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Abstract

Serum proteomic pattern diagnostics is an emerging paradigm employing low-resolution mass
spectrometry (MS) to generate a set of biomarker classifiers. In the present study, we utilized a well-
controlled ovarian cancer serum study set to compare the sensitivity and specificity of serum
proteomic diagnostic patterns acquired using a high-resolution versus a low-resolution MS platform. In
blinded testing sets, the high-resolution mass spectral data contained multiple diagnostic signatures
that were superior to the low-resolution spectra in terms of sensitivity and specificity ðP < 0:00001Þ
throughout the range of modeling conditions. Four mass spectral feature set patterns acquired from
data obtained exclusively with the high-resolution mass spectrometer were 100% specific and
sensitive in their diagnosis of serum samples as being acquired from either unaffected patients or
those suffering from ovarian cancer. Important to the future of proteomic pattern diagnostics is the
ability to recognize inferior spectra statistically, so that those resulting from a specific process error are
recognized prior to their potentially incorrect (and damaging) diagnosis. To meet this need, we have
developed a series of quality-assurance and in-process control procedures to (a) globally evaluate
sources of sample variability, (b) identify outlying mass spectra, and (c) develop quality-control release
specifications. From these quality-assurance and control (QA/QC) specifications, we identified 32
mass spectra out of the total 248 that showed statistically significant differences from the norm. Hence,
216 of the initial 248 high-resolution mass spectra were determined to be of high quality and were
remodeled by pattern-recognition analysis. Again, we obtained four mass spectral feature set patterns
that also exhibited 100% sensitivity and specificity in blinded validation tests (68/68 cancer: including
18/18 stage I, and 43/43 healthy). We conclude that (a) the use of high-resolution MS yields superior
classification patterns as compared with those obtained with lower resolution instrumentation; (b)
although the process error that we discovered did not have a deleterious impact on the present results
obtained from proteomic pattern analysis, the major source of spectral variability emanated from mass
spectral acquisition, and not bias at the clinical collection site; (c) this variability can be reduced and
monitored through the use of QA/QC statistical procedures; (d) multiple and distinct proteomic
patterns, comprising low molecular weight biomarkers, detected by high-resolution MS achieve
accuracies surpassing individual biomarkers, warranting validation in a large clinical study.
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Introduction

Ovarian cancer is the most lethal gynecologic malignancy

and is the fifth most common cause of cancer-related

death in women. The American Cancer Society estimated

that there would be 25 400 new cases of ovarian cancer

and 14 300 deaths in 2003 (www.cancer.org). Since the

1960s, almost 80% of women with epithelial ovarian

cancer are diagnosed when the disease has spread to the

upper abdomen (stage III) or beyond (stage IV) (Niloff et

al. 1984, Menon et al. 2000, Cohen et al. 2001, Ozols

2001). Unfortunately, the 5-year survival rate for those

women is approximately 15%, whereas the 5-year survival

when detected at early stage (I) approaches 90% (Niloff et

al. 1984, Menon et al. 2000, Cohen et al. 2001, Ozols

2001). Therefore, the diagnosis of early stage ovarian

cancer would significantly decrease the morbidity and

mortality rate from this disease.

The most widely used diagnostic biomarker for

ovarian cancer is cancer antigen 125 (CA 125), as detected

by the monoclonal antibody OC 125 (Zurawski et al.

1988). Alhough 80% of women with advanced-stage

ovarian cancer possess elevated levels of CA 125, it is

elevated in only 50–60% of women with stage I disease

(Niloff et al. 1984, Menon et al. 2000, Cohen et al. 2001,

Ozols 2001), with a positive-predictive value of 10%.

Moreover, CA 125 can be elevated in many other

nongynecologic and benign conditions, such as preg-

nancy, endometriosis, and colon and pancreatic cancers.

A combined strategy of CA 125 determination with

ultrasonography increases the positive-predictive value to

approximately 20% (Cohen et al. 2001). Consequently,

there is an urgent need to develop detection methods to

improve the sensitivity and specificity of early-stage

ovarian cancer detection.

Several laboratories have demonstrated the feasibility

of using serum-based proteomic pattern analysis by mass

spectrometry (MS) for the diagnosis of ovarian (Petricoin

et al. 2002a), breast (Li et al. 2002) and prostate (Adam et

al. 2002, Petricoin et al. 2002a) cancer. Unlike previous

biomarker discovery efforts that attempt to identify a

single disease biomarker candidate, proteomic pattern

analysis utilizes high-dimensional data such as data

resulting from MS analyses. This method attempts,

without bias, to identify patterns of mass spectral features

comprising peptide (or other) ions within mass spectra as

the diagnostic itself. Utilizing serum, for example, mass

spectra generated from a training set of samples are

analyzed by pattern-recognition algorithms to identify

diagnostic signature patterns comprising a subset of key

mass-to-charge ratio ðm=z) species and their relative

intensities. Mass spectra from unknown samples are

subsequently classified by likeness to the pattern found

in the serum mass spectra used in the training set. The

number of key m=z species whose combined relative

intensities define the pattern represents a very small subset

of the entire number of species present in any given serum

mass spectrum.

Petricoin et al. (2002a) have recently demonstrated

that serum proteomic patterns from low-resolution MS

data can distinguish neoplastic from nonneoplastic dis-

ease within the ovary. A key aspect of their study was the

application of a pattern-recognition tool that employs an

unsupervised system (self-organizing-type cluster map-

ping) as a fitness test for a supervised system (a genetic

algorithm). With their approach, a training set comprising

mass spectra from serum derived from either unaffected

women or women with ovarian cancer is employed so that

the most fit combination of relative, normalized ion-

intensity features defined at precise m=z values plotted in

n-space can reliably distinguish the cohorts used in

training. While this approach first demonstrated the

feasibility of a proteomic pattern-based diagnostic test,

translating this approach to a routine clinical diagnostic

test remains a daunting challenge. Specifically troubling to

this translation is the fact that the original MS used for

the early feasibility studies, the ProteinChip Biomarker

System-II (PBS-II), a low-resolution time-of-flight (TOF)

MS, is a research-grade platform not designed for routine

clinical use. While it is reproducible within runs and small

intervals of time, we observed that week-to-week and

machine-to-machine variability was unacceptable as a

general clinical method in its current state in our hands.

Moreover, the resolution of the original MS was not

sufficient to resolve species close in m=z but rather gave

rise to coalesced features, severely compromising unique

feature selection in the diagnostic pattern discovery. The

need exists to extend these observations to MS with

performance characteristics aligned with routine clinical

use: high-resolution and reduced day-to-day mass drift as

can be accomplished by decoupling the source from the

mass analyzer, the basis of the design of the hybrid

quadrupole time-of-flight (QqTOF) MS, which is

employed in this study as described below.

The first objective of the present study was to compare

mass spectra from a high-resolution and a low-resolution

mass spectrometer, using sera obtained from a large, well-

controlled ovarian cancer screening trial applied and

analyzed on the same SELDI ProteinChip arrays (Hutch-

ens et al. 1993). While we hypothesize that higher

resolution mass spectra will generate more distinguishable

sets of diagnostic features, the increased complexity and

dimensionality of data may actually reduce the likelihood

of fruitful pattern discovery. Moreover, we now describe

spectral quality-assurance and control (QA/QC) methods

whereby mass spectra are analyzed for overall intensity

and complexity prior to pattern-recognition analysis to
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reduce experimental and sample variability introduced by

the process instead of the disease. In a clinical setting

where a pattern test may be eventually employed as a

diagnostic, it will be crucial to determine overall spectral

quality and develop spectral QA/QC release specifications

such that variances introduced into the process can be

evaluated and monitored. Detailed procedures to detect

day-to-day, lot-to-lot and machine-to-machine variances

arising from sample handling, storage and shipping

conditions, as well as fluctuations in performance by the

MS, must be developed and implemented. Therefore, the

second objective was to develop and implement a series of

QA/QC procedures to statistically evaluate mass spectra.

The spectra that passed this QA/QC procedure were

reanalyzed to identify sets of features with the best overall

specificity and sensitivity. We report here the use of serum

proteomic pattern analysis for the generation of multiple,

highly accurate models obtained with a QqTOF MS for

an improved early diagnosis of ovarian cancer. In

addition, we propose QA/QC methods to evaluate spectra

prior to bioinformatic analysis. This evaluation allows

specific procedural errors that may occur during the

analysis to be recognized, and it can prevent the use of

spectra that can lead to an incorrect diagnosis.

Materials and methods

Serum samples

Serum samples were obtained from the National Ovarian

Cancer Early Detection Program (NOCEDP) and gyne-

cologic oncology clinic at Northwestern University

(Chicago, IL, USA). Specimens from women enrolled in

the NOCEDP who had no evidence of any cancer for 5

years were evaluated as being from healthy women.

Similarly, only preoperative specimens were used from

women who were surgically staged and found to have

epithelial ovarian carcinoma. A total of 248 samples were

prepared with a Biomek 2000 robotic liquid handler

(Beckman Coulter, Inc., Palo Alto, CA, USA). All

analyses used ProteinChip weak cation exchange interac-

tion chips (WCX2, Ciphergen Biosystems, Inc., Fremont,

CA, USA). A control reference sample was randomly

applied to one spot on each protein array as a quality

control for overall process integrity, sample preparation

and mass spectrometer function. The control sample,

SRM 1951A, which comprises pooled normal human

sera, was provided by the National Institute of Standards

and Technology (Gaithersburg, MD, USA).

Sample preparation

WCX2 ProteinChip arrays were processed in parallel on a

Biomek Laboratory workstation (Beckman-Coulter)

modified to make use of a ProteinChip array bioprocessor

(Ciphergen Biosystems). The bioprocessor holds 12

ProteinChips, each having eight chromatographic

‘spots’, allowing 96 samples to be processed in parallel.

A volume of 100ml of 10mM HCl was applied to the

WCX2 protein arrays and allowed to incubate for 5min.

The HCl was aspirated and discarded, and 100 ml distilled,
deionized water (ddH2O) were applied and allowed to

incubate for 1min. The ddH2O was aspirated, discarded,

and reapplied for another minute. A volume of 100ml of
10mM NH4HCO3 with 0.1% Triton X-100 was applied

to the surface and allowed to incubate for 5min, after

which the solution was aspirated and discarded. A second

application of 100ml of 10mM NH4HCO3 with 0.1%

Triton X-100 was applied and allowed to incubate for

5min, after which the ProteinChip array bait surfaces

were aspirated. A volume of 5 ml of raw, undiluted serum

was applied to each ProteinChip WCX2 bait surface and

allowed to incubate for 55min. Each ProteinChip array

was washed three times with Dulbecco’s phosphate-

buffered saline and ddH2O. For each wash, 150ml of

either phosphate-buffered saline or ddH2O were sequen-

tially dispensed, mixed by aspirating, and dispensed for a

total of 10 times in the bioprocessor, after which the

solution was aspirated to waste. This wash process was

repeated for a total of six washes per ProteinChip array

bait surface. The ProteinChip array bait surfaces were

vacuum dried to prevent cross-contamination when the

bioprocessor gasket was removed. After removal of the

bioprocessor gasket, 1.0 ml of a 30% solution of a-cyano-
5-hydroxycinnamic acid in 50% (v/v) acetonitrile and

0.5% (v/v) trifluoroacetic acid was applied to each spot on

the ProteinChip array twice, allowing the applied solution

to dry between applications with a liquid robotic handling

station Genesis Freedom 200 (TECAN, Research

Triangle Park, NC, USA).

PBS-II TOF MS analysis

ProteinChip arrays were placed in the Protein Biological

System II time-of-flight (TOF) mass spectrometer ((PBS-

II, Ciphergen Biosystems), and mass spectra were

recorded on the following settings: 195 laser shots/

spectrum collected in positive ionization mode, laser

intensity 220, detector sensitivity 5, detector voltage

1850V, and time-lag focus of 6000 m=z. The PBS-II

TOF MS was externally calibrated with the ‘All-In-One’

peptide mass standard (Ciphergen Biosystems).

QqTOF MS analysis

ProteinChip arrays were analyzed with a hybrid quadru-

pole time-of-flight mass spectrometer (QSTAR pulsar I,

Applied Biosystems, Inc., Framingham, MA, USA) fitted
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with a ProteinChip array interface (Ciphergen Biosys-

tems). Samples were ionized with a 337 nm pulsed

nitrogen laser (ThermoLaser Sciences model VSL-337-

ND-S, Waltham, MA, USA) operating at 30Hz.

Approximately 20mTorr of nitrogen gas was used for

collisional ion cooling. Each spectrum represents 100

multichannel averaged scans (1.667min acquisition/spec-

trum). The mass spectrometer was externally calibrated

with a mixture of known peptides.

Proteomic pattern analysis

Proteomic pattern analysis was performed by exporting the

raw data file generated from the PBS-II into tab-delimited

files possessing approximately 15 000 data points. The

QqTOF mass spectra were similarly exported into a tab-

delimited format possessing approximately 350 000 data

points per spectrum. The high-resolution spectra were

binned using a 400 parts per million (ppm) function to

produce data files that possess identical m=z values (for

example, them=z bin sizes scale linearly from a bin width of

0.28 at m=z 700 to 4.75 at m=z 12 000). This binning

condenses the number of data points from 350 000 to

exactly 7084 points per spectrum. The conservative 400

ppm binning function was based on the value obtained by

10 times the routine mass accuracy of the QqTOF with

external calibration (40–50 ppm). The mass spectra were

randomly segregated into equal groups for training, and

testing. The models were built on the training set, using

ProteomeQuest (Correlogic Systems, Inc., Bethesda, MD,

USA), and tested in blinded sample sets. Them=z values in

the models that were generated by the high-resolution

instrument are based on the binned data, and not the actual

m=z values from the raw mass spectra.

The Proteome Quest software itself implements a

pattern discovery algorithm combining elements from

genetic algorithms (Holland 1994) and self-organizing

adaptive pattern-recognition systems (Kohonen 1990).

Genetic algorithms organize and analyze complex data

sets as if they were information comprising individual

elements that can be manipulated through a computer-

driven analog of a natural selection process. Self-organiz-

ing systems cluster data patterns into similar groups.

Adaptive systems recognize novel events and track rare

instances. The genetic algorithm component of the

analysis begins with the random generation of a popula-

tion of 1500 subsets of combinations of features in the

serum mass spectra. The choice of this number was based

on adequate coverage of the data, with a heuristic that no

value can be duplicated within each of the 1500 feature

subsets. Each feature subset in the population specifies the

identities of the exact m=z values in each serum mass

spectrum, but not their relative amplitude. The number of

features in the subset ranges from 5 to 20. Data

normalization is an important element of pattern recogni-

tion, as bias introduced by ProteinChip quality, MS

performance and operator variance can affect the overall

spectral quality. Since the present MS technique is not

inherently quantitative, scalar MS peak intensity changes

may be apparent, yet the overall pattern may not change.

For this study, MS data were normalized by linearly

scaling each m=z value, V, within any randomly generated

pattern subset between the largest and the smallest values

within that subset, so that 0 � NV � 1. In this way,

differences in spectral quality that may emanate from

biases, such as ProteinChip variance, and not from the

inherent disease process itself, can be minimized. The

spectra are normalized according to the following

formula:

NV ¼ ðV�MinÞ=ðMax�MinÞ

where NV is the normalized m=z value, V is the intensity

value for the specific randomly chosen m=z bin, Min is the

intensity of the smallest intensity value of any of the m=z

bins within the randomly selected feature set and Max is

the maximum intensity of the m=z bin within the

randomly selected feature set. This equation linearly

normalizes the peak intensities in the feature set so as to

fall within the range of 0 to 1. Prior to analysis, the data

are randomly divided into training and testing data sets.

The training data set is further divided into and labeled as

diseased or unaffected according to known clinical

diagnosis.

Each of the randomly selected 1500 subset feature sets

was subjected to a fitness test. The fitness test in these

analyses is the ability of the combined m=z amplitude

values of any candidate feature set to specify a lead cluster

map that generates homogeneous clusters containing only

mass spectra of diseased subjects or unaffected subjects

used in the training sets. The lead cluster map is a self-

organizing, adaptive pattern-recognition algorithm that

uses Euclidean distance to group vectors of data. The map

begins as empty n-dimensional space where n is the

number of m=z features in the data vector. The optimal

discriminatory pattern is identified by finding the best

combination of m=z bins whose normalized feature set

intensity values in n-dimensional space creates a unique

identifier or cluster of identifiers. Any given training

sample is compared for its proximity to previously defined

clusters of diseased and unaffected subjects in n-space. If

an n-dimensional identifier vector from a subject in the

training group falls within the decision boundary of an

existing cluster, the subject is classified as belonging to

that group. For these studies, the decision boundary is

defined as 10% of the maximum distance allowed in the

space. The population that lies within this boundary

corresponds to a 90% pattern match. If the data vector
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does not fall within the 90% decision boundary of any

existing cluster in the model, it is used to establish a new

cluster and is identified as a new observation. The process

is repeated once for each vector in the collection of

training data.

Those subpopulation feature sets that best discrimi-

nate the training set are more likely to survive the

culling of the population to the original population size,

such as 1500, and contribute to the next generation of fit

candidate feature sets. The progeny of the most-fit

feature sets are generated through crossover and

mutation of the 5–20 specific m=z bin values within

each subset. Each subset is evaluated for its ability to

distinguish accurately the two training set populations.

As a result, each successive population of feature subsets

is, on average, more fit than its predecessor feature sets.

To ensure that the algorithms do not trend to less than

near optimal decision points, a ‘mutation’ rate is built

into the process such that 0.2% of the m=z bin values

are randomly rechosen. Crossover operations are of the

single point type and are randomly selected in each

mating. For example, if there are five m=z bin values,

there can be four crossover points. The genetic

algorithm iterates for at least 250 generations or until

a lead cluster map that homogeneously segregates

diseased serum mass spectra from unaffected is gener-

ated. The lead cluster map that best separates diseased

from unaffected serum mass spectra is deployed for

validation in blinded test sets.

Completely blinded test data, not used during the

training process, were analyzed in the following steps. The

data were normalized as described, and the normalized

relative amplitudes of the test sample spectra at the n

defined m=z values were used to fix a point in

n-dimensional space. The Euclidean distance vector was

then calculated between this point and the center of all

clusters (both cancer and unaffected) formed by the

training set. If the unknown test vector fell inside the 90%

boundary surrounding any centroid, it was classified as a

member of that cluster and given a probability score

based on its proximity to the theoretical center of the

cluster and the number of records within that cluster. If

no match was obtained, it was scored as a ‘new cluster’.

The results from the testing set of data were used for

determination of sensitivity, specificity and positive

predictive value of the patterns.

Although it is impossible to visualize plots of points

with more than three coordinates, Pythagorean based

formulas adapt quite satisfactorily to points in higher

dimensions, including the formula for the distance

between two points. For example, the distance between

two points in five dimensions, (a1, b1, c1, d1, e1) and (a2,

b2, c2, d2, e2), is calculated as follows:

Distance ¼
p
ða1� a2Þ2 þ ðb1� b2Þ2 þ ðc1� c2Þ2

þðd1� d2Þ2 þ ðe1� e2Þ2�;

as distance always equals the square root of the sum of

squared differences between coordinates. Hence, the

number of squared terms equals the number of members

within the selected subset pattern.

Spectral quality control and quality assurance

The total ion current (TIC) of the raw and binned mass

spectral data was plotted, average/mean and standard

deviation of amplitude were calculated, chi-square and

t-test analysis of each m=z or bin value, and quartile

plotting measured with JMP (SAS Institute, Cary, NC,

USA) software as well as procedures developed in-house.

Process measures were checked by analyzing the statistical

plots of the serum reference standard (SRM-015A,

National Institute of Standards and Technology) that

was applied at random on each ProteinChip at different

spot locations.

Statistical analysis

The exact Cochran–Armitage test for trend (Agresti 1990)

was used to obtain the statistical significance of the

differences of the distributions of sensitivity and specifi-

city for the QqTOF and PBS-II models generated

according to the procedures detailed above. All P-values

are two-tailed, as indicated by P2.

Results

Comparative analysis of serum samples by
low- and high-resolution MS

A total of 248 serum samples were provided from the

NOCEDP and gynecologic oncology clinic at North-

western University. The samples were processed and their

proteomic patterns acquired from the same ProteinChip

arrays by both a PBS-II and a QqTOF MS fitted with a

ProteinChip interface (PCI-1000). The region of the

sample queried by the laser on the different instruments

does not overlap, thus affording the ability to have each

mass spectrometer analyze the same spot on the same

ProteinChip. While the mass spectra acquired from both

instruments are qualitatively similar, the higher resolution

afforded by the QqTOF MS is readily apparent (Fig. 1).

This increased resolution allows species with similar m=z

values that are unresolved by the PBS-II TOF MS to be

resolved in the QqTOF mass spectrum. Indeed, simula-

tions demonstrate the ability of the QqTOF MS (routine
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Figure 1 Comparison of the mass spectra from control serum prepared on a WCX2 ProteinChip array and analyzed with a PBS-II TOF (panel A) or a QqTOF (panel B)

mass spectrometer.
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resolution>8000) to resolve completely species differing

in m=z of only 0.375 (for example, at m=z 3000), whereas

complete resolution of species with the PBS-II TOF MS

(routine resolution of �150) is possible only for species

that differ by m=z of 20 (simulation not shown).

The mass spectra were analyzed with the Proteome-

Quest bioinformatics tool employing ASCII files con-

sisting of m=z and intensity values derived from either

the PBS-II TOF or the QqTOF mass spectra as the

input. The mass spectral data acquired using the

QqTOF MS were binned to define precisely the number

of features in each spectrum to 7084, with each feature

comprising a binned m=z and amplitude value. The

algorithm examines the data to find a set of features at

precise m=z values whose combined, normalized relative

intensity values in n-space best segregate the data

derived from the training set. Mass spectra acquired

on the QqTOF and the PBS-II TOF instruments from

the same sample sets were restricted to the m=z range

from 700 to 12 000 for direct comparison between the

two platforms. The entire set of spectra acquired from

the serum samples was divided into three data sets: (a) a

training set that is used to discover the hidden

diagnostic patterns, (b) a testing set, and (c) a validation

set. Only the normalized intensities of the key subset of

m=z values identified using the training set were used to

classify the testing and validation sets, and the algorithm

had not previously ‘seen’ the spectra in the testing and

validation sets. The training set comprised serum from

28 healthy women and 49 women with epithelial ovarian

cancer. The training and testing set mass spectra were

analyzed by the bioinformatic algorithm to generate a

series of models under the following set of modeling

parameters: (a) a similarity space of 85%, 90%, or 95%

likeness for cluster classification; (b) a feature set size of

5, 10 or 15 random m=z values whose combined

intensities comprise each pattern; and (c) a learning

rate of 0.1%, 0.2% or 0.3% for pattern generation by

the genetic algorithm. Four sets of randomly generated

models for each of the 27 permutations were derived

and queried with the same test set. Sensitivity- and

specificity-blind testing and validation results for each of

the 108 models (four rounds of training for each of the

27 permutations) were generated (Fig. 2). These results

demonstrate that the serum mass spectra from the

QqTOF consistently outperformed mass spectra

obtained on the lower resolution MS in terms of

sensitivity (P2 < 0:00001Þ, where P2 denotes a two-tailed

Cochran–Armitage test for trend (Agresti 1990)) and

specificity ðP2 < 0:00001Þ throughout the range of

modeling conditions, for this specific set of clinical sera.

Evaluation of the models diagnostic for
ovarian cancer

The ability to generate the best performing models for

testing and validation was statistically evaluated, as

multiple models were generated and ranked using the

entire range of the aforementioned modeling parameters.

Models from the training set were assessed with a blinded

testing set consisting of spectra acquired from serum

obtained from 31 unaffected and 63 ovarian cancer-

affected individuals. For further validation of the ability

to diagnose ovarian cancer, a set of spectra acquired from

blinded samples comprising 37 normal and 40 ovarian

cancer serum mass spectra were tested against the models

found in training, as previously discussed. The results

(Fig. 2) clearly show the ability of the mass spectra from

the higher resolution QqTOF MS to generate statistically

superior models over the lower resolution PBS-II TOF

mass spectra in both sensitivity ðP2 < 0:0001Þ and

specificity ðP2 < 3� 10�19Þ in the testing phase, as well

as sensitivity ðP2 < 9� 10�9Þ and specificity ðP2 <

6� 10�6Þ in the blinded validation phase.

Four models were found that were both 100%

sensitive and specific in their ability to discriminate

correctly mass spectra acquired from serum samples

obtained from unaffected women from those suffering

from ovarian cancer (Fig. 3). All of these models were

obtained with data acquired using the QqTOF MS, as no

models generated using the PBS-II TOF MS data were

both 100% sensitive and specific. Examination of the key

m=z features that comprise the four best performing

patterns reveals certain features (that is, contained within

m=z bins 7060.121, 8605.678 and 8706.065) that are

consistently present as classifiers in the models (Fig. 3).

Although the proteomic patterns generated from both

healthy and cancer patients with the QqTOFMS are quite

similar (Fig. 4), careful inspection of the raw mass spectra

reveals that peaks within the binned m=z values 7060.121

and 8605.678 are indeed differentially abundant in a

selection of the serum samples obtained from ovarian

cancer patients as compared with unaffected individuals

(Fig. 4, insets). These results indicate that these MS peaks

originate from species that may be consistent indicators of

the presence of ovarian cancer. However, the ability to

distinguish serum from an unaffected individual or one

with ovarian cancer by a single serum proteomic m=z

feature alone is not possible across the entire serum study

set. While a single key m=z species is insufficient to

distinguish globally all of the unaffected and ovarian

cancer patients, the combined peak intensities of key ions,

taken together, do allow the two data sets to be

completely distinguished.
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Application of quality-control analysis

While the results provided by the data acquired with the

QqTOF MS were of superior diagnostic value, if

proteomic pattern profiling is to be a viable clinical tool,

it will be critical to develop a set of statistical tools

enabling the recognition of spectra quality prior to their

bioinformatic analysis. This statistical QA/QC procedure

is critical to prevent incorrect diagnosis resulting from a

process error and to recognize errors that may occur in

the overall procedure. To meet this need, the 248 mass

spectra acquired by the QqTOF MS were analyzed with a

wide variety of statistical tools to evaluate the spectral

quality (that is, record count and mean amplitude) and

statistical variances greater than the population norm.

Mean spectral amplitude and the file record count (that is,

the total number of data points within a mass spectrum)

were selected as global parameters for statistical analysis.

Using these parameters, the mass spectra from serum of

unaffected individuals and cancer patients were tracked

over several days of analysis and over different lots of

ProteinChips (Figs 5 and 6). To distinguish variability

related to the clinical sample, the sampling process, or the

MS instrument, control reference samples were randomly

analyzed in parallel on each ProteinChip (Fig. 5). The

total record count of each mass spectrum recorded of the

reference sample is plotted in Fig. 5A. The results show a

trend toward lower total record count as the analysis

progressed, indicating a potential process error. The mean

amplitude of each mass spectrum was plotted against

ProteinChip lot number (Fig. 5B) and day on which each

mass spectrum was acquired (Fig. 5C). Plots of the total

record count (Fig. 6A), the ProteinChip lot-dependent

mean amplitude (Fig. 6B) and the acquisition time-

dependent mean amplitude (Fig. 6C) for the actual

serum samples showed trends reflective of those observed

for the reference sample mass spectra. The results of these

QA/QC measurements indicated 32 spectra that were of

lesser quality based on total record count, amplitude

mean and standard deviation error (Fig. 6, marked by

asterisks). These mass spectra were all generated at the

end of the experimental run, suggesting that a deviation in

the process had occurred. This process variance was

determined to be due not to ProteinChip lot-to-lot

variation, but to a failing grid in the accelerator region

of the QqTOF MS. Intriguingly, the spectral QA/QC

procedures developed here were able to indicate this

failure early on, demonstrating the functional utility and

value of using release-specification and in-process con-

trols. Importantly, the total variance of the constant

reference sample was no less than that for the clinical

specimens.

Ovarian cancer pattern diagnostics applied to
high-resolution mass spectra

The resulting 216 mass spectra were reanalyzed to

generate diagnostic models using the entire range of the

aforementioned heuristic parameters. Scatter plots of the

total record counts and mean amplitudes of the spectra

from the 216 cancer and healthy control samples showed

no statistically significant differences in the overall

spectra of the two cohorts (Fig. 7) (record count=

359634:2 � 8223:46, cancer=354780:9� 9813:192; mean

amplitude control=6:018522 � 1:040222, cancer=

5:204284 � 1:150888). These values were also statistically

9367.113

8709.5488706.065

8605.6788605.6789870.937

7202.7168540.5368706.065

7060.1218664.3857096.9228605.678

6004.4168602.2377060.1217060.121

4377.8537046.0186548.7714292.900

1255.5934260.4036352.7232374.244

1001.6541144.796818.4801276.861
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Sensitivity: 100% (103/103 Cancer; 22/22 stage I)
Specificity: 100% (67/67 Healthy)

Figure 3 Four distinct models that generated 100% accuracy in testing and validation and the key m=z values whose combined

intensities discriminated the sets. Common m=z features recurring between the models are highlighted.
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Figure 5 (A–C) Scatter plots of the mass

spectra from the serum reference standard

co-mingled on the same ProteinChips used

for analysis of the 248 serum samples

(plotted in Fig. 6). The reference standard

was tracked by ProteinChip lot number (B,

circles and squares) and day (C). Samples

run on day 1 (circles), day 2 (squares) and

day 3 (triangles) are indicated.
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indistinguishable from the reference standard as well

(Fig. 7). Models from the training set (52 healthy, 53

ovarian cancer) were validated with a testing set

comprising 43 healthy and 68 ovarian cancer serum

samples. Not surprisingly, the results of the blinded

testing set (Fig. 8) clearly show the ability to discover

proteomic patterns in serum analyzed by high-resolution

MS. Reflective of the results obtained for the entire

sample cohort, four models were found using the

reduced data set that were both 100% sensitive and

specific, including correctly detecting serum samples

taken from all 18 stage I ovarian cancer patients.

Discussion

A limitation of a disease diagnostic that relies on a

single biomarker is the lack of sensitivity and specificity

when applied to large, heterogeneous populations.

Biomarker pattern analysis is an emerging technology

aimed at overcoming the limitation of individual

biomarkers. While serum proteomic pattern analysis

has the potential to provide a new paradigm for

diagnosis of early-stage disease, therapeutic monitoring

and outcome determination, the success of this method

will depend on the ability of a selected set of features to

transcend the biologic variability, analytic process

variations, and methodologically related background

‘noise’. Development of reliable proteomic pattern

diagnostic testing for routine clinical use will rely on

consistency in sample handling, collection, storage,

preservation and shipping procedures. Sample proces-

sing and MS instrumentation, software reliability and

validation will also greatly influence the ultimate success

of this method. One major potential obstacle is the

ability of the MS instrument to generate reproducible

mass spectra. Drifts in the inherent resolution and mass

accuracy within the MS instrument itself are particularly

capable of undermining implementation of this new

diagnostic in a clinical setting. The more smoothing,

warping and filtering required for mass spectral align-

ment, the greater is the likelihood of reducing the

complexity of the data (thus potentially smoothing out

real features with diagnostic information) while at the

same time generating larger and larger variances

between study sets and experiments. It is important to

note that the intensities of the selected m=z features are

of extremely small amplitude, representing at best only

2% of the intensity of the most abundant peaks present

within the serum mass spectra. Some investigators have

chosen pattern-recognition methodology which requires

a rule-based query at the beginning of the analysis to

select, a priori, only features that are above a subjective

amplitude cutoff (Adam et al. 2002, Li et al. 2002,

Yanagisawa et al. 2003). From the present findings, we

believe that this approach will delete highly discrimina-

tory features that lie very close to the background noise,

as demonstrated in the inset of Fig. 4.

With the exception of the recent study by Tirumalai et

al. (2003), the low molecular weight (LMW) serum

proteome has been relatively unexplored, even though

this is the mass region where MS is best suited for

analysis. It is possible that disease-associated mass spectra

comprise LMW peptide/protein species that may vary in

mass by as little as a few daltons. Drifts in resolution and

mass accuracy are greatly diminished through the use of a

QqTOF MS, allowing for the raw data to be binned.

Thus, the same m=z features reproducibly populate the

same bins without the need for warping, smoothing, or

aligning the raw data.

The mass spectra from the QqTOF MS lead to

proteomic patterns with a higher level of diagnostic

sensitivity and specificity than those from the lower

resolution instrument. Only the QqTOF MS produced

mass spectra that resulted in models having 100%

sensitivity and specificity, from this particular set of

serum samples, for the diagnosis of ovarian cancer. While

this diagnostic capability is impressive, it is still critical to

the future success of proteomic pattern technology to

determine methods to evaluate individual spectral quality

prior to, and independent of, bioinformatic classification.

These QA/QC tools will not only prevent a potentially

erroneous diagnosis based on the use of a ‘poor’ quality

mass spectrum but also allow specific errors in the process

to be identified. The QA/QC tools developed in this study

serve to (a) evaluate globally sources of variability, (b)

identify outliers, and (c) develop specific mass spectral

release specifications. By the analysis of reference

standards run in parallel to the clinical samples, the

major source of mass spectral variability in this study was

determined to be instrument related, and not biased by

patient phenotype, serum collection or sample prepara-

tion methods. Of the 248 initial samples, 216 were

‘qualified’ by our QA/QC protocol for diagnostic

remodeling. Comparisons (t-testing and chi-square ana-

lysis) revealed that the variation in the mass spectra

(overall amplitude, total record count and deviation in

mean amplitudes) between ovarian cancer cases and

control samples was statistically indistinguishable from

the variance within the process itself, as indicated by the

serum reference standard (Fig. 5). Reflective of the

analysis of the larger (that is, 248) sample cohort, four

models generated using the reduced data set of these 216

statistically ‘qualified’ samples also attained 100% sensi-

tivity and specificity. While it was not possible for the QA/

QC strategy to improve upon the diagnostic capability

above that obtained with the original 248 spectra in this
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experiment, it did allow recognition of a process error.

Recognition of this error prevented the possible inclusion

of poor-quality mass spectra that could potentially affect

the bioinformatic discovery of an optimal diagnostic

model or result in an incorrect diagnosis.

We hypothesize that diagnostic serum proteomic

information, which reflects changes in the physiologic

and pathologic state of a target tissue, exist within

constellations of small proteins and peptides. We further

postulate that serum diagnostic patterns are made up of

discrete markers that are a product of the complex tumor–

host microenvironment. This hypothesis is supported by

the fact that many patterns were found with extremely

accurate classification, each of which comprised unique

low molecular weight features not found in other patterns

as well as low molecular weight species that were

repeatedly and consistently found. This result leads to

several important implications. Firstly, it is likely that

diagnostic proteomic information is partially derived

from clipped and/or cleaved host proteins rather than

proteins that are directly related to the biology of the

tumor itself. Secondly, the biomarker profile may, for

example, be amplified by a cascade of systemic processes

at the tumor–host interface, resulting in the generation of

peptide cleavage products within the tumor–host micro-

environment. Thirdly, from a biologic perspective, these

assumptions predict the existence of multiple dependent,

or independent, sets of proteins/peptides that reflect the

systemic response to the regional malignancy. Some

recent studies conducted within our laboratory show

that cleavage fragments within the LMW range (Tiruma-

lai et al. 2003) of the blood proteome contain diagnostic

information that is likely to be complexed with larger

molecular weight carrier proteins (Mehta et al. 2003). This

complexation is likely to protect these LMW species from

renal clearance, and serve to amplify their overall

abundance dramatically. The LMW species and the

source of the underlying pattern observed in the present

mass spectra may therefore comprise the protein frag-

ments that are bound to carrier proteins.

The data presented here support the existence of

multiple highly accurate and distinct proteomic feature

sets that can accurately distinguish epithelial ovarian

cancer. To screen in a broad population for diseases of

relatively low prevalence, such as ovarian cancer, a

diagnostic test must exceed 99% sensitivity and specificity,

and have clinical utility to reduce the morbidity and

mortality associated with this disease. Using and combin-

ing multiple diagnostic patterns can possibly overcome

the low prevalence to achieve a test with clinical value. In

blinded testing and validation, any one of the four best

models generated using QqTOF MS data correctly

classified serum obtained from epithelial ovarian cancer

patients and healthy patients with 100% sensitivity and

specificity. Hence, a high-resolution system, such as the

QqTOFMS employed in this study, is preferred in view of

the present results that serve as a launch-point platform

for clinical trials of serum proteomic patterns.
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