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High-resolution spectroscopy of whispering gallery modes in
large dielectric spheres
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The mode spectrum of a 3.8-cm-diameter fused-silica sphere has been studied in the vicinity of 1.06 ,um.
A single-frequency Nd:YAG laser was used to excite whispering gallery modes by means of evanescent wave
coupling. The spectrum is in excellent agreement with predictions from Mie theory.

The interaction of optical waves with spherical ob-
jects has been a subject of interest since the early
treatments by Lorenz, Mie, and Debye,l which
provide the framework for the description of various
natural light-scattering phenomena. More recently,
investigations have been extended to nonlinear-
optical interactions in small spheres,2 which are
favored by the strong spatial confinement of reso-
nance modes. The observation that a spherical ob-
ject can sustain high-Q resonator modes dates back
to Richtmyer.' Spherical resonators for optical
waves have been used as laser resonators.4 Mie
theory' predicts that the modes' radial spatial ex-
tension from the surface toward the center of the
sphere lies in the range from a few wavelengths to
(1 - nfa/nfs)R, where R is the sphere's radius and nS
and na are the refractive indices of the sphere and
the medium surrounding it. The former modes,
called whispering gallery modes, have been observed
in stimulated-emission,5 optical-levitation,6 and
fluorescence experiments.7 Direct excitation by
means of a coupling prism has recently been demon-
strated by Braginsky et al.8 in fused-silica mini-
spheres using a He-Ne laser.

Here we report detailed results on the resonance
frequencies of whispering gallery modes of large
dielectric spheres at the Nd:YAG wavelength
AO = 1.064 ,m.

Two types of mode, TM and TE, can exist in a
spherical resonator; in the limit of resonators large
compared with the wavelength of the modes, their
electric fields are approximately radially and
azimuthally polarized, respectively.9 The electric
fields of the eigenmodes are given by

Er(r, 0, 4d) n(n k ) in(k r)Yn0 (O, k)

Eo(r, 0, 0) q - si 0j(kr)Y.1(0, 0)

TM modes,

TE modes, (1)

where k = 27rnyv/c andjn, ynq (q = -n,...,n) are the
spherical Bessel and harmonic functions. Reso-
nance occurs when the scattering coefficient associ-
ated with a particular mode n is unity.10 This is
satisfied for an infinite number of reduced eigenfre-

quencies nXn(')= kR, where the order number 1
gives the number of radial maxima of the field in-
side the sphere. High-Q, quasi-bound (i.e., weakly
radiating) modes require that n > nakR/fns. The
small-I modes are the whispering gallery modes, and
for large spheres (R >> Ao) their resonance frequen-
cies can be obtained using expansions of the Bessel
functions for large order n,'1
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where [xn(1) p] = [an() 1/M2 ], [bn(l), 1] for TM and TE
resonances, respectively, VI denotes the Ith zero of
the Airy function Ai(),' 2 and m = ns/na.

Here only the first five terms are relevant, and
they can be given a simple interpretation. The m-
independent terms result from the approximate van-
ishing of the mode's electric field at the surface of
the sphere, Jn[nsXn(11] 0, when in resonance. The
mode number n is nearly equal to the number of
wavelengths AO/n, that fit around the sphere's cir-
cumference, and the free spectral range follows as

Vf = C [Xn -l(l)-Xn(I)] 2 C (3)

This is the free spectral range expected for a wave
that propagates along the inner surface of the
sphere that is continuously internally reflected.
The total-internal-reflection (TIR) process also
gives rise to the frequency shift between the nearly
identical TM and TE spectra,

an(')- bn(l) 

P Vf m

because of the relative phase shifts experienced by
the fields on TIR."4

While the free spectral range and the frequency
shift are relatively insensitive to the precise value of
m, the relative positions of the modes of each polar-
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Fig. 1. Setup for the study of modes of spherical res-
onators. FC1, FC2, thermal and piezoelectric frequency
control inputs. D1, D2, alternate positions for the
photodetectors that register scattering and outcoupling of
the mode field, respectively.

ization are strongly m dependent owing to the large
value of n (approximately 105 in the present experi-
ment) and can thus be used for an accurate determi-
nation of the value of the refractive index.

The apparatus used to investigate the whispering
gallery mode spectrum is shown in Fig. 1. An un-
coated fused-silica sphere of radius R = 1.9004 cm,
with deviations from perfect sphericity of less than
Ao/40, was used. A single-mode, frequency-tunable
nonplanar Nd:YAG ring laser 5 with excellent fre-
quency stability properties (10-kHz linewidth) was
employed to scan over several free spectral ranges of
the sphere. After focusing by a 10-cm focal-length
lens, the beam is coupled equatorially into sphere
modes by frustrated TIR using a prism. Its refrac-
tive index n, = 1.69 > n, allows the laser beam to be
launched nearly tangentially to the inner surface of
the sphere. The sphere is mounted on a translation
stage that permits accurate control of the gap dis-
tance between coupling prism and sphere by means
of a piezoelectric actuator. The TIR modes radiate
owing to scattering as well as outcoupling by the
same prism used for excitation. When the laser fre-
quency is in resonance with an eigenmode, a ring of
light around the equator is observable, caused by
surface scattering. The leakage of resonator modes
through the coupling prism gives rise to interfer-
ence with the laser beam internally reflected in the
prism. Spectra can be taken by measuring either
effect.

Figures 2(a) and 2(b) show the spectra for hori-
zontal (equatorial) and vertical polarization of the
laser beam, together with the frequency markers of
a Fabry-Perot interferometer, taken by thermally
scanning the laser frequency. For comparison, a fit
based on the mode spectrum [Eq. (2)] is shown in
Fig. 2(c). The agreement with the experimental
spectrum is good. An interesting feature is the
presence of the lowest-order (I = 1) mode, which
is usually not observed in scattering or optical-
levitation spectra of small particles owing to its
small contribution to the scattering cross section."'

The mode number is obtained by fitting to 18 of
the 22 lowest-order modes, n = 162554 ± 1, with a

rms deviation of 1 MHz between data and fit. With
a laser frequency 1/Ao = 9394.0 ± 0.3 cm-' and the
radius of the sphere, Eq. (2) yields n, = 1.45008 ±
0.00005.

The measured if = 1726 ± 10 MHz and polariza-
tion shift iP = 0.729 also compare well with the val-
ues of 1731 MHz and 0.724 predicted from Eq. (2)
and the fitted index. Temperature drift accounts
for the slight discrepancy (tuning coefficient
dv/dT = -2 GHz/K).

To determine accurately the linewidths of the res-
onances we have studied the derivative line shapes
by piezoelectrically frequency modulating the laser
and lock-in detecting the equatorially scattered
light. The smallest linewidth (FWHM) measured
was 3.0 MHz, which implies a resonator finesse
5 = 570. Modification of the coupling strength by
changing the gap width, thereby changing the line
intensities over 2 orders of magnitude, did not result
in any appreciable change in linewidth. Thus the
finesse is due to bulk and surface losses rather than
output coupling losses.

With careful material choice and surface polish,
fused-silica TIR resonators may reach submega-
hertz linewidths. This suggests their use as mono-
lithic resonators for frequency stabilization, provided
that their operating temperature is tightly con-
trolled. To demonstrate this, the laser was fre-
quency locked to one particular whispering gallery
mode, with the derivative signal used as an error
signal fed back to the piezoelectric frequency control.
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Fig. 2. Experimental and theoretical whispering gallery
mode spectra. (a), (b) The intensity of the light scattered
from the equator, obtained by lock-in detection, versus the
laser frequency together with Fabry-Perot resonances.
The scan time was 20 s each. (a) Parallel (in-plane) laser
polarization excites TM resonances. (b) TE modes ex-
cited by perpendicular laser polarization. (c) The line po-
sitions according to Mie theory [Eq. (2)] for I = 1-22,
using the best-fit mode number n = 162554. For clarity
the heights of the bars were scaled by 1/VI. The center
frequency is approximately 9394 cm-'.
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The relative intensities of the whispering gallery
resonances depend on their excitation probability,
i.e., their spatial overlap with the Gaussian laser
beam, and their losses. For the scattering spec-
trum this is a function of the mode's intensity distri-
bution as well as the sphere's scattering loss
distribution. The electric-field amplitudes [rela-
tions (1)] for the TM and TE whispering gallery
modes can be approximated in the large-n case by"

E(r) - Ai[t2 + (-R) (R - r)]. (5)

This Airy mode structure has been observed in bent
metallic waveguides.'6 Relation (5) implies that the
radial depth of the whispering gallery field distribu-
tion is Ar = 5111' Am in the present case. Since the
modes spread out further radially with increasing
order number, a decreasing excitation probability is
expected for an input beam launched at grazing in-
cidence into the sphere, in agreement with Figs. 2(a)
and 2(b), where only the lowest orders appear. With
increasing beam launch angle, we observed a grow-
ing number of modes as well as strong changes in
their intensities.

Similarly we can deduce that the angular distri-
bution must be described by a spherical harmonic
peaked near 0 = 1r/2, i.e., with q on the order of n, to
provide good spatial overlap with the laser beam.
Also, according to relations (1), Eo and Er are then of
the same magnitude, as observed. The presence of
the narrow equatorial radiation ring confirms this
reasoning (see Refs. 4 and 8).

In conclusion, we have reported the observation
and identification of whispering gallery modes of
spherical optical resonators using a single-frequency
laser. The distinctiveness of the resonances allows
laser frequency locking, which is necessary for the
implementation of spherical gyroscopes4 or injection-
seeded spherical lasers as well as for the study of
nonlinear-optical interactions in resonators such as
quantum nondemolition' and squeezing effects."7
Optical spheres are one realization of TIR res-
onators with evanescent wave coupling. The ability
of such resonators to operate over a wide wavelength
range with variable input-output coupling promises
important applications.
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