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he amount (soil moisture) and state (freeze–thaw) of 

the water in soil plays a pivotal role in global water, 

energy, and carbon cycles. The water content of the 

top few centimeters (~5 cm) of soil is typically referred to as 

surface soil moisture (SSM), which defines how wet or dry 

the soil is in its top layer. SSM is a key component of the 

microclimate that governs the interaction of water and heat 

fluxes between the ground and the atmosphere, regulating 

air temperature and humidity, and thus, affecting cli-

matic conditions and weather changes. Knowledge of the 

temporal dynamics and spatial variability of soil moisture 

is crucial in understanding many environmental processes 

and their impacts on plant fertility, crop yields, droughts, 

or exposure to flood hazards.
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Fig. 1. Comparison of downscaling accuracy between the proposed ensemble learning approach and the uniform disaggregation approach for the 

period of April 2015–April 2020. Both SCAN and USCRN in situ networks were used in this analysis. Abbreviations are as follows: ubRMSE = unbiased 

root-mean-square error; R = Pearson correlation coefficient; SMAP = Soil Moisture Active Passive.
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Recent advances in 

satellite remote sensing 

technologies have provided 

unprecedented information 

on soil moisture across spa-

tiotemporal scales, which 

is logistically unachievable 

from in situ observation 

networks. The Soil Mois-

ture Active Passive (SMAP) 

satellite was launched on 31 

January 2015 by the Nation-

al Aeronautics and Space 

Administration (NASA) to 

provide SSM using bright-

ness temperature through 

its active (radar, 3 km) and 

passive (radiometer, 36 

km) sensors at an interme-

diate resolution of 9 km. 

Although the active sensors 

(such as synthetic aper-

ture radar) provide data 

relatively at a higher spatial 

resolution compared to the 

radiometer sensors, they 

are prone to higher error/

uncertainties due to their 

swath width and sensitivity 

to sparse vegetation cover. 

Unfortunately, due to the 

failure of the SMAP radar 

instrument 3 months after 

the satellite’s launch, the 

radiometer instrument has 

been the only operational 

instrument since then, 

providing the soil moisture 

product at the 36-km grid 

cell from both ascending 

(1800 LT) and descend-

ing (0600 LT) passes. In 

December 2016, NASA 

released a data product, the 

so-called enhanced SMAP 

radiometer. In this dataset, 

the standard SMAP data 

gridded at 36 km are inter-

polated into 9-km grid spac-

]

Fig. 2. (top) MODIS Terra true color reflectance for 17 Feb and 16 Jul 2018. (middle) SMAP soil moisture data  

at 1-km spatial resolution on the same days. The dark square (Biggs station 222) and circle (Gerber South station 

244) markers display the nonirrigated and irrigated sites, respectively. (bottom) The 1-km SMAP SM at the 

irrigated and nonirrigated sites. Planting and harvest windows are in green and red colors, respectively, and were 

acquired from USDA NASS reports.
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ing using the Backus–Gilbert optimal interpolation 

algorithm. Later in October 2018, Das and colleagues 

used Sentinel-1A and Sentinel-1B data in the SMAP 

active–passive algorithm to generate disaggregated 

brightness temperature and soil moisture at a finer 

resolution of 3 km. The assessment of this product 

has been performed using the soil moisture cali-

bration and validation sites and the results showed 

reasonable accuracy of ~0.05 m3 m–3.

Although this $1 billion NASA satellite provides 

valuable information for global- and continen-

tal-scale applications, the coarse spatial resolution 

is inadequate for regional or local studies, such as 

agricultural drought monitoring, irrigation manage-

ment and planning, flood forecasting, crop produc-

tion, and water resources management. To address 

this need, we have developed a machine learning 

(ML) framework based on an ensemble learning ap-

proach to rescale SMAP soil moisture from its native 

resolution (36 km) to a finer resolution (1 km) while 

using atmospheric and geophysical information 

acquired from high-resolution remote sensing data 

and ground-based observations. For more informa-

tion about the proposed downscaling algorithm and 

its validation, we refer readers to the 2019 research 

of Abbaszadeh et al. (see For Further Reading). 

The downscaled SMAP soil moisture product was 

generated and released in May 2018 when the SMAP 

soil moisture data were only accessible on descend-

ing overpass. Recently, the original SMAP data 

have not only become available on both ascending 

and descending overpasses, but their interpolated 

version at 9-km spatial resolution has been developed 

and released to the public. Hence, we utilized these 

advancements to further postprocess the downscaled 

soil moisture dataset at 1-km spatial resolution and 

provide a more accurate and reliable product. In this 

excerpt, we show the usefulness of the postprocessed 

high-resolution soil moisture data through a com-

prehensive validation analysis based on in situ soil 

moisture networks operating across the conterminous 

United States (CONUS) and list the benefits of the 

product in several hydrometeorological applications.

Figure 1 illustrates the original SMAP soil mois-

ture data and our downscaled product against Soil 

Climate Analysis Network (SCAN) and U.S. Climate 

Reference Network (USCRN) datasets. USCRN in-

struments are scattered uniformly across the United 

States mainly to represent the annual temperature 

Fig. 3. (top) Original SMAP soil moisture at ~36-km spatial resolution. (middle) 

Enhanced SMAP soil moisture at 9-km spatial resolution. (bottom) Downscaled 

SMAP soil moisture at 1-km spatial resolution. The dark square and circle mark-

ers display the nonirrigated and irrigated sites, respectively. Please note that the 

images in this figure are from the same dates as Fig. 2.
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and precipitation variance, while SCAN stations are 

installed in agricultural areas to accommodate specific 

research needs. When remotely sensed soil moisture 

estimates are compared against in situ observations, it 

is recommended that the disparity of spatial scale along 

with the sensing depths are accounted for. Although in 

some studies it is seen that the bias is removed between 

the remotely sensed and in situ soil moisture observations 

due to scale differences, it is usually common to compare 

in situ observations without scale adjustment even when 

only one observation is available per pixel. In this study, 

the postprocessed downscaled soil moisture estimates 

are compared against in situ observations without bias 

correction or upscaling. More than 300 SCAN and USCRN 

stations were active during the period of study (April 

2015–April 2019) providing daily soil moisture at different 

soil depths and other meteorological observations such as 

precipitation and soil temperature. Figure 1 shows the soil 

moisture observations that were collected at ≤2-in. (~5-cm) 

depth consistent with the sensing depth of the SMAP sat-

ellite. Also, Fig. 1 displays the overall statistics of the disag-

gregated remotely sensed surface soil moisture compared 

with the SCAN and USCRN observations over the CONUS. 

Compared to the standard disaggregation method, the 

proposed ensemble learning approach can provide more 

accurate soil moisture data at a spatial resolution of 1 km. 

This newly developed product offers useful data to not only 

the academic community for further research but also the 

variety of sectors that are beneficiaries of these data.

Figure 2 shows that the SMAP soil moisture at 1-km 

spatial resolution is capable of detecting the irrigation 

signal in the Northern California Central Valley (CCV) that 

encompasses rice fields. This figure demonstrates how the 

landscape from Moderate Resolution Imaging Spectrora-

diometer (MODIS) Terra imagery has been changed from 

the wet season (17 February 2018) to the dry season (16 

July 2018). The green areas turn brown by July except the 

regions where irrigated rice and forests cover the lands. 

These contrasts are distinguishable from the fine reso-

lution SMAP soil moisture maps. Our dataset shows the 

region in February uniformly wet (on average >0.3 m3 m–3). 

However, according to our produced soil moisture map, 

the entire area is almost dry in July, except the regions 

covered by irrigated rice and forest that generally indicate 

much higher soil moisture levels. According to the U.S. 

Department of Agriculture National Agricultural Statistical 

Service (USDA NASS), the rice farmlands are flooded and 

seeded each year from late April through May. Harvest 

begins in September and ends in November. While the soil 

moisture at both irrigated and nonirrigated sites follows 

the temporal variation of precipitation closely, it behaves 

differently in irrigated sites where the field is flooded for 

planting in mid-April. The timing is corroborated with the 

2018 crop report of the USDA NASS. In the growing season, 

the irrigated site is kept wet through early September when 

the harvesting begins. This pattern is discernible by the 

fine-resolution soil moisture data. Note that a similar set 

of comparisons for these dates presented by Lawston and 

]

Fig. 4. (a) Land cover distribution over the western United States, (b) original SMAP soil moisture at ~36-km spatial resolution, and (c) downscaled 

SMAP soil moisture at 1-km spatial resolution for 1 Apr 2018.
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colleagues in 2017 using the enhanced SMAP data (at 9 

km resolution) does not represent the underlying spatial 

heterogeneity, which is evident in the maps of Fig. 2.

Figure 3 compares the downscaled soil moisture at 

1-km spatial resolution against the original SMAP soil 

moisture and its interpolated version which are available at 

36- and 9-km spatial resolutions, respectively. Please note 

that the images in Fig. 3 are from the same dates as Fig. 2. 

To balance the sharp edges at the grid border, we applied 

an interpolation method similar to that proposed by 

Montzka and colleagues in 2018 on the downscaled 1-km 

soil moisture image and generated a dataset with no patch 

effect that better represents spatial heterogeneity of soil 

characteristics, vegetation types, and climatic conditions. 

Further investigation (please see Fig. 1) also revealed that 

the interpolation approach does not affect the accuracy of 

the downscaled soil moisture data.

As we discussed earlier, the produced 1-km SMAP soil 

moisture data correlate well with the in situ observations 

over different geographical locations with different land–

atmosphere regimes. In addition to this, our study also con-

firms that there is a spatial consistency between the coarse- 

and fine-resolution soil moisture maps. For example, as 

seen in Figs. 4a and 4c, the downscaled product provides 

more detailed soil moisture information consistent with the 

spatial heterogeneity of soil characteristics and vegetation 

types. The soil moisture spatial pattern is dependent on the 

heterogeneity of soil parameters (e.g., soil texture, vege-

tation, and topography) that are generally not distributed 

homogenously in the area. This results in an uncertainty in 

the soil moisture retrievals. Our downscaled soil moisture 

map could fill this gap through decreasing the discrepancy 

between the spatial variability of soil parameters and soil 

moistures. Moreover, the following example shows that the 

downscaled soil moisture spatial pattern closely follows the 

climate pattern and weather conditions.

In the state of Texas near Houston, the soil moisture 

conditions generated by the SMAP satellite before (Figs. 

5a,b, 21 August 2017) and after (Figs. 5c,d, 26 August 2017) 

the landfall of Hurricane Harvey revealed that this dataset 

is a reliable source in studying the changing soil wetness 

condition due to heavy rainfall associated with the tropical 

cyclone. Similar to the original SMAP observation (Fig. 5a), 

the downscaled soil moisture (Fig. 5b) also indicates that 

the soil surface was already very wet a few days before the 

onset of torrential rainfall. This is also consistent with the 

report of the Southeast Regional Climate Center (SERCC) 

that Texas, Louisiana, and other southern states have had 

one of their wettest months on the record before the landfall 

of Hurricane Harvey (please see https://earthobservatory.nasa 

.gov/images/90864/soil-moisture-satellite-observes-harveys-wrath). 

This saturated soil surface decreased the infiltration capac-

ity and therefore escalated the likelihood of flooding. As 

seen in Figs. 5a and 5c, both SMAP images at 36- and 1-km 

spatial resolutions confirm that the southwest regions of 

Houston became exceptionally wet on 26 August 2017, as 

corroborated by the observed torrential rainfall and wide-

spread flooding. According to the Figs. 5b and 5d, the 1-km 

Fig. 5. (a), (b) The soil moisture condition at 36- and 1-km spatial resolutions, respectively, on 21 Aug 2017, before the landfall of Hurricane Harvey 

over the state of Texas. (c), (d) The soil moisture condition at 36- and 1-km spatial resolutions, respectively, on 26 Aug 2017, after the termination of 

Hurricane Harvey. The polygons shown in (b) and (d) illustrate Lake Livingston.
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soil moisture maps demonstrate the increase of inundated 

area near the upstream and downstream areas of Lake 

Livingston during Harvey’s rainfall. This information is in 

accordance with several reports showing that the flooded 

regions around Lake Livingston caused severe damage to 

roads and properties due to its overflowing (for more infor-

mation, we refer the readers to www.khou.com/article/weather 

/hurricane/harvey/nhc-harvey-caused-125-billion-in-damage-68 

-deaths-in-texas/285-511430188). Lake Livingston is a reservoir 

built for water-supply purposes with no flood-control or 

storage capability. During such an extreme event, knowl-

edge of the soil moisture condition at fine spatial resolution 

is critical as it can be used to update the antecedent mois-

ture conditions in flood forecasting models. For example, in 

one of our recent studies, we explored the benefit of using 

the downscaled SMAP soil moisture product to enhance 

the Weather Research and Forecasting Hydrological Model 

(WRF-Hydro) flood forecasting skill. The results showed 

that assimilating the 1-km soil moisture data into WRF-Hy-

dro significantly improves its ability to accurately predict 

the onset of Hurricane Harvey flooding.

Unlike in situ networks, land surface models are able 

to estimate the soil moisture at different spatial scales 

and continuously over time. The quality of such mod-

el estimates is most often limited due to the inaccurate 

representation of model physics, model parameters, and 

forcing data. Such uncertainties can be accounted for by 

constraining the model predictions with high-resolution 

and near-surface soil moisture observations, such as the 

dataset provided here. These data are also important for ef-

fective irrigation scheduling, crop yield modeling, and the 

accurate initialization of climate prediction models, which 

leads to more reliable climate forecasts. Soil moisture 

interacts with several hydroclimate variables including 

evapotranspiration, precipitation, land surface tempera-

ture, and albedo. Therefore, such data at fine resolution 

enable better understanding of the processes of the climate 

system at regional or local scales. The developed soil 

moisture product at 1-km spatial resolution can be used to 

identify, assess, and monitor the extent of (flash) drought, 

especially for agricultural practices. It can also play a key 

role in operational fire prediction and its risk assessment 

and management. Our downscaled SMAP soil moisture 

product has recently been successfully used in few hydro-

climate studies. This dataset is currently available over the 

CONUS from April 2015 to the present and can be accessed 

via www.moradkhani.net/data/smap-data/.
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