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The vast majority of phylogenetic models focus on resolution of
gene trees, despite the fact that phylogenies of species in which
gene trees are embedded are of primary interest. We analyze a
Bayesian model for estimating species trees that accounts for the
stochastic variation expected for gene trees from multiple unlinked
loci sampled from a single species history after a coalescent
process. Application of the model to a 106-gene data set from yeast
shows that the set of gene trees recovered by statistically acknowl-
edging the shared but unknown species tree from which gene trees
are sampled is much reduced compared with treating the history of
each locus independently of an overarching species tree. The
analysis also yields a concentrated posterior distribution of the
yeast species tree whose mode is congruent with the concatenated
gene tree but can do so with less than half the loci required by the
concatenation method. Using simulations, we show that, with
large numbers of loci, highly resolved species trees can be esti-
mated under conditions in which concatenation of sequence data
will positively mislead phylogeny, and when the proportion of
gene trees matching the species tree is <10%. However, when
gene tree/species tree congruence is high, species trees can be
resolved with just two or three loci. These results make accessible
an alternative paradigm for combining data in phylogenomics
that focuses attention on the singularity of species histories and
away from the idiosyncrasies and multiplicities of individual gene
histories.
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Many biological disciplines have as their focus the phyloge-
netic relationships of species-species trees. With the ad-

vent of large-scale comparative genomic data sets and enhanced
computational power, statistical methods such as maximum
likelihood and Bayesian phylogenetic inference have provided
sophisticated approaches to incorporation of heterogeneous
models of sequence evolution in combined multilocus data sets
(1–3). These methods have vastly increased the efficiency and
statistical power that can be gleaned from DNA sequences and
will greatly contribute to the ultimate goal of comprehending the
full scope of Darwin’s Tree of Life (4). The taxonomic units of
the Tree of Life are species composed of large numbers of genes
distributed across multiple independently segregating chromo-
somes and linkage groups. Thus, most phylogenetic studies in
fact use methodologies that focus not on estimation of species
trees per se but on estimation of gene trees, with the usual
assumption being that the gene tree resolved by combining many
genes is congruent with the species tree. This assumption will
hold widely, except in cases when (i) horizontal gene transfer and
other reticulate processes, such as interspecific gene flow, are
common; (ii) gene duplication has caused gene lineage splits in
the absence of splits in the history of species; and (iii) gene
lineages fail to coalesce before divergence of species (looking
backward in time). This paper addresses this latter problem,
which occurs because of internodes in the species tree that are
short when scaled by the effective population size of the relevant
branches (reviewed in refs. 5 and 6), but the method also works
in the absence of discordance between gene and species trees.

The current practice of concatenating sequences from genet-
ically separate loci into a single supermatrix has its origins in
debates in the 1990s about “total evidence” and does not permit

heterogeneity among gene trees in phylogenetic analysis. Along
with dense taxon sampling (7, 8), concatenation of sequences
from multiple genes into supermatrices (9) is thought to maxi-
mize power to make inferences about species history (for recent
examples see refs. 10–13). However, new analytical results
suggest that for any species tree of five or more taxa, there exist
branch lengths in the species tree (invariably short ones) for
which gene trees that do not match the species tree are more
common than gene trees matching the species tree, so-called
anomalous gene trees (14). In such a situation, phylogenetic
analysis of concatenated sequences can positively mislead infer-
ence of species relationships (15). Even when gene and species
trees are topologically concordant, as occurs when species tree
branch lengths are long, there is a need for phylogenetic methods
that estimate species trees as distinct from gene trees, if only
because species trees are a more realistic goal for systematics.
Many recent models for estimating historical population param-
eters make reference to the species history in which gene
histories are embedded (16–18), but phylogenetic inference itself
still largely retains its focus on gene trees.

Some of these models, such as gene tree parsimony (19) or
Takahata’s method (20), estimate only the topology of the
species tree. Supertree methods (21) have the advantage of being
able to combine diverse sources of information but, unlike gene
tree parsimony and methods based on population genetics, do
not rely on any biological justification for explaining incongru-
ences between genes or input trees. Population genetics models
(21) jointly estimate the species tree topology and branch lengths
and effective population sizes scaled by the mutation rate (�t and
� � 4 N�, respectively), but overall, the few models making the
distinction between gene and species trees either are not ame-
nable to large scale multilocus analysis (22), lack a formal
statistical framework, or are appropriate only for data sets for
which some discordance exists (19, 20, 23, 24). Felsenstein
(chapter 28 in ref. 2) outlined a likelihood extension of a model
by Nielsen (23) that allows for sampling of more than one allele
per species to estimating species trees, but this method has not
yet been applied to real data.

Here we apply a Bayesian method whose explicit focus is the
estimation of the distribution of species trees and that effectively
deals with incongruences frequently observed in gene histories
due to incomplete lineage sorting or deep coalescence (5, 6) as
well as gene tree uncertainty. Many Bayesian phylogenetic
analyses of multiple gene data sets assess congruence among
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gene trees by analyzing them completely independently from one
another, with each gene, for example, having a uniform prior on
the topology. In this approach, which we call the independent
model, topologies for gene trees are estimated without regard to
information from other genes and, crucially, without any as-
sumption that the topologies of different genes will be correlated
because of shared species history (12). Particularly in Bayesian
methods, where the prior can have an influence on posterior
distributions of gene trees, such an approach could yield an
unrealistically variable distribution of gene trees, because there
is no common species tree constraining gene trees. Both the
concatenation and independent model approaches are unreal-
istic to the extent they do not consider the partial correlation that
must exist because of shared species history. The Bayesian
hierarchical model we describe here improves on these options
by using a joint model that uses the joint distribution of gene
trees for many loci given a species tree as a prior (17). Such a
prior has the advantage of allowing heterogeneity in gene trees
as a means of estimating the posterior distribution of species tree
topologies and branch lengths.

Results
Theory. Full details of the methods, which we call Bayesian
Estimation of Species Trees (BEST), appear in supporting
information (SI) Materials and Methods and in refs. 32 and 33. In
step 1 (SI Fig. 4), our goal is to estimate the posterior distribution
of gene trees (G) given the data (D), f(G�D). The prior on the
gene trees, f(G), comes from the distribution of gene trees given
a species tree, considering all possible species trees under the
coalescent model (17). Integrating across all possible species
trees would be very slow; therefore, we restrict our attention to
the species tree topology specified by the gene tree branch
lengths for each random vector of gene trees, as follows. The
specified species tree topology is an ultrametric tree whose nodes
are as deep as possible while still being no deeper than the
corresponding nodes of all gene trees in the sampled vector, a
constraint consistent with the idea that gene divergences always
occur before species divergence of the same taxa (25, 26). This
constrained species tree topology is used to generate an approx-
imate prior distribution on gene trees K(G), varying only branch
lengths of the species tree. The likelihood of the sequence data
given the gene trees and substitution parameters �, f(D�G,�), is
given by the substitution model, which in our case is the general
time-reversible model (GTR). Because we have not searched the
entire space of possible species trees, the gene tree distribution
from this first step is best considered an approximate posterior
distribution of gene trees, K(G�D), under the coalescent model.
The approximate posterior distribution K(G�D) is estimated by
Markov Chain Monte Carlo (MCMC) using prior K(G) and
likelihood f(D�G,�) (SI Materials and Methods, Eq. 3); this is
achieved by incorporating this prior into the popular Bayesian
phylogenetic analysis program, MrBayes (27).

With K(G�D) in hand, in step 2 we estimate f(S,��D), the
posterior distribution of the species tree topology and branch
lengths (S) and ancestral population sizes (�) given the sequence
data. For each gene tree vector Gi (i � 1 to N samples, in our case
�8,000) from step 1, we conduct a MCMC procedure that yields
a sample of size x from f(S,�� Gi), the posterior distribution for
the species tree for gene tree vector Gi. For each vector, we use
a birth-death prior on the species tree and f(Gi�S), the proba-
bilities of gene tree vectors given the species tree (SI Fig. 5),
which again come from the coalescent model of Rannala and
Yang (17). By combining the x samples from f(S,��Gi) associated
with each vector, we estimate f(S,��D) with the resulting Nx
sampled values. Step 3 is an importance sampling step to correct
for the fact we used an approximate prior for the species tree in
step 1. We correct for this by attaching weight f(Gi)/K(Gi) to each
species tree generated in step 2. This effectively aligns the ith

sample from the approximate posterior distribution with what
would have occurred if the true prior f(G) had been used. The
entire approach assumes free recombination between loci and
lack of recombination within loci; it has been known for some
time (28), and recent theory confirms for gene tree topologies
(29), that even small amounts of recombination between loci will
render the histories of linked gene trees nearly independent of
one another, conditional on the species tree.

Gene Trees. Throughout our analysis, we used a gene-specific
relative mutation parameter �i that allows for among-locus rate
variation, which is essential to avoid having gene tree branch
length variation attributed solely to coalescent effects and to
prevent overestimation of ancestral � (30). Because standard
interpretation of gene trees in a coalescent framework requires
a molecular clock, the first Bayesian hierarchical model we used
(see SI Materials and Methods) estimated posterior probabilities
of gene trees under this constraint for a recent data set consisting
of 106 protein-coding regions sequenced from eight species of
yeast (12). However, because estimating gene trees under a
molecular clock can lead to errors, particularly with highly
diverged sequences such as in the yeast data set, we also
incorporated a simple correction whereby gene trees were first
estimated without the constraints of a clock but in the posterior
of step 1 were converted to ultrametric gene trees with the same
total length as the unconstrained tree (see SI Materials and
Methods). Although most coalescent programs tacitly assume a
molecular clock on gene trees, we found that estimating gene
trees without a clock was crucial to accurate estimation of the
species tree.

The original study obtained 23 different topologies for the 106
genes when analyzed by parsimony or maximum likelihood (12).
We found that consideration of 24 distinct topologies was sufficient
to explain on average �95% and in most cases, �99% of the
posterior distribution of gene trees for all analyses (SI Tables 1–4).
The posterior distribution of gene trees under the independent
model with a molecular clock was populated almost exclusively by
13 distinct topologies across all 106 genes, although most of this
distribution was concentrated on six topologies (Fig. 1). In this
analysis, the highest-probability tree for only 27 of 106 gene trees
matched the concatenated tree published by Rokas et al. (ref. 12;
topology 1, Fig. 1), whereas 38 genes yielded a maximum posterior
probability gene tree in which Saccharomyces kudriavzevii and
Saccharomyces bayanus form a clade (topology 2, Fig. 1). As
expected, the posterior distribution of gene trees was noticeably
more concentrated on a few (eight) trees under a joint model with
a clock. However, we found that only 10 of the 106 genes in the data
set were consistent with a molecular clock by a likelihood ratio test,
suggesting that many of the gene trees estimated under a clock
could be erroneous. We found that, without the constraints of a
clock on gene trees, the effect of the joint model in concentrating
the probability distribution of gene trees around a few topologies is
even more evident (Figs. 1 and 2). Under these conditions, only
three gene trees are plausible, many fewer than implied by the
independent analyses used in studies of intergene phylogenetic
signal (12). Moreover, under a joint model, the highest probability
tree for 89 of the 106 genes matched the concatenated tree of the
106 genes made by Rokas et al. (12), and the next most common
alternative was favored by only eight genes (Figs. 1 and 2). Com-
parison of the fit of the various models used using Bayes factors (3,
31) shows a clear superiority of the joint model under a relaxed
clock compared with the three other models (see SI Fig. 6).

Species Tree. For the main analyses, we used a gamma (0, 120)
prior on � at each node to estimate the posterior distribution of
the species tree topology and branch lengths for the yeast data
set. We also tried gamma priors of (1, 10) and (1, 1,000) and
found that these priors had little effect on the posterior distri-
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bution of the species tree (see SI Materials and Methods). Here
we focus primarily on the species tree topology, the primary
focus of most phylogenetic analyses. The distribution of the prior
species tree from which gene tree distributions were generated
in step 1 contained only a single topology, topology 1 in Fig. 1.
This result suggests there is considerable and consistent infor-
mation in the gene tree vectors for this prior tree. Additionally,
before importance sampling, the posterior distribution of the
species tree also contained a single topology that was identical
to the topology used in the prior, despite proposing eighty
million vectors of gene trees and despite the fact that three
topologies dominated the distribution of gene trees under the
joint model without a clock (Fig. 2). So, from the point of view
of the topology alone, the proposal scheme was very efficient and
converged on a posterior modal species tree matching the
concatenated gene tree of Rokas et al. (12) with probability 1.0
at each node. However, applying importance sampling to the
posterior distribution the species tree topology, branch lengths,
and ancestral population sizes culled nearly 98% of the distri-
bution, leaving only �2% after importance sampling weights
were applied. This result is likely a consequence of insufficiently
varying the branch lengths in the species tree prior of step 1 and
because the large size of the data set strongly skewed the
distribution of weights among MCMC samples. Indeed, a chal-
lenging aspect of the importance sampling approach used here
is that if the species trees sampled in step 1 comprise only a small
fraction of the posterior distribution, the importance weights will
tend to be very skewed and may misestimate the posterior
density of parameters in these regions (32). Even so, the

posterior distributions of species tree branch lengths and � values
are very similar before and after importance sampling, indicating
that the importance sampling, although severe, did little to
change these distributions. We have found that increased flex-
ibility in searching the space of branch lengths, ancestral pop-
ulation sizes, and topologies in the species tree prior of step 1
increases the efficiency of the importance sampling substantially,
a result that will be particularly significant when dealing with
data sets containing large numbers of species. Other data sets
yield more reasonable efficiencies of �20% (33). It is also
significant that S. kudriavzevii and S. bayanus form a clade
(topology 2, Fig. 2; see SI Fig. 6 and SI Materials and Methods)
with high probability in the consensus species tree from the
posterior distribution when gene trees were estimated under a
molecular clock or when estimated under the independent prior
without a clock. Particularly with highly diverged sequences as in
the yeast data set, relaxing the molecular clock on gene trees is
critical during species tree estimation.

By sampling increasing numbers of loci from the yeast data set
at random, we found that the ‘‘correct’’ species tree could be
estimated with high (�0.95) confidence with as few as eight genes,
whereas the concatenation approach worked well only with at least
20 genes as reported by Rokas et al. (ref. 12; see SI Materials and
Methods). We also compared our branch length and effective
population size estimates (SI Table 5)with those delivered by a
Bayesian approach that assumes rather than estimates a particular
species tree (30). Although the parameter estimates differ substan-
tially between the two approaches, in particular with regard to the
length of what is broadly considered a long branch leading to
Candida albicans (Fig. 1, tree 1), for a variety of reasons, we favor
our estimates and suggest that the ability to estimate gene trees
without a clock and to use complex substitution models with
MrBayes ) are positive features of our method (see SI Fig. 7).

Simulations. To explore the efficiency of the species tree ap-
proach, we simulated single coalescent gene lineages sampled
from each tip of four- and eight-taxon species trees. We varied
species branch lengths and effective population sizes at each
node to produce gene trees with high and low probabilities of
matching the species trees from which they were sampled. Under
scenarios in which the proportion of gene trees matching the
species tree was very high, we found that the correct species tree
could be recovered with high probability with fewer than three
genes (Fig. 3A). However, for species trees in which the prob-
ability of gene trees matching the species tree was low, we found
that as many as 120 genes was required to accurately estimate the
species tree in the case of eight species (Fig. 3 B and C).
Remarkably, the BEST method was able to correctly reconstruct
the species tree with high probability even when the proportion
of gene trees matching the species tree was less than 10% (Fig.
3C). For a given sampling effort (e.g., 10 genes), the chance of
correctly reconstructing the species tree increased as the pro-
portion of gene trees matching the species tree increased (SI
Materials and Methods). Overall, when the proportion of gene
trees matching the species tree is low, the analysis suggests that
increasing the number of independently segregating loci is
crucial to achieving high confidence in the species tree. We also
asked whether there existed situations in which Bayesian esti-
mation of the species tree and concatenation of gene sequences
would yield significantly different results and found that appli-
cation of the joint model could estimate the correct species tree
with high confidence in situations where concatenation under
the appropriate model of nucleotide substitution using either
Bayesian or maximum-likelihood methods yielded the wrong
tree with high confidence (SI Materials and Methods).

S.cerevisiae
S.paradoxus
S.mikatae
S.kudriavzevii
S.bayanus
S.castellii
S.kluyveri
C. albicans

S.cerevisiae
S.paradoxus
S.mikatae
S.bayanus
S.kudriavzevii
S.castellii
S.kluyveri
C. albicans

1 2

3 4 5 9

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Maximum posterior probability tree

icol fo reb
mu

N

molecular clock,
independent model

molecular clock,
joint model

clock relaxed,
independent model

clock relaxed,
joint model

*

A

B

Fig. 1. The distribution of gene trees for the 106-gene yeast data set. (A) The
number of genes (y axis) yielding each of 24 topologies according to the
maximum posterior probability criterion (x axis) is shown for each of four
analyses: independent (green) and joint (yellow) model with a molecular clock
and independent (red) and joint (blue) model without a molecular clock. (B)
The two most commonly encountered maximum posterior probability trees
(for both species and genes) are shown below, with the next four most
common shown in the bottom row (trees 3–5 and 9). The asterisk in tree 1
indicates the branch whose length differed drastically between BEST and
MCMCcoal (30). The complete posterior distribution of gene trees for all four
analyses is given in SI Tables 1–4.
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Discussion
We have applied a multilocus Bayesian species tree method
(BEST; ref. 33) to a prominent yeast phylogenomics data set and
have shown that it is more efficient in estimating the species tree
than concatenation is in estimating the gene tree. Increased
taxon sampling has recently been shown to increase the congru-
ence and accuracy of gene trees in the yeast data set (8),
sometimes permitting accurate estimation with only two or three
yeast genes. Yet the accuracy and efficiency of these two
approaches cannot be compared directly, because they estimate
different parameters; whereas concatenation estimates an aver-
age gene tree, BEST estimates the species tree containing the
gene trees, as well as the individual gene trees themselves. The
effect of increased taxon sampling on species tree estimation has
not yet been explored, and presumably both taxon sampling and
a focus on species trees rather than gene trees will have positive
effects on phylogenetic analysis. Finally, we have shown through
simulation how analysis focusing on the species tree can circum-
vent phylogenetic inconsistency in a situation where concatena-
tion can positively mislead phylogeny estimation (14, 15).

Our analysis illustrates an important application of the con-
cept of a joint prior in Bayesian phylogenetic analysis. This prior,
whose distribution is specified by the approximate species tree in
step 1 of the BEST method, is based on a logical assumption:
that, barring evolutionary forces in addition to mutation and
drift, such as gene flow or horizontal gene transfer, gene trees
from independently segregating loci should be similar to one
another. Such a prior can result in posterior gene tree distribu-
tions that are considerably more concentrated around a few
topologies than when loci are analyzed independently of each
other or of an overarching species tree (Figs. 1 and 2). Of course,
this result also suggests that the signal in the yeast data set for
many of the genes may be weak enough to be influenced by the
prior. Our results suggest that other priors that incorporate the
idea of a correlation among gene trees might also benefit
Bayesian phylogenetic analysis. They also suggest there is much
less need to explain incongruence among gene trees in the yeast
data set (12) “or to increase multilocus congruence” by manip-
ulation of substitution parameters, than recent critiques of the
yeast analysis would imply (35, 36). Incongruence among gene
trees has been viewed as a problem for MCMC analyses (37), but
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joint (B) models without a molecular clock are shown.
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the coalescent provides a mechanism in which multiple gene
trees can be reconciled in a single species history. Importantly,
unlike other methods for estimating species trees, the Bayesian
method we have outlined incorporates error and uncertainty in
gene trees through their posterior probability distributions.

Most of the discussions surrounding Bayesian posterior prob-
ability values, their fundamental difference from bootstrap
proportions and their overcredibility when the evolutionary
model, likelihood function, or prior distributions are inappro-
priate (38–41), have all been based on phylogenetic analysis of
gene trees. Thus it remains to be explored whether posterior
probabilities on species trees are subject to error to the same
extent. Our analysis suggests that increasing the number of loci
will increase the efficiency of estimating species phylogenies
(Fig. 3), as it does for estimating simple population parameters,
such as � for a single population (42). However, the precise
allocation of effort to number of loci, and the number and length
of sampled sequences per species remain to be explored.

Inspection of the posterior distributions of parameters of the
yeast species tree suggests that topologies, branch lengths, and
ancestral population sizes will be estimated with decreasing
certainty in that order (see SI Materials and Methods). Although
we suspect the method will be most accurate in cases of recent
speciation, our analysis of the yeast data set indicates that
estimation of species trees on the time scale of tens of millions
of years are possible. Clearly, initial estimation of gene trees
without the constraints of a molecular clock is critical, especially
with highly diverged sequences such as in the yeast data. Our
simulations also illustrate how the BEST approach is applicable
to instances in which gene tree/species tree concordance is high
or complete, and that it need not be confined to data sets with
high gene tree heterogeneity. Incorporation of multiple se-
quences sampled per species, as well as hybridization, gene flow,
and lateral gene transfer into a more general model of phylo-
genetic inference, is an important goal for future work, one that
could obviate the need to discard such genes from analysis simply

because their topologies disagree with those of the majority (43).
Species tree methods offer a more inclusive approach to sys-
tematics that directly bridges phylogenetics and population
genetics and that could help clarify some of the most famous
adaptive radiations, such as those for Darwin’s finches and
African cichlid fish, in which lack of reciprocal monophyly and
gene tree discordances are the norm (6, 32, 44).

Materials and Methods
Theory, Data Sets, and BEST Analysis. We describe in full the
Bayesian hierarchical model used by BEST elsewhere (32, 33)
and in SI Materials and Methods. The programs used in this paper
are available at www.stat.osu.edu/�dkp/BEST. A. Rokas kindly
supplied a concatenated nexus file of the 106-gene yeast data set
with character partitions for each gene. A modified MrBayes was
run for 80 million cycles per analysis on computers in the Ohio
Supercomputer Center to estimate posterior distributions. A
GTR � � � � model was used for all analyses. The analyses using
the joint prior required a prior on � � 4N�. Although the same
prior distribution for � is used for all nodes, both the proposed
values for each cycle in the MCMC and the posterior distribu-
tions for � are different for different nodes. For the analyses in
Figs. 1 and 2, we used a gamma distribution prior for � of (1, 200),
i.e., with mean of 1/200 � 0.005 and variance 1/(200)2 �
0.000025, as well as priors of (1, 10) or (1, 1,000). Priors for � in
Fig. 3 are given in the legend and are based in part on known
parameters for natural yeast populations (45, 46). In general,
these various priors had moderate effect on the estimated
posterior distributions of gene trees, but very little effect on the
estimated posterior distribution of species trees. On the other
hand, they did have a strong effect on the estimated ancestral
population sizes (see SI Materials and Methods).

Bayes Factor Analysis. We used the harmonic means of the
likelihoods to compute Bayes factors between the four models
(independent and joint models, with and without a molecular
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clock on gene trees) and the concatenation model. Bayes factors
were computed after applying the importance sampling weights.
The likelihood profiles for the four models are shown in SI
Materials and Methods. The log Bayes factor favoring the joint
model with relaxed clock over the next best model (independent
model with a relaxed clock) was 130, indicating strong support.
The independent model was actually favored over the joint
model when a molecular clock was enforced. The concatenation
model (with a relaxed clock) was the worst model (Bayes factor,
5,238). These conclusions remain true even with adjustments for
the increased number of parameters in the more flexible models.

Analysis of BEST Efficiency. To determine the efficiency of the
BEST method, we first randomly chose eight yeast genes and
used the gene trees from their posterior distributions to build
species trees as described above. We then repeated this 10 times
to see how many samples of 10 can recover the species tree. For
each of these 10 replicates, we found that every estimated species
tree was the same as topology 1 with an average posterior
probability of each node �0.95. We then repeated this for five
genes instead of eight. We found that in one of the 10 estimated
species trees, the topology was different from topology 1,
although the other 9 correctly estimated topology 1 with high
support �0.95. We therefore conservatively estimate that eight
genes in the yeast data set are sufficient to estimate the correct
species tree with high probability.

Simulations. We used the program MCMCcoal (30) to generate
simulated gene genealogies on four- and eight-taxon species
trees. In analysis 1, the proportion of gene trees matching the
species tree was low (�10–40%), and in analysis 2 the proportion
was high (�85–90%; see SI Materials and Methods). Gene trees
and branch lengths generated using MCMCcoal were analyzed
directly in BEST without simulation of DNA sequences to focus
specifically on the ability of BEST to reconstruct species trees

given gene tree heterogeneity but in the absence of gene tree
error. To compare the consistency of concatenation vs. BEST
analysis, we used MCMCcoal to simulate 30 gene trees on an
8-taxon species tree (species A–H) with branch lengths (see SI
Materials and Methods). We then simulated 500 bp of DNA
sequence on each of these gene trees using the Jukes–Cantor
(JC) model of nucleotide substitution and built gene trees by
concatenation using MrBayes and the JC model as well as by the
joint model used in BEST. The BEST analysis of the data
resulted in essentially a single species tree in the posterior
distribution with the correct topology [(H, (G, (F, (E, (D, (C, (A,
B)))))))] and receiving �98% of the posterior probability,
despite the fact that 36 different gene trees had substantial
posterior probability in the analysis. By contrast, analysis of the
same DNA sequences by concatenation under the appropriate
model of nucleotide substitution using either Bayesian or max-
imum-likelihood methods yielded the wrong tree with high
confidence [(H,(G,((F,E),(D,(C,(B,A))))))]. This convergence
to the wrong tree under concatenation was seen in data sets of
only 10 loci each of 500 bp and was virtually guaranteed provided
that at least one internal branch in the species was short. The
inconsistency of concatenation increased with increasing num-
bers of loci, whereas the BEST analysis continued to converge on
the correct tree.
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