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HIGH RESOLUTION SPARSE ESTIMATION OF EXPONENTIALLY DECAYING

TWO-DIMENSIONAL SIGNALS

Stefan Ingi Adalbjörnsson, Johan Swärd, and Andreas Jakobsson

Dept. of Mathematical Statistics, Lund University, Sweden

ABSTRACT

In this work, we consider the problem of high-resolution es-

timation of the parameters detailing a two-dimensional (2-D)

signal consisting of an unknown number of exponentially de-

caying sinusoidal components. Interpreting the estimation

problem as a block (or group) sparse representation problem

allows the decoupling of the 2-D data structure into a sum

of outer-products of 1-D damped sinusoidal signals with un-

known damping and frequency. The resulting non-zero blocks

will represent each of the 1-D damped sinusoids, which may

then be used as non-parametric estimates of the correspond-

ing 1-D signals; this implies that the sought 2-D modes may

be estimated using a sequence of 1-D optimization problems.

The resulting sparse representation problem is solved using

an iterative ADMM-based algorithm, after which the damp-

ing and frequency parameter can be estimated by a sequence

of simple 1-D optimization problems.

Index Terms— Sparse signal modeling, Spectral analy-

sis, Sparse reconstruction, Parameter estimation, ADMM.

1. INTRODUCTION

High-dimensional decaying sinusoidal signals occur in a wide

variety of fields, such as spectroscopy, geology, sonar, and

radar, and given the importance of such signals in a vari-

ety of applications, the topic has attracted notable attention

in the recent literature (see, e.g. [1–7]). Common solutions

include subspace-based algorithms [1–3,5–7], typically mak-

ing strong model assumptions, or the use of high-dimensional

representations necessitating an iterative zooming procedure

over multiple dimensions, such as the technique introduced

in [4]. Such approaches often suffer from high complexity

and sub-optimal performance, typically requiring an accurate

initialization or model order information to yield reliable re-

sults, information which is commonly not available in many

of the discussed applications. Often, the measurements are

also assumed to be uniformly sampled, which may well be

undesired in applications such as, for instance, spectroscopy.

In this work, we formulate a sparse representation separating

the frequency and damping dimensions in order to facilitate

This work was supported in part by the Swedish Research Council and
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Fig. 1. An estimate of Z for data containing two damped

sinusoids. Estimating the frequency and damping coefficient

for these damped sinusoids yields the estimates of f1,1, f1,2,

β1,1, and β1,2 for the first time dimension.

multiple low-dimensional searches over the separate dimen-

sions, without imposing the need for detailed initialization

or assuming any a priori model order information. By sep-

arating the two-dimensional (2-D) search into two linked 1-D

searches, the 2-D estimation problem may be decoupled al-

lowing for a both computationally and memory efficient esti-

mation procedure. The work allows for non-uniformly sam-

pled data and is an extension of our recent technique for accu-

rate estimation of 1-D decaying sinusoidal signals [8], which

is here extended to allow for 2-D signals. In order to reduce

complexity, we herein further propose a computationally effi-

cient implementation based on the concept of the alternating

direction method of multipliers (ADMM) [9]. The remainder

of the paper is organized as follows: in the next section, we

introduce the considered data model. Then, in section 3, we

introduce the idea behind decoupling the search dimensions.

Section 4 introduce the ADMM formulation of the estimator,

and Section 5 illustrates the performance of the proposed es-

timator using numerical simulations and using measured 2-D

nuclear magnetic resonance (NMR) data. Finally, Section 6

contains our conclusions.
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Fig. 2. The RMSE of f1,1 as a function of the SNR. The

signal contains two modes.

2. DATA MODEL

Let y(τ1, τ2) denote a (possibly non-uniformly sampled) sig-

nal of interest that may be well modeled as a sum of 2-D expo-

nentially decaying sinusoids corrupted by an additive noise,

i.e.,

y(τ1, τ2) =
K
∑

k=1

αkz
τ1
1,kz

τ2
2,k + e(τ1, τ2) (1)

where τl = tℓ,1, . . . , tℓ,Nℓ
, for ℓ = 1 and 2,

zℓ,k = e2iπfℓ,k−βℓ,k (2)

and with K denoting the number of exponentially decaying

sinusoids, αk the complex amplitude of the k:th mode, and

fℓ,k and βℓ,k the k:th frequency and damping coefficient for

dimension ℓ, respectively. Here, the unknown parameters to

be estimated are not only the complex amplitudes, the fre-

quency, and damping, but also the number of modes K. The

additive noise e(τ1, τ2) is assumed to be well modeled as an

uncorrelated 2-D Gaussian process. Let

aℓ,k =
[

z
tℓ,1
ℓ,k . . . z

tℓ,Nℓ

ℓ,k

]T

(3)

where (·)T denotes the transpose. Then, (1) may be expressed

concisely over the N1 ×N2 time samples as

Y = Ã1BÃ
T
2 +E (4)

where Ãℓ is an Nℓ ×K dimensional matrix formed as

Ãℓ =
[

aℓ,1 . . . aℓ,K

]

(5)

for ℓ = 1 and 2, and

B = diag
{[

α1 . . . αK

]}

(6)

with diag {x} denoting the diagonal matrix formed with the

vector x along its diagonal, and where E is formed similarly

to Y.
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Fig. 3. The RMSE of β1,1 as a function of the SNR. The

signal contains two modes.

3. DECOUPLING THE SEARCH DIMENSIONS

Exploiting the sparsity of the representation, one may form

a large dictionary matrix, say U, containing all considered

combinations of frequencies and dampings, and then solve

minimize
x

∣

∣

∣

∣vec(Y)−Ux
∣

∣

∣

∣

2

2
+ λ

∣

∣

∣

∣x
∣

∣

∣

∣

1
(7)

where || · ||F denotes the Frobenius norm and vec{·} the vec-

torization operator. The estimated (sparse) vector x would

then contain the dictionary elements corresponding to the de-

sired modes. However, such a solution would be practically

impossible due to the enormous dimension of the resulting

dictionary; even for a grid containing only 100 grid points in

each dimension, this would require 108 dictionary elements.

As an alternative, one may form the minimization

minimize
B

∣

∣

∣

∣Y −A1BA
T
2

∣

∣

∣

∣

2

F
+ λ

∣

∣

∣

∣B
∣

∣

∣

∣

1
(8)

which instead aims at fitting a (sparse) diagonal matrix B. In

order to reduce the dimensionality, one may note that the k:th

mode in (1) may be expressed as the outer product of a1,k and

a2,k. Thus, by introducing x = αka2,k and z = αka1,k, the

minimization in (8) may be replaced by

minimize
X

∣

∣

∣

∣Y −A1X
∣

∣

∣

∣

2

F
+ λ1

M1
∑

m=1

∣

∣

∣

∣ [X]m
∣

∣

∣

∣

2
(9)

minimize
Z

∣

∣

∣

∣Y − ZA2

∣

∣

∣

∣

2

F
+ λ2

M2
∑

m=1

∣

∣

∣

∣

[

Z
T
]

m

∣

∣

∣

∣

2
(10)

where [X]m denotes the m:th row of X, which efficiently

decouples the problem into two sub-problems of dimension

N1M1B1 + N2M2B2, where M1, M2, B1, and B2 denote

the number of grid points in the frequency and damping grids,
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Fig. 4. The RMSE of the f1,1 as a function of SNR. The

signal contains two modes.

respectively. Reminiscent to the development in [8], one may

then proceed to initially form the dictionary matrices A1 and

A2 by setting all the damping parameters to zero, i.e., A1 and

A2 are initially only Fourier matrices. Solving (9) and (10)

with these matrices yield the sparse estimates X̂ and Ẑ. Each

non-zero row, k, in X̂ corresponds to a damped sinusoid in

the second dimension as well as the on-grid frequency esti-

mate f̂1,k in the first dimension. Similarly, each non-zeros

column, j, in Ẑ corresponds to a damped sinusoid in the first

dimension and a frequency ĝ2,j in the second dimension, as is

illustrated in Figure 1. The figure illustrates how Ẑ captures

the two modes which then decay over the first time dimen-

sion, τ1. Utilizing this, one may then find the damping and

frequency parameters for the second dimension by solving a

non-linear least squares (NLS) problem over the frequency

and damping for each non-zero row in X, i.e., say that the

m:th column of X contains non-zero elements. Then, one

may find the frequency and damping parameters for the sec-

ond time dimension as

{f̂ , β̂} = minimize
f,β

∣

∣

∣

∣ [X]m − α̂a
∣

∣

∣

∣

2

2
(11)

where (see also [10])

α̂ =
[X]m a

aHa
=

1

N1

[X]m a (12)

with (·)H denoting the conjugate transpose, and a is a vector

formed similar to aℓ,k, defined as in (3), but for a generic f
and β. Typically, (11) is solved by evaluating the cost func-

tion for a grid of different f and β, where then a is created

using those parameters according to (3) . Similarly, the fre-

quency and damping parameters for the first time dimension

may be estimated by minimizing

{f∗, β∗} = minimize
f,β

∣

∣

∣

∣

[

Z
T
]

m
− α̂aT

∣

∣

∣

∣

2

2
(13)

Fig. 5. The logarithmic periodogram estimate of the exam-

ined 2-D NMR data.

where α̂ is estimated as in (12). One may thus by itera-

tively solving (11) and (13), using (12), find the frequency

and damping coefficients in the two dimensions without hav-

ing to solve the full 2-D minimization directly. We thus obtain

a set of estimates, such that from X, we will, in the first di-

mension, obtain a grid-restricted estimate of f̂1,k, as well as

f̂2,k and β̂2,k, in the second dimension, which will, due to the

search, be unrestricted by any grid. Similarly, from Z, in the

first dimension, we obtain ĝ1,k and β̂1,k, which will then be

unrestricted by any grid, as well as the grid-restricted ĝ2,k in

the second dimension. As a final step, we pair together the

obtained unrestricted frequency estimates using the minimum

frequency distance

K̂
∑

l=1

d(f̂1,l, g̃1,l) + d(f̂2,l, g̃2,l) (14)

where the distance function is defined as

d(a, b) = min(|b− a|, |b− (1 + a)|, |1 + b− a|)

and {g̃1,j , g̃2,j} is formed from all possible permutations of

{ĝ1,j , ĝ2,j}, for j = 1, . . . , K̂. The unrestricted damping es-

timates are paired accordingly with the resulting permutation.

Alternatively, for signals with many modes, the pairings may

be found by ordering both sets in order of increasing fre-

quency in the first dimension. It should be stressed that the

decoupling of the problem retains the 2-D structure and de-

pendencies, such that the two minimizations combined corre-

spond to the actual modes, having the benefit that the param-

eters estimate need not be restricted to a fixed grid of values.

We note that the resulting algorithm may also be extended to

enable a similar decoupling of higher dimensional data; we

are currently exploring such an extension.
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Fig. 6. The RMSE of β1,1 as a function of SNR. The signal

contains two modes.

4. IMPLEMENTATION USING ADMM

In order to reduce the complexity of the minimization of solv-

ing (9) and (10), we proceed to present an ADMM-based for-

mulation of the joint minimization. In the interest of brevity,

we only show the derivation of (9) since the one for (10) fol-

lows analogically if the problem is transposed. Define

f(X) =
1

2
||Y −AX||2F (15)

g(V) = λ

M1
∑

m=1

||Vm||2 (16)

The minimization in (9) may then be expressed as

minimize
X

f(X) + g(V)

subject to X−V = 0 (17)

The augmented Lagrangian of (17) is

L(X,V,D) = f(X) + g(V) +
µ

2
||X−V +D||2F (18)

where µ is the step size and D is the scaled dual variable. The

steps in the ADMM, for iteration k + 1, then becomes

X
k+1 =arg min

X

L(X,Vk,Dk)

=
(

A
H
A+ µI

)

−1 (

A
H
Y +V

k −D
k
)

(19)

V
k+1 =arg min

V

L(Xk+1,V,Dk) (20)

D
k+1 =X

k+1 −V
k+1 +D

k (21)

where (20) may be solved using a soft threshold, i.e., for all

m,

[V]
k+1

m = max

(

0, 1−
κ

||x||2

)

x (22)
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Fig. 7. The DFT of the time series for the second time dimen-

sion found in the row in X that corresponds to f1 = 0.2881.

with x = [X]
k

m − [V]
k

m and κ = λ/µ. The choice of the step

size µ > 0 will not affect whether the algorithm converges

or not, but will influence the convergence time [11]. In all

simulations in this paper, µ was set to 1. We coin the resulting

algorithm the Sparse Exponential Mode Analysis for 2-D data

(SEMA-2D).

5. NUMERICAL EXAMPLES

In order to examine the performance of the proposed algo-

rithm, we illustrate the use of the algorithm for the estimation

of the frequency and damping parameters of a signal mimick-

ing 2-D NMR data. Initially the method is compared to the

recent non-parametric estimator proposed in [4], which uti-

lize a sparse estimation formulation combined with a zoom-

ing procedure to reduce the dimensionality of the dictionary.

Figures 2 and 3 illustrate the total RMSE of all the unknown

parameters, defined as

RMSE =

√

√

√

√

1

M

M
∑

m=1

K
∑

k=1

(

θm,k − θ̂m,k

)2

(23)

where θ̂m,k denotes the estimate of the parameter θm,k,

where θm,k denotes either the frequencies or dampings, M
the number of Monte-Carlo simulations, for the first fre-

quency and damping coefficients, f1,1 and β1,1 (the perfor-

mance along the second dimension is similar). As is clear

from the figures, the SEMA-2D estimator drastically out-

performs the zooming-based method presented in [4]. The

shown results have been obtained using 100 Monte-Carlo

simulations, using frequencies selected randomly over all

frequencies, whereas the damping were (arbitrarily) selected

fixed to β1 =
[

0.007, 0.02
]

and β2 =
[

0.008, 0.01
]

.

The data set contains 100 × 100 uniformly sampled data



points, and the algorithm in [4] has been allowed an initial

grid of 100 grid points in each search dimension, and 50
levels of refinement. We proceed to examine how the pro-

posed (non-parametric) SEMA 2-D algorithm compares to

the PUMA 2-D algorithm presented in [6], which is a sta-

tistically efficient parametric estimator, here allowed perfect

model order information. Figures 4 and 6 show the perfor-

mance of the computationally efficient parametric PUMA

2-D estimator as compared to the proposed algorithm for f1,1
and β1,1 (the performance of the second mode is similar),

clearly indicating that the proposed non-parametric estima-

tor achieves almost the same performance as the parametric

PUMA 2-D. Here, PUMA 2-D has been allowed 10 itera-

tions. Finally, we examine the performance of the proposed

algorithm on measured 2-D NMR data from a 15N-HSQC ex-

periment on a Histidine sample acquired at 600 Mhz. Figure

5 illustrates the 2-D periodogram estimate of the examined

data set, which consists of 1024×512 uniformly sampled data

points, containing, seemingly, 22 modes. Typically, the most

interesting aspect of this form of estimates is to estimate the

damping coefficient of the weak modes. Figure 7 shows the

DFT of the rows of X corresponding to finding f1 = 0.2881,

which can be seen to match the corresponding row in Figure

5, illustrating how the SEMA 2-D algorithm has been able

to effectively decouple the search dimensions. Throughout

these simulations, λ has been selected such as being the av-

erage of the dominant amplitudes and that of the remaining

spectrum, where the former is found as the mean of the am-

plitude of the k0 largest peaks of the periodogram, the latter

is computed as the mean of the remaining periodogram esti-

mate, and with k0 denoting the number of considered peaks,

being equivalent to the model order given to the competing

algorithms. It should be stressed that selecting λ in this way

does not imply using k0 as the assumed model order, but is

rather only acting as a guideline for how this weighting might

be selected. Another approach to find a suitable λ would,

e.g., be to use cross-validation [12].

6. CONCLUSION

In this work, we have introduced a sparse decoupling frame-

work for two-dimensional exponentially decaying sinusoids.

The method allows the modes to be estimated using a se-

quence of 1-D searches, while still yielding the same opti-

mal minimum as a full 2-D search would. Furthermore, we

propose a computationally efficient ADMM based implemen-

tation, drastically reducing the required complexity.
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