungi (barcoded with ITS) analysis did
show distinction between the taxonomic composition of the
water vs. the composition of the biota associated with surfaces
(Figure 3E). Furthermore, within the ITS mapped reads,
there were differences between the top 10 relatively abundant
genera across the surfaces (Figure 6A). On PE, the most
abundant genera included Neocatenulostroma, Penicillium, and
Vishniacozyma. Whereas in the top 10 genera of the PET samples
we identified Candida, Cyberlindnera, and Rhodosporidiobolus.
Due to the limited mapping results, differential abundance
analysis was not performed. Nevertheless, of all 316
OTUs identified, five were found only on PE (Figure 6B)
corresponding to species Aspergillus penicillioides, Bipolaris
sorokiniana, Filobasidium magnum, Knufia mediterranea
and Ramichloridium cucurbitae (Figure 6C). Another five

OTUs were only found on the PET samples corresponding to
Cryptococcus aspenensis, Cyberlindnera jadinii, Debaryomyces
vindobonensis, Pyrenochaetopsis leptospora, and Symmetrospora
coprosmae. Another two OTUs corresponding to the species
Candida sake, and Peniophora lycii were identified in the
PET and the PE samples but not in the glass samples
and the water.

DISCUSSION

In this study, we analyzed 1-month-old Mediterranean Sea
plastisphere communities and screened for prokaryotic and
eukaryotic species, including fungi, with differential abundance
on PET and PE plastic surfaces compared to glass. Many
studies have focused on the search for plastic-specific organisms
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[reviewed in Latva et al. (2021)]. However, very few resulted in
the identification of the taxonomic levels of species. For achieving
a higher taxonomic resolution, including the species level, we
used longer barcode regions that were sequenced with the
nanopore MinION platform. Additionally, we characterized the
composition of the fungal biome using a shorter, well-established
barcode within the ITS2 locus.

Previous 16S rRNA gene, 18S rRNA gene and ITS
metabarcoding analyses have repeatedly demonstrated that the
plastisphere is a separate ecological niche from the surrounding
water (Zettler et al., 2013; Kettner et al., 2017; Dussud et al., 2018;
Frère et al., 2018). Our metabarcoding beta diversity analysis
supports this observation. We would like to note that a definitive
conclusion cannot be drawn for the fungal communities because
of the low mapping rates of the ITS sequences (∼3%). Other
studies that have used the ITS barcode resulted in similarly
low mapping rates of 0.01–4% (Kettner et al., 2017; Lacerda
et al., 2020; Wang et al., 2021) which is attributed to the limited
taxonomic coverage of the available fungal databases, especially
when it comes to marine fungi (Hawksworth and Lücking, 2017).

So far, most environmental studies did not find conclusive
differences between the microbial communities on plastic vs.
glass surfaces (Oberbeckmann et al., 2016; Pinto et al., 2019; Erni-
Cassola et al., 2020; Laverty et al., 2020; Zhao et al., 2021). On the
other hand, studies in enclosed or semi-enclosed systems often
showed differential taxonomic representation (Kirstein et al.,
2018, 2019; Ogonowski et al., 2018; Pinto et al., 2020). These
differences between the two types of studies may be due to the
milder masking effects of environmental factors under controlled
lab conditions. For this reason, we find that the location of
our experiment, within the semi-protected environment of the
marina that is connected to the open sea, may serve as an ideal
location for such comparative studies of the natural environment.

To identify the high-resolution differences in the taxonomic
composition of the microbiomes, we first analyzed the top 10
most abundant genera in each surface. This analysis resulted
in several genera that were recurrently identified on one
substrate and not in the other. However, it has been established
that the OTUs contributing to the most dissimilarity between
substrates are not necessarily the most abundant ones (e.g.,
Kirstein et al., 2018, 2019). Therefore, it is important to use the
appropriate statistical tools to identify differentially abundant
species. Here we took advantage of the limma package, which
implements statistical algorithms developed for the analysis
of differential expressed genes. These specialized algorithms
make statistical conclusions more reliable when the number
of samples are small and have different levels of variability
and complex set ups (Ritchie et al., 2015). Our analysis
identified 30 prokaryotes for which the relative abundance of
16S rRNA gene reads were significantly differentially abundant
in the PE samples compared to the glass samples. Many of
which belong to genera that have been previously reported in
association with plastic communities including, Maritimimonas
(De Tender et al., 2017), Saprospiraceae, Flammeovirgaceae, and
Lewinella [reviewed in Roager and Sonnenschein (2019)] as
well as Fulvivirga (Tourova et al., 2020) and Cyclobacteriaceae
(Miao et al., 2019). Moreover, our differential abundance

analysis identified bacteria that have been suggested to be
hydrocarbon and plastic-degrading including genera Muricauda
(Didier et al., 2017), Winogradskyella (Wang et al., 2014) and
Alcanivorax (Delacuvellerie et al., 2019). Lastly, there were
16 organisms that were not reported previously as plastic-
associated, of which 5 were uncultured. In a comparison
among the plastic surfaces vs. glass, differentially abundant
bacteria were identified only in the PE samples but not
on PET. We hypothesize that because PE floats whereas
both PET and glass usually sink, it is exposed to different
environmental conditions, such as direct sunlight, and therefore
it has been selected for colonization by a slightly different set
of microorganisms.

The same analysis for the 18S rRNA gene sequences identified
five eukaryotes that were differentially abundant on PE and
PET compared with glass including two species of brown
algae, Scytosiphon lomentaria and Petalonia fascia which were
previously identified in the plastic microbiome (Ibabe et al.,
2020). The dinoflagellate P. emarginatum and the red algae
Hydrolithon sp., that had significantly different read ratios on PE,
have also been reported to dominate plastisphere communities
(Dudek et al., 2020). The diatom Haslea spicula, which was
significantly differentially abundant on the PET surfaces is a
mobile pennate diatom that is known to colonize artificial
surfaces (Winfield et al., 2018). The presence of diatoms on
marine plastic has been repeatedly shown (e.g., Oberbeckmann
et al., 2014; Reisser et al., 2014; Davidov et al., 2020; Dudek
et al., 2020) and was clearly observed in our SEM and light
microscopy imaging.

The fungal biome on marine plastic has been so far
understudied and only a handful have analyzed the ITS genes
(e.g., Zhang et al., 2015; De Tender et al., 2017; Davidov et al.,
2020; Lacerda et al., 2020). Our ITS metabarcoding analyses and
lactophenol cotton blue staining showed the plastic surfaces in
the marina were colonized by a highly developed network of
fungi, mostly of the genera Malassezia (phylum Basidiomycota),
Cladosporium and Saccharomyces (phylum Ascomycota). The
presence of Cladosporium on plastic debris was previously
shown (De Tender et al., 2017; Lacerda et al., 2020; Xue et al.,
2021). 12 fungal OTUs were found only on the plastic samples
including the species Pyrenochaetopsis leptospora, Candida
sake, Debaryomyces vindobonensis, Aspergillus penicillioides, and
Bipolaris sorokiniana, a wheat pathogen that causes leaf spot
disease (Ye et al., 2019). Peniophora lycii, a species that was found
on both PE and PET, but not on glass or water, has recently
been shown to secrete three laccase isozymes (Glazunova et al.,
2020), that may be capable of breaking down non-hydrolyzable
plastics such as PE (Inderthal et al., 2021). Many marine fungi
can degrade complex hydrocarbons [reviewed in Amend et al.
(2019)] and often dominate in oil polluted environments (Bik
et al., 2012; McGenity et al., 2012). So far only one marine
fungi, Zalerion maritimum has been suggested to degrade plastic
(PE) in laboratory conditions (Paço et al., 2017; Santacruz-Juárez
et al., 2021). Although molecular mechanisms still remain to
be identified. Fungi are an abundant and active component of
the ocean environment with plastic degradation potential that
warrants further investigation.
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While DNA metabarcoding of the plastisphere biome
continues to be a favorable approach for its taxonomic
composition characterization it needs to be fine-tuned to be
effective in the identification of plastic-specific genera and
species. Refining the resolution and the scope of this approach
will provide useful information that can be the basis for species-
targeted studies to unveil the molecular mechanism for plastic
colonization and metabolism.
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