HIGH-RESOLUTION SIMULATION OF FIELD EMISSION*

W. B. HERRMANNSFELDT
Stanford Linear Accelerator Center
Stanford Uaiversity, Stanford, California 94309, USA

REINARD BECKER
University of Frankfurt, D-6000 Frankfurt am Main, W. Germany
IVOR BRODIE, ARNE ROSENGREEN, and C. A. SPINDT
SRI Intemational, Menlo Park, California 94025, USA

Contributed to the Third International Conference on Charged Particle Beama, Toulouse, France, April 24-27, 1990

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Goverament. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, of service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
-Work supported by US Department of Energy contract DE-AC03-76SF00515 (SLAC).

Abstract

Iligh-resolution simulations of field emission electron sources have bern made using the electron optics program EGN2. Electron emission distributions are made using the Powler-Nordlacim equation. Mesh resolution in the range of 1.5 is required to adequately model surface details that can result in emission currents in the range found experimentally. A typical problem starts with mechanical details with dimensions of about $1 \mu \mathrm{~m}$. To achieve ligh resolution a new boundary is defined by the tip, a nearby equipotential line, and a pair of field lines. The field lines (one of which is normally the axis of symmetry) define Neumann boundaries. This new boundary is then used by the boundary prepronaнor POLYGON to create an enlarged version of the problem, typically by a factor of ten. This process can be repeated until adequale resolution is obtained to simulate surface details, such as a microprotusion, that could sufficiently enhance the surface clectric fields and cause ficld emission.

When simulating experimental conditions under which emission of several microamperes per tip were observed, it was found that both a locally reduced work function and a surface protrusion were needed to duplicate the experimental results. If only a local region of reduced work function is used, the area involved and the extent of the reduction both need to be very large to reproduce the observed emission. If only a surface protrusion is used, it is possible to get the observed emission current with a reasonable protrusion of length a few times radius, but then the resulting beam spreads over a very large solid angle due to the strong local radial electric fields.

I. Introduction

T'his paper has two oljectives:

(1) "Ob illustrate the tecinniques of nuaguifying the details of a region being simne latud for Poisson's Equation, and sulseguent raytracing to the extent necess. sary to direatly apply the Fowler Nordbeime equation [1] to detrmine emission density and distribution.
(2) To lest the predictions of different assumed surface shapes and work function distributions te find results that agree with observations.
'The experimental conditions that were simulated are similar to the gated field emitters used by Spindt [2] et al. Typically they find emission of a few mitroamperes per tip with about 100 V on the gate. The observed eurrent distribution is uneven, leadiug to the conclusion that a number of small regions are emitting anomalously rather than in a gmerally uniform emission from the entire tip surface.

The simulations were made with the SLAC Electron Trajectory Program EGN2 [3] as converted to the language \mathbf{C} and run on an IBM-type PC. The boundary input preprocessor program POLYGON [4] was used to define the boundaries and to perform the necessary magnifications. POLYGON contains a "woom" feature that can expand and translate a region of a problem into a boundary dataset that contains the new bandary inpul data. Inputs to POLYGON are comprised of a combination of manually punched poirts, and data gencrated by EGN2 from the previons problem.

2. Techniques of Enhancing Resolution

This section is intended to demonstrate the methods by which successively higher resolution can be used to find the field distribution on the surface of a small point. A feeling for the magnitudes involved can be olstained by considering that the typical
dimensions of the gated fied emithers are aboul $1 \mu \mathrm{~m}$ in both the height of the emitter and the radius of the hole. 'Ihe resolution needed to find the surface fields to the necessary aceuracy is abont 10^{-10} m; thus to simulate only the first few mirrometers of the beam, one would require tuuch more than $10^{\mathbf{3}}$ mesh units.

The requirement for such high resolution stems from the uevel to be able to smoothly interpolate from the nearest meshl point to the surface along the smallest detaile deemed significant. 'The field-solving and partial routimes are typically accurate to second-order in the spatial coordinates. Because potentials change so rapidly in the immediate proximity to a sharp point, it is necessary to have a mesh small compared to the dimensions of the point.

The gated field emillers typically resemble those stown in the microphotograph of fig. 1. In fig. 2 a single point and a small regment of the gate are shown with an extension to the right to simulate the presence of a drift region. In typical tests this drift region is aboul 1 mm long and is terminated by a surface abont 1 kV above the gate potential. The right side of fig. 2 is terminated by an equipolential surface to maintain a uniform field of $1 \mathbf{k V} / \mathrm{mm}$ in the drift space. As noted on the figure, the resolution used is $0.05 \mu \mathrm{~m}$ and the gate voltage is 100 V . The upper boundary is a Neumann boundary in both the zone between the base and the gate, and in the drift region. The limited Neumann condition used in EGN2 is that the normal ficld component is zero.

Figure 2 slows several equipotential lines and a single fiedd line from the cone to near the inner edge of the gate electrode. The plan is to form a new boundary using the field line as a general Neumann boundary and an equipotential line as a "virtual anode." The method by which output from EGN2 is specified for POLYGON is described in sec. 3. In fig. 3 the boundary found from fig. 2 has been expanded by a factor of ten by using the zoom feature of POLYGON. Again a single field line has been generated with the
intention of cr ating anolher expanded boundary. Figure 4 shows the next enlargement. again by a factor of ten from the previous stage. The boundary near the tip of fig. 4 shows a small bunp, which will be enlarged in detait in the next magnification. Again using the single field line from fig. 4 and the second of the two equipotential lines that are very close together, a new boundary dataset is generated, this time with an enlargement factor of tive. Figure 5 shows the final stage of enlargement including a small bump with a radius of five mesh units, where the mesh is now 1λ.

The trajectories shown in fig. 5 were generated using the GENCARD feature of EGN2. In this mode the user specifies the starting coordinates of a particle, and EGN2 calculates the rest of the initial conditions including the current assigned to that particle. By specifying the work function and the field enhancement factor β, the user signals EGN2 to emprey the dc formulation of the Fowler-Nordheim equation. An arbitrary decision has to be made by the user to determine the maximum angle, measured from the axis along the aurface of the bump, for which emission will be calculated. Emission drops very quickly as a function of surface field with the Fowler-Nordheim equation, but the current is also proportional to the annular area assigned to each particle, so that trajectories emitted at fairly large angles contribute significantly. The trajectories in fig. 5 were limited to those with 50% or more of the peak current per ray, Note that the positions were chosen with equal spacing betwern rays.

The problem of determining the actual beam trajectories for the entire system now simply requires going back through the set of enlarged figures, sequentially making the outpul of each problem be the input data for the next stage. EGN2 needs only to know the ratio of the scale factors and the offset of the origin to transform the oulpht data from one stage to the iuput for the next.

Accordingly, fig. 6 shows the trajectories using the fual conditions from fig. 5 as initial conditions. Figure 7 usea the output from the run in fig. 6 for initial conditions. Finally, fig. 8 uses the final conditions from fig. 7 to show the trajectories through theentire length of the original configuration.

2.1. Emission Models

It is beyond the scope of this paper to study the various emission models. However, it is intercsting to consider that these high-resolution simulations may give some information as to which model is correct. Two very aimple models are:
(1) a whisker or bump, as was shown above, causes field enbancement sufficient to give the observed current; and
(2) a surface contaminant such as an oxide lajer causes a local reduction in the effective work function, as described by Latham [5].

It appears quite clear that the field enhancement due just to the shape of the shary field emitters is not sufficient to cause significant emission, wilhout one or both of the above conditions or some other mechasism to enhance the emission. In the following, paragraphs we will consider the trajectory implications of the two options, and finally we will propose that the actual mechanism may require a combination of both models.

In a uniform field the field enhancement at the tip of a hemispherical bump is a factor of three. This enhancement is independent of the radius of the bump. In fig. 9 we show the surface field distribution both for the bump in fig. 5 and for a bump with double the radius. Although there is some lack of smoothness in the plots due to themesh structure, the obvious regularity and the fact that both curves have the samemaximum demonstrate the accuracy of the method.

The obvious characteristic of emission from a small bump or whisker is that the beam spreads quickly into a large angular rone. In our simulation we can best deal with
a bump on the axis, while in practice there would more likely be meveral bumps sratered over the surface of the proint. There cannot be a large number of bumps, or the surfare
 emussion pattern shown for one bunp would then ber repeated and overlaid a number of times, This would resull in a large, fairly uniformly illuminated region of the anode with an intensity pattern that would generally resemble a Gaussian curve. The angular divergence of the spot at a distance from the tip is about ten degreen, as shown inf fig. 8.

Siuce the bump is of atomic dimensions, it could be that electrons prefer to tunnel from the tip of the bump; in cifect, the work function varica around the atom, being at its lowest at the tip. This is a quantum mechanical problem that needs to be addressed analytically [0].

Short whiskers with hemispherical ends, at shown in fig. 10, have alightly larger divergent angles, primarity because the emission is initiated at larger angles since the enhanced field continues around the point farther. Table 1 shows the peak field, mitted current, and divergence angle for various whisker leagths, where the work function is 4.5 eV in all cases. In practice, the observed angle of divergence is about two degrecs, and is smaller for thiskers with adsorbed barium atoms than for unconiaminated whiskers [7].

If we consider that a strall region with atomic dimensions of a few angatroms inight emit with an anomalously low work function from a smooth microsurface, then emission from the tip would appear as modeled in fig. 11. A reasonable number of such sites could be emilting, causing an emission pattern with numerous hot spots. Using a spot about $6 \hat{\lambda}$ in diameter, as shown in fig. 11, the emission was about $0.1 \mu \mathrm{~A}$ with a work function of only 2.0 eV . A stalistically significant number of such sites-perlaps ten or more-would be required per tip in order to account for the observed emission, or indeed to assure that there would be any emission at all.

If as suggested above a few gromotric enhancements also were to have an anomalously low work function segronent, then it is not necessary that the work function he extromely low. 'Ihese enhanced regions must in general be somewhat larger than the emitting spot, or again the emission pattern would be very spread out. There could not lue very numy such regions per tip, situply becouse of the lack of room, but rach tip could have more than ome site. 'Ihe gain of thres in lield strength greatly angmonts the emission function so that, for example, in the case of the model shown in fig. 12 with a I nm radius bump and a work function of 3 eV , the emission is about $1 \mu \mathrm{~A}$. The beam from fig. 12 was carried through the intermediate stages, as demonstrated previously, and finally gave the result shown in fig. 13. The spread is still significant dur to the small radius of the bump, bust the extent of it is reduced to about five degrees. As the radius of the small bump is increased, the divergence approarhes the small spread shown in fig. 11, which would also agree with the observation of small hot spots with two degree divergence.

3. EGN2 Techniques

In this section we describe some of the special techniques that were used to make the high-resolution simulations with EGN2. The reader should refer to the Instructions for EGN2 and POLYGON for a more general application of the data described here.

For the output shown in fig. 2, EGN2 was asked for the equipotentials to be iniliated in the uniform field region at $R=30$, by setting $E Q U I P R=30$. $E G N 2$ was also asked for a single field line, selected to start at a point along the cone such that the line would terminate near the end, to the gate electrode. Field lines in EGN2 are obtained by forcing the momentum of the trajectories to be resel to zero after cach iterative step. This condition is signaled to EGN by setting the particte mass to a negative number: e.g., MASS $=-1$. Data for a trajectory is saved in the input format for POIYGON if

MASS = - 1 and $I P B P=1$, assumiug only one trajectory. The IPLAP signals EGN2 to record all the data for every step of up to six particlea with ray numbers given in the format [PBP=n1, n2, etc. Similarly, the coordinates for the equipotential line is saved if the line is called for by the parameter EQZLST, which is the Z-coordinate of a point at $R=$ EQUIPR. Finally, all this data is saved in the output file, which can be printed or scanated on a monitor. An editor can be used to extract the necessary segments of the field line and the equipotential line to form the boundary input data for POLYGON. As an added curivenience, the data for a field line and an eqipotential line (if called as described above) are saved instead in a separate file if a file designation is placed in the sixth position of the command line calling EGN2. The command line has the following format: EGN2 inputfile outputfile plotfile cardfile binaryfile polyfile.

The choice of the starting points for the equipotential line and the field line determines the directions for these lines, and thus the sequence of points. They must be specified so that the lines go in the right direction (which is why EQUIPR $=30$ was used) to avoid a large editing job inverting the sequence of these points. Note that equipotential lines start both "up" and "down" when they are called. The editing task for preparing the new dataset for POLYGON consists of deleting the rest of the boundary from the initial input dataset for POLYGON, saving only the part needed (in this case only that part for the tip of the cone), and then adding in the desired segment of the field line and the equipotential, respectively. Some care is needed at the intersection of these two segments to avoid confusing POLYGON. The last line of POI,YGON input. consists of four numbers: RO, ZO, SFR, and SFZ where RO and ZO define a new origin and $S F R$ and $S F Z$ define the zoom scale factors. In this casc we used $S F R=S F Z=10$ and $\mathrm{RO}=0$. The number $\mathbf{Z O}$ was chosen so as not to waste too much space (equal to the Z-value of the starting point of the field line in this case) only because the plots get strange looking if the origin is far from the region of intereat. The $\mathbf{Z O}$ value will be
ueeded again when the coordinates are shifted back, to permit. continuations of the rums for ray iracing. Thua it is useful to record the ZO's and helpful to use simple numbers. Note that the transformation equations are of the form:

$$
\text { ZNEW }=(Z O L D+Z O)^{*} S F Z .
$$

In some cases there is not enough delail in the input boundary set to POIXGON Lo result in an adequate rasult. In these cases a simple siratagem is to use the fir PANZOOM.IN, which POLYGON creates to run wibh the transforned input data. This tile can be edited to be an ordinary POLYGON iuput file, wilh adequate detail but without the PANZOOM data line. This trick was used in the two enlargements of a factor of ten, as shown earlier.

4. Conclusions

Enhancements to the electron optics program EGN2 have enabled it to be used for high-resolution simulations of electron trajectories from field-emitting points wills radii of a few hundred angstroms, It is anticipated that this method of simulation will prove useful for testing hypotheses for the origination of field emission fron very sharp tips, which is important for vacuurn microelectronic devices [8] (including tunneling microscopes) and for the design of electrostatic lenses used with such devices. An example for the use of such a lens with a ficid emitter is shown in fig. 14.

To simulate the observation that the emission from such tips actually comes from one or a few atomic sites [2.7], it was postulated that the localized cmission was either due to field enlaancement by a single protruding atom, or by the lowering of the work function at a given site due to a single nonprotruding impurity atorn imbedded in the surface. Using the Fowler-Nordheim theory and assuming a uniform work function around an atomic burnp, a divergence angle of ten degrees or more is predicted. For the imberddeel
alom of low work function, an angular spread of about two degrees is predirted, in substantial agreendent with observations where the divergence angle appears to wary with the type of atom from whence the electrons are streaming [7]. Combining the imbedded atom with a small bump gives enhanced emission with divergence angles that are between the two extremes described here. Clearly, it may be extenting the Fowler Nordheim theory beyond its scope to apply it directly to atomic sites [6], but it should be straightforward to apply any new developments in tunneling theory to this computer model.

References

[1] R. II. Fowler and L. W. Nordheim, Proc. Roy. Soc., A119 (1928) 173.
[2] C. A. Spindt, I. Brodie, L. Ilumphrey, and E. R. Westerberg, J. Appl. Phys. 47 (1976) 5248.
[3] W. 13. Herrmannsfoldt, EGUN- An Electron Optics and Gun Design I'rograth, SLAC Report-331 (1988).
[4] R. Beeker, Nuel. Jnstrum. Methods B42 (1989) 162.
[5] R. V. Latham, Iligh Voltage Vacuum Insulation: The Physical Basis (AcatermioIPress, 1981).
[6] R. H. Cutler, T. E. Fenchtwang, Z. Huang, and T. Sullivan, Tunneling Throry and Vacumm Microelectronics, in American institute of Physies Confermen Sicries 99 (1989) 121-123.
[7] I. Brodie, "The Visibility of Atomic Objects in the Field Electron Microscope," in Surface Science 70 (1978) 186-196.
[8] American Institute of Physics Conference Series 99 (1989).

Table 1. Emission from Whiakers.

Length/radius	0	1	2	3	5
Peak field (10 $\left.0^{8} \mathrm{~V} / \mathrm{cm}\right)$	0.5	0.68	0.84	1.02	1.3
Emission ($\mu \mathrm{A}$)	0.00056	0.054	0.53	2.6	18.3
Diversion (degrees)	9.7	16.5	18.2	20.1	23

Figure Captions

1. A microphotograph of a gated field emitter array.
2. The EGN2 model of a gated field emitter with a mesh unit of $0.05 \mu \mathrm{~m}$.
3. Enlarged segraent from fig. 2 with a mesh unit of 5 nm .
4. Enlarged segment from fig. 3 with a mesh unit of $5 \AA$.
5. Enlarged aegment from fig. 4 with a mesh unit of $1 \dot{A}$. Emission calculations made using the Fowler-Nordheim Equation.
6. Particles from fig. 5 are reinjected into the next larger-scale segment.
7. Particles from fig. 6 are reinjected into the next larger-scale segment.
8. Particles from Fig. 7 continue through the original configuration.
9. Electric field around the 0.5 nm bump ahown in fig. 5 and also for the 1.0 nm radius bump shown in fig. 12.
10. Emission pattern from a whisker with length/radius $=3$.
11. Emission pattern from a small region of a smooth surface.
12. Emission from a small area on the tip of a 1 nm radius bump.
13. Beam from fig. 12 transported with a divergence angle of about five degrees.
14. Field emission tip with a focusing electrode to produce a parallel beam.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

