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Abstract We present a review of some of the state-of-the-art numerical methods for solving

the Stefan problem and the Poisson and the diffusion equations on irregular domains using

(i) the level-set method for representing the (possibly moving) irregular domain’s bound-

ary, (ii) the ghost-fluid method for imposing the Dirichlet boundary condition at the irregu-

lar domain’s boundary and (iii) a quadtree/octree node-based adaptive mesh refinement for

capturing small length scales while significantly reducing the memory and CPU footprint.

In addition, we highlight common misconceptions and describe how to properly implement

these methods. Numerical experiments illustrate quantitative and qualitative results.

Keywords Elliptic · Parabolic · Level-set method · Poisson · Diffusion · Stefan ·
Quadtree · Octree · Ghost-fluid method

1 Introduction

We are considering three of the main equations in the class of elliptic and parabolic partial

differential equations: the Poisson equation, the diffusion equation and the Stefan problem.

The Poisson and the diffusion equations are two characteristic equations used in a plethora

of scientific and engineering applications. They are important in their own right, for exam-

ple in predicting the heat distribution in engines or the distribution of chemical species (see

[48] and the references therein); they are also core building blocks in fields as diverse as
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fluid dynamics [57, 73, 158], finance (see [17]) and image processing (see e.g. [102, 106]

and the references therein). The Stefan problem is a model often used to describe solidifi-

cation processes, the method of choice for growing single crystals with applications in the

aerospace industry (see e.g. [33] and the references therein). It is also used as a component

for the study of vaporization processes [35, 44, 131–134, 146, 147, 154, 157]. In addition,

this model is applicable to a wide variety of other applications, including epitaxial growth

[23, 116].

In the large majority of applications, the domains of integration for these equations have

irregular shapes so that no closed-form solutions exist. Numerical methods are thus neces-

sary and face three main challenges. First, the description of the physical domain must be

versatile enough to account for the motion of free boundaries, which is the case of the Ste-

fan problem. Second, boundary conditions must be imposed at the boundary of the irregular

domain. We are focusing in this review on Dirichlet boundary conditions, i.e. the solution

itself is given at the boundary. The case of imposing Neumann or Robin or jump boundary

conditions is not the focus of this paper and we refer the interested reader to [11, 32, 50, 53,

56, 75, 77, 78, 83, 104, 114, 147, 151] and the references therein. Finally, typical scientific

applications exhibit solutions with different length scales. In the context of electrostatics for

example, the electric double layer is an extremely small region where the potential varies

rapidly and must be captured by the numerical solution. From the numerical point of view,

small length scales are related to very fine grids for which uniform grids are too inefficient

to be practical.

In this paper, we review a successful approach for solving the Poisson and the diffusion

equations and the Stefan problem using (i) a level-set approach to capture the geometry

of the physical domain or the free boundary, (ii) a ghost-fluid method to impose Dirichlet

boundary conditions at the irregular domain’s boundary and (iii) a node-based adaptive mesh

refinement framework based on quadtree/octree Cartesian grids to capture the small length

scales of the problem while significantly reducing the CPU and memory requirements. The

methods presented are numerically robust, second-order accurate in the L∞-norm (and in

some case third or fourth-order accurate) and applicable to arbitrary geometries in two and

three spatial dimensions.

2 Equations and Free Boundary Representation

2.1 The Diffusion and the Poisson Equations

Consider a Cartesian computational domain, Ω ∈ Rn, with exterior boundary ∂Ω and a

lower dimensional interface, Γ , that divides the computational domain into disjoint pieces,

Ω− and Ω+ (see Fig. 1). The diffusion equation on Ω is given by:

∂u/∂t = ∇ · (β∇u) + S, (1)

where u = u(x, t) is the unknown, x = (x, y, z) is the space variable, S(x) is the source

term and β(x) is the diffusion coefficient, i.e. a positive variable bounded from below by

a strictly positive constant. Typically, the values for β are different constants in Ω− and

Ω+. On ∂Ω , either Dirichlet or Neumann boundary conditions are specified. A Dirichlet

boundary condition of u(x) = uΓ (x) is imposed on Γ . The initial condition for u is also

given to close the system. The Poisson equation is the steady-state of the diffusion equation

and therefore given by:

∇ · (β∇u) + S = 0. (2)



J Sci Comput

Fig. 1 Schematic and notations

of a typical computational

domain

2.2 The Stefan Problem

In the context of solidification phenomena, the Stefan problem describes the evolution of a

scalar field, T (the temperature), equal to Ts in Ω− and Tl in Ω+, such that:

{

∂Ts/∂t = ∇ · (Ds∇Ts) in Ω−,

∂Tl/∂t = ∇ · (Dl∇Tl) in Ω+,
(3)

where the subscripts s and l denote the solid and liquid phases, respectively. In general,

the diffusion constants Ds and Dl are discontinuous across the solidification front Γ . The

temperature at the solid-liquid interface is continuous, which is written as:

Ts = Tl = TΓ on Γ ,

where TΓ denotes the local interface temperature. The relation between the relevant physical

quantities at the interface is given by Gibbs-Thompson boundary condition (see e.g. [5, 6]):

TΓ = −ǫcκ − ǫvV · n, (4)

where V denotes the interface velocity field, n denotes the normal vector to the interface

and κ denotes the interface’s mean curvature. The parameters ǫc and ǫv control the strength

of surface tension forces and molecular kinetics, respectively. Finally, the normal velocity at

the interface is given by the jump in the temperature fluxes across the interface:

V · n = −(Dl∇Tl − Ds∇Ts) on Γ . (5)

2.3 Domain Representation—The Level-Set Method

The irregular geometries and, in the case of the Stefan problem, the motion of the free

boundary are described by the level-set method of Osher and Sethian [103]. This approach

represents a curve in two spatial dimensions or a surface in three spatial dimensions by

the zero-contour of a higher dimensional function, φ, called the level-set function, which is

defined as the signed distance function to Γ :

φ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−d for x ∈ Ω−,

+d for x ∈ Ω+,

0 for x ∈ Γ ,
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Fig. 2 Level-set representation of a free boundary (blue solid line) in two spatial dimensions, moving in its

normal direction, and subsequent changes in topology that are handled automatically. The level-set function

is depicted in red (Color figure online)

Fig. 3 Front-tracking representation (dots) of a free boundary (black solid line) in two spatial dimensions,

moving in its normal direction, and subsequent changes in topology that require surgical procedures and extra

logics. The advantage of front-tracking methods is their accuracy

where d is the Euclidean distance to Γ . Under a velocity field V, the interface deforms

according to the level-set equation:

∂φ

∂t
+ V · ∇φ = 0. (6)

The main advantage of an implicit representation of a moving front is its ability to naturally

handle changes in topology, as illustrated in Fig. 2. This is in contrast to explicit methods,

e.g. the front-tracking method of Tryggvason et al. [64, 65, 115, 147, 154] for which changes

in topology require extra work (see Fig. 3). We note, however, that front-tracking methods

have the advantage of accuracy (front-tracking preserve volumes better than level-set meth-

ods for the same grid resolution) and we refer the interested reader to the work of [18] for a

front-tracking method that handle changes in topology. Volume of fluid methods also adopt

an implicit formulation using the volume fraction of one phase in each computational cells

(see e.g. [9, 12, 13, 34, 36, 55, 100, 117, 140, 155, 162, 164] and the references therein).

These methods have the advantage of conserving the total volume by construction. They are

however more complicated than level-set methods in three spatial dimensions and it is dif-

ficult to compute accurate smooth geometric properties such as curvatures from the volume

fraction alone, although we refer the reader to the interesting work of Popinet on this issue

[111]. Also, we note that phase-field models have been extensively used in the case of solidi-

fication processes [20, 37, 58, 67–69, 94, 112, 113]. However, these models do not represent

the interface in a sharp fashion, which in turn leads to a degradation of the accuracy where

it matters most and impose sometimes stringent time step restrictions.
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The level-set function can also be used to compute the normal to the interface n and the

interface’s mean curvature κ :

n = ∇φ/|∇φ| and κ = ∇ · n.

To keep the values of φ close to those of a signed distance function, i.e. |∇φ| = 1, the

reinitialization equation introduced in Sussman et al. [141]:

∂φ

∂τ
+ S(φo)

(

|∇φ| − 1
)

= 0, (7)

is traditionally iterated for a few steps in fictitious time τ . Here S(φo) is a smoothed-out

signum function and φ0 is the value of the level-set function at the beginning of the reini-

tialization procedure.

3 The Ghost-Fluid Method for the Diffusion and the Poisson Equations

The Ghost-Fluid method (GFM), introduced in Fedkiw et al. [42] in the case of compress-

ible gas dynamics, is a numerical technique designed to apply sharp boundary conditions at

irregular domains and free boundaries. The basic idea is to consider two copies of the solu-

tion and, by defining ghost values that implicitly capture jump conditions, avoid numerically

differentiating across discontinuities. This methodology has been applied to a wide range of

applications including deflagration in Fedkiw et al. [43], compressible/incompressible flu-

ids in Caiden et al. [24], flame propagation in Nguyen et al. [97], the Poisson equation with

jump conditions in Liu et al. [78], free surface flows in Enright et al. [40], as well as in

computer graphics [39, 96]. It was developed for the Poisson and the diffusion equations

on irregular domains with Dirichlet boundary conditions and their applications in Gibou et

al. [44–47]. In what follows, we describe the algorithms, point out common misconceptions

and describe how to properly implement those methods. We also note that several authors

have proposed both different and similar approaches to these types of problems, follow-

ing the pioneer work of Shortley and Weller; see [16, 62, 63, 75, 84, 107–109, 129, 153,

169] and the references therein. Finally, we point out that the definition of the ghost nodes

does not seek to impose conservative properties at the discrete level and therefore offer

more flexibility is designing numerical schemes. It is important to note that, while conser-

vation properties are necessary in the design of numerical methods for nonlinear hyperbolic

conservation laws to guarantee the correct speed of propagation (Rankine-Hugoniot jump

condition) where shocks are present, this is not the case for Elliptic and Parabolic equations.

Therefore, even though the equations we seek to solved are based on conservation laws, ap-

proximating this condition (as opposed to enforcing it at the discrete level) is often sufficient

and allows much flexibility to design accurate, simple and efficient schemes. We also refer

the interested reader to a conservative Ghost-Fluid method for the study of detonation waves

[98].

The diffusion equation (1) is discretized in time by the Crank-Nicolson scheme:1

un+1 − 1

2

t ˜∇ · (β∇u)

n+1

= un + 1

2

t ˜∇ · (β∇u)

n

+ 1

2

t

(

Sn + Sn+1
)

,

1For stiff problems, one may prefer the first-order accurate implicit Euler method.
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Fig. 4 Definition of the ghost value uG
i+1

using a linear extrapolation. First, construct a linear interpolant

ũ(x) = ax + b of u such that ũ(0) = ui and ũ(θ
x) = uΓ . Then define uG
i+1

= ũ(
x)

where 
t is the time step and ˜∇ · (β∇u)
n

and ˜∇ · (β∇u)
n+1

are the spatial approximations

of ∇ · (β∇u) at time tn and tn+1, respectively. The discretization of the spatial operator,

including the special treatments needed at the interface, is performed in a dimension-by-

dimension fashion. Therefore, without loss of generality, we only describe the discretization

for the one-dimensional diffusion equation:

∂u

∂t
= ∂

∂x

(

β
∂u

∂x

)

+ S,

with a Dirichlet boundary condition of u(x) = uΓ (x) on the interface Γ .

The computational domain is discretized into cells of size 
x, with the grid nodes xi

located at the cells’ center. The cell edges are referred to as faces, and the two faces bound-

ing the grid node xi are located at xi± 1
2
. The numerical solution of the diffusion equation

is computed at the grid nodes and is denoted by ui = u(xi, t
n), where tn = n
t . Using

second-order accurate central difference formulas for discretizing the spatial operator, the

full discretization is written as:

un+1
i − 1

2

t

βi+ 1
2
(

un+1
i+1

−un+1
i


x
) − βi− 1

2
(

un+1
i

−un+1
i−1


x
)


x

= un
i + 1

2

t

βi+ 1
2
(

un
i+1

−un
i


x
) − βi− 1

2
(

un
i
−un

i−1


x
)


x
+ 1

2

t

(

Sn
i + Sn+1

i

)

. (8)

In order to avoid differentiating the fluxes across the interface, where the solution

presents a kink, a ghost value is used. Referring to Fig. 4, let xΓ be an interface point

between the grid points xi and xi+1, with a Dirichlet boundary condition of un
Γ at time tn

and of un+1
Γ at time tn+1, applied at xΓ . We define the ghost values (un

i+1)
G and (un+1

i+1 )G at

xi+1 across the interface at time tn and tn+1, respectively, and rewrite Eq. (8) as:

un+1
i − 1

2

t

βi+ 1
2
(

(un+1
i+1

)G−un+1
i


x
) − βi− 1

2
(

un+1
i

−un+1
i−1


x
)


x

= un
i + 1

2

t

βi+ 1
2
(

(un
i+1

)G−un
i


x
) − βi− 1

2
(

un
i
−un

i−1


x
)


x
+ 1

2

t

(

Sn
i + Sn+1

i

)

. (9)
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The ghost values (un
i+1)

G and (un+1
i+1 )G are defined by first constructing an interpolant ũn(x)

of un at time tn and another interpolant ũn+1(x) of un+1 at time tn+1 on the left of the

interface, such that ũn(0) = un
i , ũn+1(0) = un+1

i , and then defining (un
i+1)

G = ũn(
x) and

(un+1
i+1 )G = ũn+1(
x). Figure 4 illustrates the definition of the ghost cells in the case of a

linear extrapolation. Linear, quadratic and cubic extrapolations are defined by2:

Linear Extrapolation: Take ũn+1(x) = ax + b with:

• ũn+1(0) = un+1
i ,

• ũn+1(θ
x) = un+1
Γ .

Quadratic Extrapolation: Take ũn+1(x) = ax2 + bx + c with:

• ũn+1(−
x) = un+1
i−1 ,

• ũn+1(0) = un+1
i ,

• ũn+1(θ
x) = un+1
Γ .

Cubic Extrapolation: Take ũn+1(x) = ax3 + bx2 + cx + d with:

• ũn+1(−2
x) = un+1
i−2 ,

• ũn+1(−
x) = un+1
i−1 ,

• ũn+1(0) = un+1
i ,

• ũn+1(θ
x) = un+1
Γ .

In these equations, θ ∈ [0,1] refers to the cell fraction occupied by the subdomain Ω−. The

construction of ũn is similar, with the solution u and the boundary condition uΓ taken at time

tn instead of time tn+1. Similar constructions define (un+1
i )G and (un

i )
G using values to the

right of xi+1. Equation (9) gives a linear system for un+1. Likewise, the interface location

(and therefore θ ) is found by first constructing a linear or higher-order interpolant of the

level-set function φ and then finding the zero of the interpolant. Note that the quadratic

extrapolation is equivalent to the Shortley-Weller method [129].

Remark

• The approximation of the Poisson equation follows trivially from that of the diffusion

equation.

• The interpolation formulas for the construction of the different extrapolations are not well-

behaved if θ is too small. However, in this case, the interface Γ is close to a grid point,

say x∗, which in turn asserts that the solution is close to the known boundary condition

uΓ (x∗). Therefore, if the interface is too close to a grid point x∗, then we simply define

the solution at x∗ as u(x∗) = uΓ (x∗). The heuristic we have used is to do so if θ < 
x in

the case of linear extrapolations; if θ < 
x2 in the case of quadratic extrapolations; and

if θ < 
x3 in the case of cubic extrapolations.

• In the case where not enough grid points are available to construct an interpolant, a lower

degree interpolant is built. We refer the reader to the numerical tests sections for a discus-

sion on the influence of lower extrapolations on the overall accuracy.

• In the case where the interface crosses to the left and right of a grid point, the interface

boundary condition to the left and right are both used in the construction of the interpolant.

• In the case where third- or fourth-order accuracy is desired, the second-order central dif-

ferencing used in Eqs. (8) and (9) are replaced by the standard fourth-order accurate

central differencing (see [45]).

2One may prefer a Newton’s form for constructing the interpolant ũ(x).
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Fig. 5 Typical results for the Poisson equations with Dirichlet boundary conditions. The results are for

Example 3.1.1. (a) The computed solution inside Ω− (red) is decoupled from the computed solution outside

(blue). (b) Loglog plot of the error in the L∞-norm for constant (black), linear (green), quadratic (blue) and

cubic (red) extrapolations (Color figure online)

3.1 Order of Accuracy and Common Misconceptions

We briefly present the typical accuracy that can be expected for the Poisson and the diffusion

equations on irregular domains depending on the order of extrapolations. We use a conju-

gate gradient with incomplete Cholesky in the case where the linear system is symmetric

and a BiCGSTAB with an ILU preconditioning in the case where the linear system is non-

symmetric [49, 120]. We then turn our attention to common misconceptions and pitfalls in

implementing this approach.

3.1.1 Typical Results for the Poisson Equation

Consider the Poisson equation (2) on Ω = [−1,1] × [0,3] with an exact solution of u =
5 − exp(.5(1 − t)(x2 + y2 − π2

25
)). The interface is parametrized by:

{

x(α) = 0.6 cos(α) − 0.3 cos(3α),

y(α) = 1.5 + 0.7 sin(α) − 0.07 sin(3α) + 0.2 sin(7α),

where α ∈ [0,2π ]. The numerical solution is illustrated in Fig. 5(a) and the accuracy using

different extrapolations is depicted in Fig. 5(b). The order of accuracy is typically ∼ 1 for

constant extrapolations, ∼ 2 for linear extrapolations, ∼ 3 for quadratic extrapolations and

∼ 4 for cubic extrapolations.3 The reduction in accuracy for some resolutions is due to how

many grid points are available to construct the interpolant and thus how the ghost values are

defined.

3We use a time step of 
t = 
x3/2 and 
t = 
x2 to emulate a third- and a fourth-order scheme in time.
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Fig. 6 Typical results for the diffusion equations with Dirichlet boundary conditions. The results are for

Example 3.1.2. (a) The computed solution inside Ω− (red) is decoupled from the computed solution outside

(blue). (b) Loglog plot of the error in the L∞-norm for constant (black), linear (green), quadratic (blue) and

cubic (red) extrapolations (Color figure online)

3.1.2 Typical Results for the Diffusion Equation

Consider the diffusion equation, Eq. (1), on Ω = [−1,1]× [−1,1] with an exact solution of

u = sin(πx)+sin(πy)+cos(πx)+cos(πy)+x6 +y6. The interface is star shaped, given by

the set of points where φ = r − 0.5 − y5+5x4y−10x2y3

3r5 = 0, and r =
√

x2 + y2. The numerical

solution is illustrated in Fig. 6(a), and the accuracy using different extrapolations is depicted

in Fig. 6(b). The order of accuracy is typically ∼ 1 for constant extrapolations, ∼ 2 for linear

extrapolations, ∼ 3 for quadratic extrapolations and ∼ 4 for cubic extrapolations.

3.1.3 Nature of Linear Systems and Accuracy on Gradients

In [45], it was shown that defining the ghost point (un+1)G by a linear extrapolation pro-

duces a symmetric linear system and that the linear system is non-symmetric for higher-

order extrapolations. Also, the degree of the interpolation is important for the accuracy of

the method. We refer the interested reader to Ng et al. [95], which concluded that a linear

interpolation produces second-order accurate solutions and first-order accurate gradients,

while a quadratic extrapolation produces second-order accurate solutions and second-order

accurate gradients. This was first observed in [85]. We note that the location of the interface

must also be found using a quadratic interpolation of the level-set function in the vicinity of

the interface if second-order accurate gradients are to be calculated. Figure 7 demonstrates

that the error of the gradient is largest close to the interface regardless of the order of inter-

polation for the interface location and extrapolation for the ghost values. This will be part

of the reasons why adaptive grids where smaller cells are located near the interface are de-

sirable (see Sect. 5). Finally, the condition number of the linear system is affected by the

choice of definition of the ghost values. Figure 8 depicts the typical trend. In this work we

use a PCG (symmetric case) and a BiCGSTAB (non-symmetric case) solvers.
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Fig. 7 Typical error for the gradients of the solution in the L∞ norm. The ghost cell values are defined by

linear extrapolation of the solution in the top figures and by quadratic extrapolation of the solution in the

bottom figures. The interface location is found by linear interpolation of φ in the left figures and by quadratic

interpolation of φ in the right figures. Note that the errors are normalized

Fig. 8 Condition number versus

the grid size for a typical

two-dimensional Poisson solver

in irregular domains. The four

curves illustrate the impact of the

extrapolation used to define the

ghost values (first parameter in

the legend’s caption) and the

order of the interpolation for

finding the interface location

(second parameter). The two

(superimposed) curves with the

smallest condition numbers are

associated with the linear

extrapolation for defining the

ghost cells
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Table 1 (a) Linear extrapolation

definition of the ghost cell

producing second-order accuracy

in the L∞-norm. (b) The

boundary condition is incorrectly

imposed at time tn instead of

tn+1 leading to first-order

accuracy in the L∞-norm

Grid ‖u − uh‖1 Order ‖u − uh‖∞ Order

(a) Correctly imposing the boundary condition at tn+1

322 0.0001061 – 0.0002057 –

642 4.039×10−5 1.39 7.949×10−5 1.37

1282 8.959×10−6 2.17 1.955×10−5 2.02

2562 2.344×10−6 1.93 4.766×10−6 2.04

(b) Incorrectly imposing the boundary condition at tn

322 0.01892 – 0.04412 –

642 0.01048 0.852 0.02450 0.848

1282 0.005483 0.934 0.01289 0.926

2562 0.002823 0.958 0.006569 0.973

3.1.4 Importance of Time Dependent Boundary Conditions

It is important to note that the boundary condition at the interface must be imposed at the

appropriate time. I.e. we set un+1
Γ = uΓ (x, tn+1) when building the linear system and set

un
Γ = uΓ (x, tn) when evaluating the right-hand-side of Eq. (9). Setting the boundary condi-

tion as un+1
Γ = uΓ (x, tn) in the linear system introduces a lagging in time (i.e. a first order

perturbation) and thus a drop in the accuracy from second-order to first-order. We propose

here an example and refer the interested reader to [45] for a discussion on the influence of

perturbations in the location of the boundary condition on the accuracy of the method.

Consider an irregular domain, Ω−, described in polar coordinates as:

{

x(θ) = 0.02
√

5 + (0.5 + 0.2 sin(5θ)) cos(θ),

y(θ) = 0.02
√

5 + (0.5 + 0.2 sin(5θ)) sin(θ),

where θ ∈ [0,2π ], and an exact solution of u = exp(−t + x + y) in Ω− and u = 0 in Ω+.

The right-hand-side S in Eq. (1) is defined accordingly. We solve the diffusion equation to

a final time of t = 0.1, in this case defining the ghost cell by linear extrapolation. Table 1(a)

shows that this treatment produces second-order accurate solution in the L∞-norm. In con-

trast, if the boundary condition is imposed as uΓ = uΓ (tn,x), Table 1(b) shows that the

solution process drops from second-order accuracy to first-order accuracy.

3.1.5 The Dimension-by-Dimension Framework

One of the advantages of the Ghost-Fluid Method is the ability to define the ghost values in

a dimension-by-dimension framework. This process is illustrated in two spatial dimensions

in Fig. 9, where two ghost values Gx and Gy need to be defined in the x- and y-directions,

respectively. A misconception set forth in [166] is that the values Gx and Gy need to be

the same. Imposing this assumption, the authors conclude that multidimensional extrapo-

lations are necessary, which in turn reduces the computational efficiency of the method.

This assumption, however, is incorrect. The two values Gx and Gy may be different, can

be computed independently in a dimension-by-dimension framework and only require one-

dimensional extrapolation procedures.
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Fig. 9 Procedure to define the ghost cells in two spatial dimensions, for each spatial direction independently:

first construct a one-dimensional interpolant ũ(ξ) using the boundary condition at the interface and the value

of u at as many other grid nodes as it is necessary to achieve the desired accuracy. Then, define uG
i+1

= ũ(
ξ),

where 
ξ is the distance between two adjacent grid nodes in the spatial direction considered. In the schematic

above, the ghost value Gx , used in the discretizations in the x-direction, is constructed using the interface

value UΓx and a subset of the values of u at the blue triangles’ locations; whereas the ghost value Gy , used in

the discretizations in the y-direction is, constructed using the interface value UΓy and a subset of the values

of u at the red circles’ locations (Color figure online)

3.1.6 Influence of High Frequency Modes

In [166], Zhang and Liu pose a proof that incorrectly claims that the methods in Gibou et al.

[47] would give lower order accuracy on certain types of problems and set forth an example

problem where [47] should then obtain lower order accuracy. Although their conclusions are

incorrect, they nonetheless point out interesting facts about the behavior of the ghost-fluid

method for parabolic and elliptic problems.

According to [166], the drop in the order of accuracy in the method of Gibou et al.

[45, 47] can be observed by considering numerical examples where the solution contains

high frequencies. However, in what follows, we present numerical evidence that the order

of accuracy of the methods proposed in [45, 47] are consistent with the conclusions of the

authors in the case of the numerical tests of [166].

Consider an irregular domain defined by a disk centered at the origin with radius r = π/5

and an exact solution defined as:

u =
{

exp(a(1 + ct)(x · x − r2)) − 1, x · x > r2,

0, x · x ≤ r2,
(10)

with c = 0.01 and a = 0.5. The source term S in Eq. (1) is derived accordingly. The diffu-

sion coefficient β is taken to be constant and equal to β = 10−1,10−2,10−3,10−4,10−5 and

10−6. Two types of extrapolations for defining the ghost values are considered: linear and

quadratic. The initial and final times are taken to be tinitial = 20 and tfinal = 21, respectively.

Tables 2, 3 and 4 give the results obtained in the case of linear extrapolations, while Tables 5,

6 and 7 give the results in the case of quadratic extrapolations. It is clear that the method

with linear extrapolation is second-order accurate in the L∞-norm, while the method with

quadratic extrapolation is third-order accurate in the L∞-norm, as stated in [45, 47]. We

draw attention to the fact that accuracy analyses based on a Taylor-type expansion, as in
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Table 2 Error norms for the

example of Sect. 3.1.6 Grid ‖u − uh‖1 Order ‖u − uh‖∞ Order

(a) Linear extrapolation—β = 10−1

322 0.0002446 – 0.0004627 –

642 4.137×10−5 2.56 0.0001310 1.82

1282 1.484×10−5 1.48 3.739×10−5 1.81

2562 3.893×10−6 1.93 9.198×10−6 2.02

5122 6.805×10−7 2.52 2.177×10−6 2.08

(b) Linear extrapolation—β = 10−2

322 0.0001050 – 0.0004459 –

642 1.868×10−5 2.49 0.0001290 1.79

1282 6.016×10−6 1.63 3.692×10−5 1.81

2562 1.556×10−6 1.95 9.133×10−6 2.02

5122 2.741×10−7 2.51 2.172×10−6 2.07

Table 3 Error norms for the

example of Sect. 3.1.6 Grid ‖u − uh‖1 Order ‖u − uh‖∞ Order

(a) Linear extrapolation—β = 10−3

322 4.110×10−5 – 0.0003302 –

642 8.355×10−6 2.30 0.0001186 1.48

1282 2.138×10−6 1.97 3.491×10−5 1.76

2562 5.327×10−7 2.00 8.887×10−6 1.97

5122 9.763×10−8 2.45 2.160×10−6 2.04

(b) Linear extrapolation—β = 10−4

1282 7.84×10−7 – 2.48×10−5 –

2562 1.81×10−7 2.11 7.87×10−6 1.66

5122 3.59×10−8 2.34 2.10×10−6 1.90

10242 9.29×10−9 1.95 5.63×10−7 1.90

20482 2.243×10−9 2.05 1.397×10−7 2.01

[166], can be misleading. Indeed, Taylor-type analyses can indicate the minimum order of

accuracy for a method, but cannot be used to conclude the highest achievable order of accu-

racy, as pointed out in [45, 71, 82].

Remark Some trends, pointed out in [166], are interesting. What can be observed from

Tables 2–7 is that the smaller the diffusion coefficient β , the finer resolution is needed to

reach the asymptotic regime. For example, Table 2(a) indicates that the asymptotic regime

is reached for grids 2562 and finer in the case where β = 10−1, while Table 7(b) shows that

a much finer grid of 20482 is needed in the case of β = 10−6. However, this trend is natural.

A small diffusion coefficient, β , in this problem means that the effect of the source term

S dominates and, in order to see the effects of diffusion, one needs more accuracy, more

precision and thus smaller grid sizes. This is quite similar to turbulence modeling where, to

accurately model small viscosity, one needs incredibly fine grids, which are beyond current

computational resources. In fact, researchers in turbulence do not claim to, or even try to,

accurately simulate such a small viscosity. They instead model it by either adding special
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Table 4 Error norms for the

example of Sect. 3.1.6 Grid ‖u − uh‖1 Order ‖u − uh‖∞ Order

(a) Linear extrapolation—β = 10−5

322 1.01×10−6 – 1.16×10−5 –

642 3.66×10−7 1.47 8.72×10−6 0.420

1282 1.89×10−7 0.956 8.68×10−6 0.006

2562 5.86×10−8 1.69 4.77×10−6 0.86

5122 1.28×10−8 2.19 1.69×10−6 1.49

10242 3.16×10−9 2.02 5.18×10−7 1.71

20482 7.77×10−10 2.02 1.31×10−7 1.98

(b) Linear extrapolation—β = 10−6

322 2.99×10−6 – 2.17×10−5 –

642 1.21×10−6 1.30 1.56×10−5 0.469

1282 5.67×10−7 1.10 1.28×10−5 0.288

2562 2.17×10−7 1.38 5.58×10−6 1.20

5122 8.47×10−8 1.36 1.83×10−6 1.60

10242 2.451×10−8 1.79 5.23×10−7 1.81

20482 5.918×10−9 2.05 1.30×10−7 2.01

Table 5 Error norms for the

example of Sect. 3.1.6 Grid ‖u − uh‖1 Order ‖u − uh‖∞ Order

(a) Quadratic extrapolation—β = 10−1

322 2.233×10−6 – 1.638×10−5 –

642 6.252×10−7 1.84 3.519×10−6 2.22

1282 3.369×10−8 4.21 3.640×10−7 3.27

2562 6.004×10−9 2.49 4.478×10−8 3.02

5122 5.898×10−10 3.35 5.187×10−9 3.11

(b) Quadratic extrapolation—β = 10−2

322 2.030×10−6 – 1.632×10−5 –

642 3.094×10−7 2.71 3.434×10−6 2.25

1282 1.922×10−8 4.01 3.628×10−7 3.24

2562 2.606×10−9 2.88 4.468×10−8 3.02

5122 2.679×10−10 3.28 5.068×10−9 3.14

tensors or changing the way the convection term (related to the source term S in the present

paper) is treated (see the LES discussion in [159]).

In [166], the authors conclude that a ghost-fluid approach should be avoided for simu-

lating the Navier-Stokes equations for very small viscosity, because the asymptotic regime

requires computationally intractable fine grids. However, in our view, their conclusions are

misleading. First, one should note that even on very coarse grids, for which the asymptotic

regime is not reached at all, the maximum error coming from the diffusion part is quite small.

For example, Table 4(b) gives a maximum error on the order of 10−5 on a 64 × 64 grid in

the case of a linear extrapolation, while Table 7(b) indicates a maximum error of the order

of 10−8 in the case of a quadratic extrapolation. Second, in the case of the Navier-Stokes

equations, the numerical errors induced by the approximations of the momentum term and
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Table 6 Error norms for the

example of Sect. 3.1.6 Grid ‖u − uh‖1 Order ‖u − uh‖∞ Order

(a) Quadratic extrapolation—β = 10−3

322 1.495×10−6 – 1.427×10−5 –

642 1.663×10−7 3.17 2.734×10−6 2.38

1282 1.328×10−8 3.65 3.503×10−7 2.96

2562 1.154×10−9 3.53 4.405×10−8 2.99

5122 1.300×10−10 3.15 5.622×10−9 2.97

(b) Quadratic extrapolation—β = 10−4

1282 7.612×10−9 – 2.707×10−7 –

2562 6.385×10−10 3.58 4.052×10−8 2.74

5122 6.649×10−11 3.26 8.556×10−9 2.24

10242 5.140×10−12 3.69 7.496×10−10 3.51

20482 5.555×10−13 3.21 9.177×10−11 3.03

Table 7 Error norms for the

example of Sect. 3.1.6 Grid ‖u − uh‖1 Order ‖u − uh‖∞ Order

(a) Quadratic extrapolation—β = 10−5

322 4.95×10−8 – 5.22×10−7 –

642 1.01×10−8 2.29 1.99×10−7 1.39

1282 2.30×10−9 2.13 8.76×10−8 1.19

2562 2.98×10−10 2.95 2.43×10−8 1.85

5122 3.18×10−11 3.23 4.89×10−9 2.31

10242 2.98×10−12 3.42 6.63×10−10 2.88

20482 3.22×10−13 3.21 8.46×10−11 2.97

(b) Quadratic extrapolation—β = 10−6

322 5.04×10−9 – 5.36×10−8 –

642 1.06×10−9 2.25 2.16×10−8 1.31

1282 3.10×10−10 1.77 1.38×10−8 0.65

2562 6.43×10−11 2.27 5.79×10−9 1.25

5122 1.07×10−11 2.59 1.81×10−9 1.68

10242 1.51×10−12 2.82 4.65×10−10 1.96

20482 1.98×10−13 2.93 6.27×10−11 2.89

the treatment of the incompressibility condition are likely to dwarf the error produced by

the viscous term. In addition, a viscosity of the order of 10−6 corresponds to highly turbu-

lent flows, for which extremely fine grids are required to capture the small length scale of

the problem. In fact, in those regimes, a turbulence model would use coarser grids, as dis-

cussed above, and the error produced by the model itself would dominate the treatment of

the viscous term.
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4 A Level-Set Approach to the Stefan Problem

In [46], Gibou et al. presented a methodology based on the level-set method and the ghost-

fluid method to solve the Stefan problem. In [29], Chen et al. had earlier proposed a similar

methodology, except that the treatment of the boundary conditions was different. Kim et al.

applied that framework to the simulation of the solidification processes in [70]. We note that

the first level-set approach to solve the Stefan problem was given in Sethian and Strain [126].

In that work, the diffusion equation was solved using a boundary integral approach. Other

authors have proposed successful approaches to both the Stefan problem and its extension

to the solidification of binary alloys [7, 52, 142, 143, 152, 161, 163, 165, 168]. In the case

of the Stefan problem, the two main ingredients are:

1. Solving the equations in (3) for the temperature field T on both side of the free boundary,

while imposing at the front the Dirichlet boundary condition given by the Gibbs-Tompson

condition (4).

2. Capturing the interface motion using the level-set equation (6) with a given velocity field

defined by Eq. (5).

However, one additionally needs to ensure that valid values of the solutions on each side

of the interface are defined in the appropriate domains. This is done with extrapolation

procedures, following Aslam [8] and described in Sect. 4.2. Also, in the case of the design

of high-order accurate schemes, it is necessary to guarantee that time evolution procedures

are adequate; this will be described in Sect. 4.3. Finally, reinitialization schemes are needed

in the framework of the level-set method, and care must be taken to guarantee their proper

behavior. We point out common ill-treatments and their fixes in Sect. 4.4.

4.1 Algorithm to Solve the Stefan Problem

The methodology introduced in Sect. 3 to solve the diffusion equation can be applied inde-

pendently to each of the subdomains, Ω− and Ω+, since their respective solutions can be

decoupled using the ghost-fluid approach and the Dirichlet boundary condition (4). There-

fore two copies of the temperature, T n
s and T n

l , are defined on every grid node of the compu-

tational domain Ω . They represent the temperature at time step tn in the solid region, Ω−,

and in the liquid region, Ω+, respectively. Then the diffusion equations in (3) are solved in

both Ω− and Ω+ with the new interface location given by the zero-contour of φ at time

tn+1. Dirichlet boundary conditions are imposed on the interface using the Gibbs-Thomson

relation in Eq. (4). When computing the Gibbs-Thomson relation, we use the value of the

normal velocity V · n at time tn, but the interface curvature κ is computed at time tn+1 to

reflect the updated morphology of the front. On the boundary of the computational domain,

∂Ω , either Dirichlet or Neumann boundary conditions can be imposed.

As detailed in [45, 46] and illustrated in Fig. 10, the interface may sweep some grid

nodes from time tn to tn+1, so the temperature at these nodes needs to be extrapolated to

define a valid right-hand-side in the Crank-Nicholson formula (9). Also, as noted in [1, 2],

the interface’s velocity, given by Eq. (5), is only valid exactly at the interface. However, in

the discretization of the level-set equation, Eq. (6), a valid velocity field is required at the

nodes in a small band near the interface. Therefore, the velocity field must be extended to the

nodes in a small band on each side of the interface by constant extrapolation in the normal

direction. The rationale for extrapolations in the normal direction is based on the fact that

the interface propagates only in its normal direction.4 The extrapolation procedures we use

4The tangential component of a velocity field changes a curve’s parameterization (if any), not its location.



J Sci Comput

Fig. 10 Interface at time tn (red

solid line) and tn+1 (red dashed

line). The black solid disks

represent grid nodes that are

swept over by the interface

between the two consecutive time

steps and where valid values of

T n are needed in order to

evaluate the right-hand-side in

Eq. (9). Those values are

obtained by extrapolating T n

from φn ≤ 0 to φn > 0 in the

direction normal to the interface

(black dotted lines) (Color figure

online)

Algorithm 1 Procedure to Solve the Stefan Problem

1. Initialize φ as a signed distance function,

2. Initialize T 0
s in Ω−, and T 0

l
in Ω+ at t0,

3. while (the final time is not reached)

4. tn := tn+1,

5. Quadratically extrapolate, in the normal direction, T n
s from Ω− to Ω+ and T n

l
from Ω+ to Ω−,

6. Calculate the velocity V at grid nodes and constantly extrapolate it in a band around Γ ,

7. Evolve the interface by solving Eq. (6) for φn+1, and reinitialize using (7),

8. Solve the diffusion equations in Ω− and Ω+ for T n+1
s and T n+1

l
, using the

Gibbs-Thomson relation (4) as the Dirichlet boundary condition on Γ ,

8. end while

are those of [8], detailed in Sect. 4.2. The procedure for solving the Stefan problem follows

the algorithm given in Algorithm 1.

4.2 High-Order Extrapolation—Aslam’s Technique

As mentioned in Sect. 4.1, it is necessary to extrapolate scalar quantities across an interface

in the normal direction. In the case of defining the velocity field in a band around the inter-

face, a constant extrapolation procedure is sufficient. However, in the case of defining a valid

right-hand-side for Eq. (9), high-order extrapolations are necessary. Such high-order extrap-

olations in the normal direction are performed in a series of steps, as proposed in Aslam [8].

For example, suppose that one needs to generate a cubic extrapolation of a scalar quantity

Q from the region where φ ≤ 0 to the region where φ > 0. The procedure is to first compute

Qnnn = ∇(∇(∇u · n) · n) · n in the region φ ≤ 0 and then extrapolate it across the interface

in a constant fashion by solving the following partial differential equation:

∂Qnnn

∂τ
+ H(φ + offset)∇Qnnn · n = 0,

where H is the Heaviside function and offset accounts for the fact that Qnnn is not nu-

merically well-defined in the region where φ ≥ offset. Typically, in the case where Qnnn

is computed by central differencing, we take offset= 2
√


x2 + 
y2 .
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The value of Q across the interface is then found by solving the following three partial

differential equations. First solve

∂Qnn

∂τ
+ H(φ)(∇Qnn − Qnnn) = 0,

defining Qnn in such a way that its normal derivative is equal to Qnnn. Then solve

∂Qn

∂τ
+ H(φ)(∇Qn − Qnn) = 0,

defining Qn in such a way that its normal derivative is equal to Qnn. Finally solve

∂Q

∂τ
+ H(φ)(∇Q − Qn) = 0,

defining Q in such a way that its normal derivative is equal to Qn. These equations are

solved using a fifth-order accurate WENO scheme [60, 61, 79] in space and a third-order

accurate TVD scheme [130] in fictitious time τ . This step is computationally expensive and

it is therefore important to localize this process as much as possible: We use a few iterations

in fictitious time (typically 15), since one usually only seeks to extrapolate the values of Q in

a narrow band of a few grid cells around the interface. The operations can also be performed

in a small band near the interface to improve the efficiency of this step. In addition, one may

use a ‘local’ approach to store and compute the desired quantities. We refer the interested

reader to the work of Brun et al. [21], who have introduce a truly local level-set method using

hash-table constructs. In particular, their approach allows for the storage of only a band of

grid points around the free boundary, while accessing the data with a O(1) complexity. Their

method thus combine efficiency in CPU as well as in memory requirement for local level-set

methods. We will also discuss an efficient approach based on Quadtree/Octree data structure

in Sect. 5. Figure 11 illustrates the constant, linear, quadratic and cubic extrapolation results

obtained with this technique.

Remark In the illustrative example above, we presented a third-order accurate extrapolation.

We note that a third-degree extrapolation will be needed only in the case where an overall

fourth-order solution is computed. Therefore, since Q is fourth-order accurate in that case,

its third derivative is convergent.

4.3 Time Discretization

In [45], Gibou and Fedkiw pointed out that special care is needed when defining the in-

terface’s normal velocity and evolving the level-set equation in time. They considered the

Frank-Sphere solution in one spatial dimension on a domain Ω = [−1,1] with Dirichlet

boundary conditions at the domain boundaries. The Frank sphere solution in one spatial

dimension describes a slab of radius R(t) = S0

√
t , for which the exact solution takes the

form:

T =
{

0, s ≤ S0,

T∞(1 − F(s)

F (S0)
), s > S0,

where s = |x|/
√

t . In one spatial dimension F(s) = erfc(s/2), with erfc(z) =
2
∫ ∞

z
e−t2

dt/
√

π .
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Fig. 11 Extrapolation results using the methodology of Aslam [8] with different degree of extrapolations.

The red lines represent the iso-contour of the solution, which is defined analytically inside the circular domain

(blue line) and extrapolated outside (Color figure online)

Choosing the initial time to be tinitial = 1 and T∞ = −0.5, the initial radius is defined

through the definition of the normal velocity, Vn = −D[∇T ]|Γ · n, as S0 ≈ .86. The initial

interface is defined using φ = |x| − S0 and the solution is computed until tfinal = 1.5. The

Crank-Nicholson scheme in time is used with a time step restriction of 
t ≈ 
x3/2 to emu-

late a third-order accurate scheme in time.5 Also, a cubic extrapolation is used to define the

ghost values. However, this method produces results that are only second-order accurate, as

shown in Fig. 12(a).

This lower accuracy originates from the lack of consistency in the definition of Vn+1
n . For

example to approximate the one-dimensional equation:

dφ

dt
= Vn(φ)|∇φ|,

with the Crank-Nicholson scheme, evolving φ from time tn to time tn+1, the following three

steps are performed:

1. Use Vn
n(φ

n) to evolve φn to φn+1
temp with an Euler step.

2. Use Vn+1
n (φn+1

temp) to evolve φn+1
temp to φn+2 with an Euler step.

3. Define φn+1 = (φn + φn+2)/2.

5In practice a third-order accurate scheme in time should be chosen.
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Fig. 12 Error analysis in the L∞-norm for the one-dimensional Frank sphere solution of Sect. 4.3. The

symbols represent the errors of the numerical solution on a log-log scale, and the solid lines depict the least

square fit with slope −2.18 (a) and −3.02 (b)

In the case of the Stefan problem, the normal velocity at time tn+1 needs to satisfy the

relation Vn+1
n = Vn+1

n (φn+1). Therefore the Vn+1
n from step 2 above needs to be consis-

tent with the φn+1 computed in step 3, which may not be the case. To solve this prob-

lem steps 2 and 3 are iterated until the normal velocity at time tn+1 satisfies the relation

Vn+1
n = Vn+1

n (φn+1) = Vn((φ
n + φn+2)/2) to some tolerance. In practice, the tolerance is

taken to be 10−8, and typically 3 or 4 iterations are needed. Figure 12(b) demonstrates that

such a time discretization produces a third-order accurate solution.

4.4 Level-Set Evolution and Reinitialization

The level-set advection equation (6) and the reinitialization equation (7) are discretized with

a HJ-WENO scheme in space [60, 61, 79] and a TVD-RK3 in time [130]. Gibou and Fedkiw

noted in [45] that the solution of the reinitialization equation is only second-order accurate

in the L∞-norm, despite the fact that the numerical approximations used are fifth-order ac-

curate in space. Russo and Smereka also pointed out that the original interface location is not

preserved during the course of solving the reinitialization equation. They then corrected this

anomaly by imposing explicitly in the numerical method the correct initial location of the

rarefaction wave solution [118]. Later, Du Chene et al. extended this method to fourth-order

accuracy in the L∞-norm and showed that curvature computations are second-order accu-

rate in the L∞-norm [30]. Figure 13 illustrates the difference in the computation of the inter-

face’s mean curvature between the traditional HJ-WENO scheme of [60] and the modified

HJ-WENO scheme of [30]. Min and Gibou also used the idea of Russo and Smereka with

slight modifications in the context of adaptive mesh refinement [90], and Min pointed out

that it is advantageous in terms of speed and memory to replace the traditional Runge-Kutta

scheme in time with a Gauss-Seidel iteration of the forward Euler scheme [88]. Finally, we

mention that other techniques can be used to reinitialize φ as a distance function [31, 54,

124, 125, 148–150, 167], each with their pros and cons. We refer the interested readers to

the book by Osher and Fedkiw [101] as well to the book by Sethian [127] for more details

on the level-set method.
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Fig. 13 Comparison of the isocontour of the mean curvature for circular (2D) and spherical (3D) interfaces

using the HJ-WENO scheme from Jiang and Peng [60] and the modified HJ-WENO scheme of Du Chéné et

al. [30]

4.5 Accuracy of the Stefan Problem

Consider the Stefan problem in a domain [−1,1] × [−1,1] with Dirichlet boundary con-

ditions at the domain’s boundary. In two spatial dimensions, the Frank sphere solution de-

scribes a disk of radius R(t) = S0

√
t parameterized by S0. The exact solution takes the

form:

T =
{

0, s ≤ S0,

T∞(1 − F(s)

F (S0)
), s > S0,

where s = |x|/
√

t , and with T∞ and S0 related by the jump condition Vn = −D[∇T ]|Γ · n.

In two spatial dimensions F(s) = E1(s
2/4), with E1(z) =

∫ ∞
z

(e−t/t)dt . We choose the ini-

tial time to be tinitial = 1 and the initial radius to be S0 = 0.5, hence defining T∞ ≈ −0.15.

Figure 14(a) depicts snapshots of the interface evolution and Fig. 14 (b) presents the accu-

racy results for the first-order accurate and the third-order accurate schemes of [47] and [45],

respectively.
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Fig. 14 Two-dimensional Frank sphere solution of Sect. 4.5. (a) Interface evolution at different times and

(b) accuracy in the L∞-norm for the method of [47] and [45] versus the number of grid points in a log-log

scale. The open symbols are the numerical errors and the solid lines are the least-square fits with slope −0.80

for the method of [47] and −3.07 for the method of [45], respectively

Qualitative Behavior In [46], Gibou et al. described the effects of surface tension,

anisotropy, diffusion parameters and compared non-trivial crystal growth to solvability the-

ory. For the sake of presenting similar results once only, we will show the typical results in

the case of adaptive grids in Sect. 8, noting that the results on adaptive grids are identical to

those on uniform grids, with an obvious gain in efficiency.

5 Adaptive Mesh Refinement—Node-Based Approach on Quadtrees/Octrees

5.1 Introduction

The problems considered so far were discretized on uniform grids. Elliptic and parabolic

problems produce solutions that are smooth except near boundaries, where a combination of

Dirichlet boundary conditions and diffusion coefficients may introduce jumps in the solution

gradients (and sometimes the solution itself). We also showed in Sect. 3.1.3 that the accuracy

of the numerical solution may deteriorates near the irregular domain’s boundary. In addition,

in the case where the solution varies rapidly in narrow regions, it is very desirable to refine

the grid in that region only while keeping a coarser grid structure in the parts of the domain

where the solution is known to be smooth. Finally, in the large majority of applications

modeling diffusion dominated phenomena, the region where the solution varies rapidly is

only located near the boundary of the irregular domain. For these reasons, it is desirable to

design adaptive meshing strategies that enable the ability to refine the grid near the interface

while coarsening the grid away from it.

Several strategies for solving partial differential equations on adaptive meshes have been

introduced in the past several decades. Unstructured meshes used in the finite element

method are extremely successful in structural mechanics where deformations are small.

However, in the case of free boundary problems, the high cost of regularly reconstructing a

boundary fitted mesh is computationally inefficient. Nevertheless, authors have successfully
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analyzed Stefan-type problems for simulating dendritic growth; see e.g. [52, 168] and the

references therein.

In the case of Cartesian grids, the first work to consider adaptive mesh refinement was

that of Berger and Oliger [15]. In this work, a coarse uniform grid discretizes the computa-

tional domain and blocks of uniform grids are then recursively added as needed. Numerical

methods for a large class of partial differential equations have been introduced using this

framework; see e.g. [14, 85, 138] and the references therein. More recently, quadtree and

octree data structures have been preferred [3], since they allow the grid to be continuously

refined without being bound by blocks of uniform grids. In the case where the equations

considered are those of fluid dynamics, for which finite volume approaches are the state-of-

the-art, a cell-centered approach is preferred. This is due mainly to the fact that the numerical

approximations of the gradient and the divergence operators conserve their analytical ‘mi-

nus transpose’ property, which in turn guarantees stability properties. Several works have

used this cell-centered approach for the simulation of fluids; see e.g. [80, 81, 110] and the

references therein. We note that block structured AMR solvers, aided by efficient multigrid

solvers (see [32] and the references therein), have advantages in that the entire grid struc-

ture may be stored efficiently, which may speed up the execution time. However, they do

not have the flexibility of Octrees and require more grid points and therefore computational

time. We also refer the interesting work of [22] that discusses high performance computing

using octrees and the work of [145] on an efficient multigrid method on Octree grids.

Finite difference approaches do not have the ‘minus transpose’ properties on adaptive

meshes, and special projection schemes must be used to ensure numerical stability [89].

However, in the case of elliptic and parabolic problems, finite difference schemes can be

highly efficient. In particular, Min, Gibou and co-workers introduced a simple framework for

discretizing standard operators on quadtree/octree [27, 89, 91]. In this framework, the data

is sampled at the cells’ vertices, and finite difference schemes can be developed to obtain

second-order accurate solution in the L∞-norm while considering arbitrary quadtree/octree

grids. In addition, this approach has the advantage of producing second-order accurate

gradients in the L∞-norm. This property is especially beneficial in the case of diffusion-

dominated phenomena like the Stefan problem, since the solution’s gradients eventually

determine the accuracy of the method (through the definition of the interface velocity (5)).

5.2 Spatial Discretization and Refinement Criterion

Quadtrees used in two spatial dimensions and octrees used in three spatial dimensions are

standard data structures described in detail in Samet [121, 122]; herein, we present only the

basics. Referring to Fig. 15, a single quadtree cell covers the entire two-dimensional domain

and is associated to the root of the tree. Subsequently, cells are recursively split into four

children until the desired size of the smallest cells is achieved. The process is identical in

three spatial dimensions, except that cells are split into eight children. By definition, the

level of the root cell is zero and is incremented by one for each new generation of children.

Finally, a tree is said to be non-graded if the size difference between adjacent cells is not

constrained; this impacts the ease of mesh generation and, to some extent, the computational

efficiency [93, 156].

A meshing procedure that seeks to place the smallest cells near the boundary of the

irregular domain and to coarsen the grid away from it is straightforward in cases where

the domain is described implicitly. In [135], Strain proposed a criteria based on the Whit-

ney decomposition. For a general function φ : Rn → R with Lipschitz constant Lip(φ), the
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Fig. 15 Discretization of a two-dimensional domain (left) and its quadtree representation (right). The entire

domain corresponds to the root of the tree (level 0). Each cell can then be recursively subdivided further into

four children. In this example, the tree is non-graded, since the difference of level between some adjacent

cells exceeds one

Whitney decomposition was later extended by Min in [87] to the following. Starting from

the root cell, split any cell C for which:

min
v∈vertices(C)

∣

∣φ(v)
∣

∣ ≤ Lip(φ) · diag-size(C), (11)

where diag-size(C) refers to the length of the diagonal of the current cell C and v refers to a

vertex (node) of the current cell. In the case of a free boundary problem, the grid Gn at time

tn for which the smallest cells are on the interface Γ n, must be adapted to a new grid Gn+1

at time tn+1 to follow the evolution of the interface, i.e. one must impose that the smallest

cells are on Γ n+1. Algorithm 2 gives the details of how adaptive grids are generated. In this

algorithm, φ̃n+1 : Rn → R represents the level-set function φn+1 that has been reinitialized

as a signed distance function. This process is simple and extremely efficient computationally

since grid cells far away from the interface are few, resembling a local level-set approach.

Note also that the solution of the reinitialization equation does not require that the pseudo

time step τ used in Eq. (7) be taken uniformly for all cells, since only the steady-state

solution matters. In turn, the time step taken for cells far away from the interface is large

and compensate for the larger distance the rarefaction solution to the Eikonal equation needs

to propagate to. In fact, [21] showed that the level-set method on Quadtree grids of [90] is

on a par with a truly local level-set approach using hash-table structures.

Remark

• In the case where the refinement is performed near the interface in a quadtree/octree

framework, the number of grid points is proportional to the surface of the irregular do-

main rather than its volume. Since, for elliptic problems, the main factor determining the

execution time and memory consumption is the size of the resulting linear system, these

discretizations are highly efficient.

• In the case where φ is a signed distance function, Lip(φ) = 1. In practice, Lip(φ) in

Eq. (11) plays the role of a parameter controlling the degree of “gradedness” of the grid.

We have taken Lip(φ) ≈ 1.1 to generate grids that are close to being graded and Lip(φ) ≈
1/2 to generate highly non-graded grids.
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Algorithm 2 Grid Generation

Input : Gn and φ̃n+1 : Rd → R

1. Gn+1 = Gn

2. C = the root cell of Gn+1

3. if the Lipschitz condition for φ̃n+1 is satisfied at C

4. if C is a leaf cell

5. split C

6. end if

7. for each child cell C′ of C

8. go to 3 with C = C′

9. end for

10. else

11. merge C

12. end if

Output : Gn+1

Fig. 16 Local grid configuration near a node v0. The schematic on the right describes a T-junction where a

node is missing in the x-direction. In contrast, the grid near the interface Γ is locally uniform (left)

5.3 Finite Difference Discretizations

In the case of nonregular Cartesian grids, the main difficulty is to derive discretizations

at T-junction nodes, i.e. nodes for which there is a missing neighboring node in one of the

Cartesian directions. For example, Fig. 16(b) depicts a T-junction node, v0, with three neigh-

boring nodes v1, v2 and v3 aligned in three Cartesian directions and one ghost neighboring

node, vg , replacing the missing grid node in the remaining Cartesian direction. The value of

the node-sampled function u : {vi} → R at the ghost node vg could, for example, be defined

by linear interpolation:

uG
g = u3s4 + u4s3

s3 + s4

. (12)

However, instead of using this second-order accurate interpolation, one can instead use

the following third-order accurate interpolation. First, note that a simple Taylor expansion

demonstrates that the interpolation error in Eq. (12) is given by:

uG
g = u3s4 + u4s3

s3 + s4

= u(vg) + s3s4

2
uyy(v0) + O(
xs)

3, (13)
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Fig. 17 A one-dimensional

adaptive grid

where 
xs is the size of the smallest grid cell with vertex v0. The term uyy(v0) can be

approximated using the standard central differencing discretization:

2

s1 + s2

(

u1 − u0

s1

+ u2 − u0

s2

)

,

and used in Eq. (13) to define a third-order interpolation for uG
g :

uG
g = u3s4 + u4s3

s3 + s4

− s3s4

s1 + s2

(

u1 − u0

s1

+ u2 − u0

s2

)

. (14)

Similar techniques can be used to define third-order accurate ghost values in three spatial

dimensions; we refer the interested reader to [90] for the formulas. We also point out that

such definitions of ghost values only use the node values of the cells adjacent to v0, which is

beneficial since, accessing cells not immediately adjacent to the current cell is more difficult

and could increase CPU and/or memory requirements.

The third-order interpolations defined above allow us to treat T-junction nodes in a same

fashion as a regular node, up to third-order accuracy. Here, we refer to a regular node as a

node for which all the neighboring nodes in the Cartesian directions exist. Therefore, we

can define finite difference formulas for the first- and second-order derivatives at every node

using standard formulas in a dimension-by-dimension framework. For example, referring to

Fig. 17, we use the central difference formulas for ux and uxx :

D0
xu0 = u2 − u0

s2

· s1

s1 + s2

+ u0 − u1

s1

· s2

s1 + s2

, (15)

D0
xxu0 = u2 − u0

s2

· 2

s1 + s2

− u0 − u1

s1

· 2

s1 + s2

, (16)

the forward and backward first-order accurate approximations of the first-order derivatives:

D+
x u0 = u2 − u0

s2

,

D−
x u0 = u0 − u1

s1

,

(17)

and the second-order accurate approximations of the first-order derivatives:

D+
x u0 = u2 − u0

s2

− s2

2
minmod

(

D0
xxu0,D

0
xxu2

)

,

D−
x u0 = u0 − u1

s1

+ s1

2
minmod

(

D0
xxu0,D

0
xxu1

)

,

(18)

where the minmod slope limiter [79, 130], defined as:

minmod(x, y) =
{

x if |x| > |y|,

y otherwise,
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is used to avoid differencing across regions where gradients are large (i.e. near kinks). Sim-

ilarly, approximations for first-order and second-order derivatives are obtained in the y- and

z-directions.

5.4 Interpolation Procedures

Interpolation procedures are necessary to define data anywhere in a cell, for example, in

order to use semi-Lagrangian methods (see Sect. 7.1) or to interpolate a velocity field de-

fined on uniform grids onto an adaptive level-set. In [136], Strain pointed out that piecewise

bilinear (resp. trilinear) interpolations are natural choices in quadtree (resp. octree) data

structures, since they involve data sampled at the cell’s vertices only. However, these in-

terpolations lead to low-order accurate schemes and induce a large amount of numerical

dissipation, which in turn leads to a loss of mass in the level-set evolution.

In [90], Min and Gibou proposed the following quadratic interpolation scheme that au-

tomatically avoids nearby discontinuities in their constructions. Considering a cell C with

dimensions [0,1]2, the interpolated value of a scalar function u at (x, y) is:

u(x, y) = u(0,0)(1 − x)(1 − y)

+ u(0,1)(1 − x)(y)

+ u(1,0)(x)(1 − y)

+ u(1,1)(x)(y)

− uxx

x(1 − x)

2
− uyy

y(1 − y)

2
, (19)

where the second-order derivatives uxx and uyy are defined as:

uxx = minmod
v∈vertices(C)

(

D0
xxu(v)

)

and uyy = minmod
v∈vertices(C)

(

D0
yyu(v)

)

.

5.5 Computing Second-Order Accurate Gradients

Calculating gradients with accuracy can be of significant importance for applications in

which the flux at the interface defines the interface’s velocity, for example, in the case of the

Stefan problem. When this is the case, it is a strong advantage for a numerical method to

produce second-order accurate gradients, which is a distinguishing feature of the method of

Chen et al. [27]. In two spatial dimension, the components of the gradient are computed as:

ux = ug − u0

sg

· s5

sg + s5

+ u0 − u5

s5

· sg

sg + s5

− s3s4s5

2sg(s5 + sg)

(

u1 − u0

s1

+ u2 − u0

s2

)

· 2

s2 + s1

, (20)

uy = u1 − u0

s1

· s2

s2 + s1

+ u0 − u2

s2

· s1

s2 + s1

. (21)

For nodes next to the interface, interface nodes (vx and vy in Fig. 16(a)) are used in

Eqs. (20) and (21) instead of neighboring nodes that are outside the domain. Similar equa-

tions are derived in the three-dimensional case, and we refer the interested reader to [26] for

the exact formulas.
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5.6 Treatment of Dirichlet Boundary Conditions on Irregular Domains

In the case of adaptive grids, it is not straightforward to obtain supra-convergence if the

interface cuts the grid in a T-junction cell. Fortunately, as mentioned in Sect. 5.1, a great

many problems require that the finest mesh be located around the domain’s boundary. As

a consequence, one can require that the smallest cells be located near the interface and, at

an insignificant computational cost, that a narrow band of uniform cells be located near the

irregular domain’s boundary. This refinement strategy allows one to readily apply the tech-

niques presented in Sect. 3 to impose Dirichlet boundary conditions at irregular domains,

because the grid is locally uniform, as illustrated in Fig. 16(a).

6 Solving the Poisson and the Diffusion Equations on Adaptive Grids

The discretization of the Poisson and the diffusion equations on adaptive grids follows the

strategy outlined in the case of uniform grids. A Crank-Nicholson scheme is used to dis-

cretize the time derivative in the case of the diffusion equation, and central difference for-

mulas (16) are used to approximate the spatial derivatives. This leads to a linear system that

can be inverted to obtained the desired solution. At nodes neighboring the interface, Dirich-

let boundary conditions are imposed as described in Sect. 5.6. As noted in [27], the linear

system is non-symmetric, but still leads to an M-matrix, so there exists a unique solution

that can be computed with fast iterative solvers [119]. We also note that multigrid methods

have been developed that are significantly more efficient developed on quadtree/octree grids,

see e.g. [123, 145]. In Sects. 6.1 and 6.2, we give an example of the typical results for the

Poisson and the heat equations that are obtained with this approach. The grid is represented

by its minimum and maximum resolution, which we refer to as (MinRes,MaxRes).

6.1 Typical Results for the Poisson Equation

Consider the Poisson equation ∇ · (β∇u) = f on Ω = [−1,1] × [−1,1] with an exact

solution of u = exy , where β = x2 + y2. The interface is star-shaped, given by the set of

points where φ = r − 0.5 − y5+5x4y−10x2y3

3r5 = 0, and r =
√

x2 + y2. A non-graded Cartesian

grid with (MinRes,MaxRes) = (8,128), as well as the interface, is illustrated in Fig. 18(a).

The numerical solution on this grid is plotted in Fig. 18(b). The numerical accuracy for the

solution and its gradients are given in Tables 8 and 9, respectively, demonstrating second-

order accuracy in the L∞-norm for both the solution and its gradients.

6.2 Typical Results for the Diffusion Equation

Consider ut = ∇ · (β∇u) on Ω = [−2,2] × [−2,2] with an exact solution of u =
e−2π2βt cos(πx) sin(πy), where β = 0.2. The interface is described by the level-set func-

tion φ = 16y4 − x4 − 32y2 + 9x2. The numerical solution at t = 0.25 on a grid with

(MinRes,MaxRes) = (8,64) is plotted in Fig. 19(b), while Fig. 19(a) depicts the grid

used. The numerical accuracy for the solution and its gradients are given in Tables 10 and 11,

respectively. As it is the case for the Poisson equation, both the solution and its gradients are

second-order accurate in the L∞-norm.
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Fig. 18 Results for Example 6.1

Table 8 Accuracy results for the

solution, u, in Example 6.1 (MinRes,MaxRes) L∞ error Order L1 error Order

(8,128) 5.897 × 10−4 – 6.999 × 10−5 –

(16,256) 1.466 × 10−4 2.008 1.600 × 10−5 2.129

(32,512) 3.468 × 10−5 2.080 3.837 × 10−6 2.060

(64,1024) 8.278 × 10−6 2.067 9.393 × 10−7 2.030

Table 9 Accuracy results for the

solution’s gradients, ∇u, in

Example 6.1

(MinRes,MaxRes) L∞ error Order L1 error Order

(8,128) 1.683 × 10−2 – 2.500 × 10−3 –

(16,256) 4.237 × 10−3 1.990 6.394 × 10−4 1.967

(32,512) 1.029 × 10−3 2.041 1.613 × 10−4 1.987

(64,1024) 3.356 × 10−4 1.617 4.054 × 10−5 1.992

7 The Level-Set Technology on Adaptive Grids

In the case of the Stefan problem, as in any free boundary problems, it is necessary to

capture the interface motion. To do so, we use the level-set method. On quadtree/octree

grids, it is straightforward to discretize the equations related to the level-set method using the

discretizations of the first- and second-order derivatives presented in Sect. 5.3. For example,

the geometrical quantities, namely the normals to the interface and the interface curvatures,

can be easily discretized using the central differencing formulas, Eqs. (15) and (16). The

discretizations of the main level-set equations, i.e. Eqs. (6) and (7), are given next.
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Fig. 19 Results for Example 6.2

Table 10 Accuracy results for

the solution u in Example 6.2 (MinRes,MaxRes) L∞ error Order L1 error Order

(8,64) 1.741 × 10−2 – 3.872 × 10−3 –

(16,128) 4.111 × 10−3 2.083 8.922 × 10−4 2.118

(32,256) 1.011 × 10−3 2.024 2.158 × 10−4 2.048

(64,512) 2.519 × 10−4 2.005 5.304 × 10−5 2.024

Table 11 Accuracy results for

the solution’s gradients ∇u in

Example 6.2

(MinRes,MaxRes) L∞ error Order L1 error Order

(8,64) 1.155 × 10−1 – 4.272 × 10−2 –

(16,128) 3.102 × 10−2 1.896 1.073 × 10−2 1.994

(32,256) 8.436 × 10−3 1.878 2.671 × 10−3 2.006

(64,512) 2.283 × 10−3 1.886 6.670 × 10−4 2.002

7.1 Discretization of the Level-Set Equation

If the velocity field is externally generated6, as for the Stefan problem, the level-set equation

(6) is linear and semi-Lagrangian schemes can be used. The advantage of these schemes is

that they are unconditionally stable and thus avoid the standard CFL condition of 
t ≈ 
xs ,

where 
xs is the size of the smallest cell in the computational domain.

In [90], Min and Gibou solved the level-set equation using a second-order accurate semi-

Lagrangian scheme. Semi-Lagrangian methods are based on the fact that solutions to hyper-

bolic problems are constant along characteristic curves; therefore, for any grid point xn+1,

φn+1(xn+1) = φn(xd), where xd is the departure point from which the characteristic curve

carries the information to xn+1. Min and Gibou used the second-order accurate mid-point

6The definition of the velocity does not depend on φ.
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method for locating this departure point, as in [160]:

x̂ = xn+1 − 
t

2
· Vn

(

xn+1
)

,

xd = xn+1 − 
t · Vn+ 1
2 (x̂).

The velocity field Vn+ 1
2 at the mid-time step, tn+ 1

2 , is defined linearly from the previous

velocity fields as Vn+ 1
2 = 3

2
Vn − 1

2
Vn−1. Finally, quantities at the locations xd and x̂ are

approximated using the non-oscillatory interpolation procedure given in Eq. (19).

7.2 Discretization of the Reinitialization Equation

In the case of the reinitialization equation (7), the Hamiltonian is a function of φ rendering

the equation nonlinear in φ. In this case, Eq. (7) cannot be solved with semi-Lagrangian

schemes; rather, we use a Godunov scheme to capture nonlinear phenomena. Specifically,

the semi-discrete discretization is written as:

dφ

d τ
+ sgn

(

φ0
)[

HG

(

D+
x φ,D−

x φ,D+
y φ,D−

y φ
)

− 1
]

= 0, (22)

where HG is the Godunov Hamiltonian, defined as:

HG(a, b, c, d) =
{

√

max(|a+|2, |b−|2) + max(|c+|2, |d−|2) if sgn(φ0) ≤ 0,
√

max(|a−|2, |b+|2) + max(|c−|2, |d+|2) if sgn(φ0) > 0,

with a+ = max(a,0) and a− = min(a,0). It is therefore sufficient to approximate the one-

sided derivatives D±
x φ and D±

y φ. On the node-based quadtree/octree framework, these are

approximated using second-order accurate, one-sided finite difference formulas of Eq. (18).

The semi-discrete equation (22) is discretized in time with the Total Variation Diminishing

second-order Runge-Kutta (TVD-RK2) scheme of Shu and Osher [130]. I.e. define φ̃n+1

and φ̃n+2 with two consecutive Euler’s steps:

φ̃n+1 − φn


τ
+ sgn

(

φ0
)[

HG

(

D+
x φn,D−

x φn,D+
y φn,D−

y φn
)

− 1
]

= 0,

φ̃n+2 − φ̃n+1


τ
+ sgn

(

φ0
)[

HG

(

D+
x φ̃n+1,D−

x φ̃n+1,D+
y φ̃n+1,D−

y φ̃n+1
)

− 1
]

= 0,

and then define φn+1 by averaging: φn+1 = (φn + φ̃n+2)/2.

Remark As mentioned in Sect. 4.4, the reinitialization must transform an arbitrary level-set

function into a signed distance function while preserving the original interface’s location. In

the case of adaptive grids, this is enforced following the idea of Russo and Smereka [118]

and its modifications from Min and Gibou [90].

7.3 Improvement on Mass Conservation

A well-known criticism of the level-set method is its inherent loss of mass. The source of the

loss of mass is the lack of accuracy and the numerical dissipation of various approximations

in solving Eq. (6). Successful approaches to combat the loss of mass involved hybridizing
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Fig. 20 Comparison of the qualitative evolution of the level-set function for the flow field introduced in [74].

On uniform grids (here 1003), even the high-order accurate WENO scheme leads to a significant volume

loss (a). Adding particles significantly improves the accuracy but small features (here thin sheets) cannot

be resolved with particles alone (b). In the case of the particle level-set, the number of particles used is

typically 16 per cell in 2D and 32 per cell in 3D. In contrast, the high-resolution capabilities of adaptive

grids enable small features to be preserved at low computational cost [(c) and (d)]. Here the smallest grid size

corresponds to an effective resolution of 5123 . The work of [81] uses first-order accurate semi-Lagrangian for

the evolution of the level-set function and a second-order accurate ODE solver for the advection of particles.

The work of [90] uses a second-order accurate scheme for the evolution of the level-set and no particles. The

level-set function is reinitialize at every time step in all cases

the level-set method with other methods that are known to be more accurate in terms of

mass conservation [38, 139]. For example, Fig. 20(a) depicts the evolution of the level-set

using the fifth-order HJ-WENO of [60], while Fig. 20(b) depicts the same evolution using

the particle-level-set of [38]. In this example, the so-called Enright’s test, the level-set is

deformed according to the incompressible velocity field introduced in [74], before being

rewound back to its initial position. Specifically, the velocity field U = (u, v,w) is given by:

u = 2 sin2(πx) sin(2πy) sin(2πz),

v = − sin(2πx) sin2(πy) sin(2πz),

w = − sin(2πx) sin(2πy) sin2(πz).

The loss of mass is apparent in the case of the HJ-WENO in Fig. 20(a), where the shape of

the initial sphere is not recovered at the end of the computation. This is in contrast with the
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Fig. 21 Level-set evolution with an effective resolution of 20482 at t = 0 (left), t = 3π (center) and t = 6π

(right)

particle-level-set of [38]. However, even in the case of [38], the lack of resolution prevents

fine developing features (e.g. thin sheets) to be captured. A more refined grid will capture

those features, but at a computational cost too high for practical applications. This is a case

where adaptivity is a powerful technique since it allows fine resolution without the high

computational footprint. Figure 20(c–d) gives the results of the evolution of the level-set

with the adaptive particle-level-set approach of Losasso et al. [81] and the second-order

accurate adaptive level-set of Min and Gibou [90]. In those cases, the fine octree grids enable

the resolution of thin sheets.

Note that the quadtree/octree adaptive framework is efficient at addressing the loss of

mass since the high-resolution is only focused near the interface so that the complexity of

the level-set equations scales with the area of a surface in three spatial dimensions instead

of with its volume, which is the case of uniform grids. It is easier to illustrate this point

in two spatial dimensions on a similar example as the one above. Figure 21 illustrates the

evolution of the interface location initially (left), at t = 3π (center) and when the interface

is fully rewound (right). It also depicts the quadtree grid being adapted. At the end of the

computation, the mass loss is about 0.3 %.

We also note that local level-set methods can also address this problem, although it

was shown in [21] that a local level-set based on hashtables are only on a par with the

quadtree/octree node-based approach of Min and Gibou [90] in terms of CPU and mem-

ory requirement. We also mention that other local level-set methods have been proposed,

see e.g. [72, 99, 105] and the references therein. Finally, we note that true local-level-set

methods, i.e. methods that only encode local grids in memory, may not be as practical as

quadtree/octree level-set methods in some applications, since a valid value of the level-set

function is not known throughout the computational domain. For example, one cannot find

the distance to the interface at locations outside the local band.

Remark Other tracking schemes exist, either using completely different approaches or hy-

bridizing existing schemes. These methods are highly efficient at conserving mass and track-

ing interfaces, each with their own pros and cons. In additions, adaptive framework have

been introduced (see e.g. [3, 4, 10, 14, 15, 19, 25, 41, 51, 59, 66, 76, 92, 111, 128, 137, 138,

144] and the references therein).
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8 Solving the Stefan Problem on Adaptive Grids

The Stefan problem and similar model equations are obvious choices for the node-based

adaptive framework presented above, since the framework produces second-order accurate

solutions in the L∞-norm and second-order accurate gradients; therefore it gives a second-

order definition of the velocity field. It also enables efficient computations, since a three-

dimensional simulation scales with the surface of the interface instead of its volume. Fi-

nally, non-graded grids can be readily considered, which leads to versatile grid generation.

The procedure for solving the Stefan problem is given in Algorithm 1. Here we use the tech-

nologies described in Sects. 5, 6 and 7. In the following sections, we present typical results

that can be obtained with this framework.

8.1 Accuracy and Efficiency

We discuss the efficiency and accuracy on the known Frank-sphere exact solution of

Sect. 4.5. Figure 22 illustrates the evolution of the interface, as well as that of the adaptive

grid, at different times using the method of Chen et al. [28]. The final time is t = 10, which

demonstrates the robustness of the algorithm for large time computations. The computa-

tional domain is Ω = [−2,2] × [−2,2] and the other parameters used in the computation

are: S0 = 0.25, T∞ = −0.05709187113307 and (MinRes,MaxRes) = (8,64). The time

step is 
t = 
xs where 
xs is the size of the finest cell.

Tables 12–19 give the errors for the interface’s location and the errors for the tem-

perature field T in both the L1- and the L∞-norms for different combinations of

(MinRes,MaxRes). The accuracy results given in these tables highlight the fact that

the accuracy is largely driven by the resolution near the interface. In particular, a com-

parison of the errors in Tables 12 and 13 with the errors in Tables 18 and 19, indi-

cates that the accuracy obtained on a uniform 256 × 256 grid is on a par with that ob-

tained on a (MinRes,MaxRes) = (32,256) adaptive grid. This confirms the fact that

the quadtree/octree adaptive mesh refinement approach is highly efficient for elliptic and

parabolic problems in the case where the refinement criteria imposes the smallest cells on

the interface Γ , while coarser and coarser cells are placed as the distance to the interface

increases.

To demonstrate the saving of computational efforts through the use of adaptive grids,

[28] computed the computational time on a 1.6 GHz laptop as a function of the maxi-

mum error in φ and T (see Fig. 23). In these plots, the degree of adaptivity is defined as

MaxRes/MinRes. One can see that, for the same accuracy, the computational time on

adaptive grids can be several orders of magnitude less than that on uniform grids.

Remark Although all the computations are carried out to second-order accuracy in the L∞-

norm, the resulting overall solution has a lower convergence rate (≈1.6). Chen et al. [28]

attribute this loss of accuracy to the diverse approximations such as extrapolation and reini-

tialization procedures that are not iterated to steady-state. We also refer the reader to Sect. 4.3

for a discussion on the time evolution.

8.2 Typical Numerical Results for Unstable Solidification

Unstable solidification from a seed in an undercooled liquid is typical of crystal growth. In

what follows, we consider a temperature field initialized uniformly as the Stefan number

St < 0 in the liquid phase, and T = 0 in the solid region. Unless otherwise stated, the diffu-

sion constant is the same in both phases and Neumann (adiabatic) boundary conditions are

imposed on the four sides of the computational domain Ω .
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Fig. 22 Evolution of the interface and corresponding adaptive grid for Example 8.1

Table 12 Accuracy results on

uniform grids for φ in

Example 8.1

Grid L∞ error Order L1 error Order

32 × 32 5.197 × 10−2 – 3.253 × 10−2 –

64 × 64 1.489 × 10−2 1.804 1.100 × 10−2 1.564

128 × 128 5.395 × 10−3 1.464 3.535 × 10−3 1.638

256 × 256 1.737 × 10−3 1.635 1.100 × 10−3 1.684

8.2.1 Effect of Varying Isotropic Surface Tension

Surface tension forces are one of the main driving forces in solidification processes and

are therefore important to simulate accurately. In the Stefan problem, surface tension is

modeled through the −ǫcκ term in the Gibbs-Tompson boundary condition (4). Figure 24
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Table 13 Accuracy results on

uniform grids for T in

Example 8.1

Grid L∞ error Order L1 error Order

32 × 32 3.016 × 10−3 – 5.395 × 10−4 –

64 × 64 1.094 × 10−3 1.463 1.739 × 10−4 1.633

128 × 128 4.476 × 10−4 1.290 5.523 × 10−5 1.655

256 × 256 1.498 × 10−4 1.579 1.442 × 10−5 1.938

Table 14 Accuracy results on

adaptive grids for φ in

Example 8.1 with

MaxRes/MinRes= 2

(MinRes,MaxRes) L∞ error Order L1 error Order

(16,32) 5.503 × 10−2 – 3.504 × 10−2 –

(32,64) 1.492 × 10−2 1.883 1.102 × 10−2 1.669

(64,128) 5.410 × 10−3 1.463 3.541 × 10−3 1.638

(128,256) 1.750 × 10−3 1.629 1.112 × 10−3 1.672

Table 15 Accuracy results on

adaptive grids for T in

Example 8.1 with

MaxRes/MinRes= 2

(MinRes,MaxRes) L∞ error Order L1 error Order

(16,32) 3.223 × 10−3 – 8.818 × 10−4 –

(32,64) 1.100 × 10−3 1.552 2.314 × 10−4 1.930

(64,128) 4.490 × 10−4 1.292 7.122 × 10−5 1.700

(128,256) 1.509 × 10−4 1.573 1.860 × 10−5 1.937

Table 16 Accuracy results on

adaptive grids for φ in

Example 8.1 with

MaxRes/MinRes= 4

(MinRes,MaxRes) L∞ error Order L1 error Order

(8,32) 5.522 × 10−2 – 3.519 × 10−2 –

(16,64) 1.494 × 10−2 1.886 1.102 × 10−2 1.676

(32,128) 5.501 × 10−3 1.441 3.661 × 10−3 1.589

(64,256) 1.801 × 10−3 1.611 1.134 × 10−3 1.691

Table 17 Accuracy results on

adaptive grids for T in

Example 8.1 with

MaxRes/MinRes= 4

(MinRes,MaxRes) L∞ error Order L1 error Order

(8,32) 3.231 × 10−3 – 1.397 × 10−3 –

(16,64) 1.093 × 10−3 1.564 3.756 × 10−4 1.895

(32,128) 4.567 × 10−4 1.259 1.172 × 10−4 1.680

(64,256) 1.552 × 10−4 1.557 3.059 × 10−5 1.938

depicts the growth history of a square solid seed. Instabilities naturally develop from the

regions of high curvature (initial corners of the seed) and are (increasingly) damped by

(increasing) surface tension forces (increasing ǫc). In this example, we consider isotropic

surface tension, i.e we take T = −ǫcκ and vary the values of ǫc . The computational domain

is Ω = [−1.5,1.5] × [−1.5,1.5], the undercooled liquid has a Stefan number of St = −0.5

and the time step is 
t = 0.004.
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Table 18 Accuracy results on

adaptive grids for φ in

Example 8.1 with

MaxRes/MinRes= 8

(MinRes,MaxRes) L∞ error Order L1 error Order

(4,32) 5.521 × 10−2 – 3.519 × 10−2 –

(8,64) 1.490 × 10−2 1.890 1.098 × 10−2 1.680

(16,128) 5.559 × 10−3 1.423 3.656 × 10−3 1.586

(32,256) 1.924 × 10−3 1.530 1.209 × 10−3 1.597

Table 19 Accuracy results on

adaptive grids for T in

Example 8.1 with

MaxRes/MinRes= 8

(MinRes,MaxRes) L∞ error Order L1 error Order

(4,32) 3.230 × 10−3 – 1.484 × 10−3 –

(8,64) 1.095 × 10−3 1.560 5.614 × 10−4 1.403

(16,128) 4.580 × 10−4 1.258 1.661 × 10−4 1.757

(32,256) 1.659 × 10−4 1.465 5.338 × 10−5 1.638

Fig. 23 Log-log plot of the computational time as a function of the maximum error in φ (left) and the

maximum error in T (right)

8.2.2 Effect of Anisotropic Surface Tension

It is well known that crystals grow along preferred crystalline directions. In the Stefan prob-

lem, this is modeled by anisotropic surface tension forces, i.e. ǫc in Eq. (4) is a function of

orientation. Figure 25 illustrates the evolution of an initially regular-pentagon-shaped seed

placed in an undercooled liquid with the Stefan number St = −0.5 and a Gibbs-Thomson

relation given by T = −0.001(8/3 sin4(2α − π/2))κ , where α is the angle between the nor-

mal to the interface and the x-axis. The boundary condition imposes a four-fold anisotropy,

favoring the growth along the diagonal directions, while limiting it in the main Cartesian

directions. For example, the initial instability triggered by the sharp corner in the positive y-

direction is slowed down by the action of surface tension forces, promoting the subsequent

side branching.

Figure 25 also illustrates the evolution of the interface on both a uniform 256 × 256 grid

and adaptive moving grids with (MinRes,MaxRes) = (32,256). The results are almost

identical, but the computation on adaptive grids is significantly more efficient in terms of

memory and CPU. In fact, Fig. 26 depicts the grids used at the final time. The number of
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Fig. 24 Effect of varying the isotropic surface tension coefficient ǫc . The Gibbs-Thomson relation (4) with

ǫv = 0 and different ǫc values is imposed at the interface. The time levels shown are in uniform increments

from t = 0 to t = 0.4

Fig. 25 Effect of anisotropic

surface tension. The

Gibbs-Thomson relation

T = −0.001(8/3 sin4(2α−π/2))

is imposed on the interface. The

black solid lines depict the

interface growth history on a

uniform 256 × 256 grid, and the

green dashed lines depict the

interface growth history on

adaptive moving grids (Color

figure online)

nodes in the case of the adaptive grid is only 23 % of the uniform grid. This translates into

a computational time of about 15 % of that of a uniform 256 × 256 grid.

8.2.3 Comparison with the Microscopic Solvability Predictions

The Stefan problem is difficult to solve analytically. Simple one-dimensional analytical so-

lutions can be easily derived, but analytical results in two and three spatial dimensions are

rare. We considered the Frank-sphere exact solution in Sect. 8.1. Here, we present another

set-up for which solvability theory can predict the steady-state speed of the dendrite’s tip.

Consider a circular seed of radius 0.05 at the center of a Ω = [−6,6]2 computational do-

main. The undercooled liquid has a Stefan number of St = −0.45 and the Gibbs-Thomson

relation (4) on the solid-liquid is given by T = −0.001[1+0.4(1−cos 4α)]κ , where α is still

the angle between the normal to the interface and the x-axis. Figure 27(a) depicts the evo-

lution of the interface from t = 0 to t = 2.2 on a (MinRes,MaxRes) = (64,1024) moving

grids, while Fig. 27(b) plots the tip velocity as a function of time. The tip non-dimensional

velocity reaches a steady-state value of 1.7, in agreement with solvability theory [86].
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Fig. 26 Comparison of the grids used in Example 8.2.2

Fig. 27 (a) Growth history of a circular seed growing under standard four-fold anisotropic surface tension.

(b) Tip velocity as a function of time converging to a steady-state value of 1.7

9 Conclusion

We have provided the essence of how to solve the Poisson and the diffusion equations on

irregular domains as well as the Stefan problem using a level-set framework to keep track

of the interface and the ghost-fluid method to apply Dirichlet boundary conditions. We have

also presented the node-based quadtree/octree framework of Min and Gibou and its ap-

plication to the model problems mentioned above. Finally, we have provided some imple-

mentation details for these algorithms and pointed out some common misconceptions and

pitfalls in implementation. Overall, the methods presented provide highly efficient numeri-

cal solvers that are robust, simple to implement and produce second-order accurate solutions

in the L∞-norm on non-graded adaptive grids.
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