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Abstract 

Background: Methylation of DNA at CpG sites is an epigenetic modification and a potential modifier of disease risk, 
possibly mediating environmental effects. Currently, DNA methylation is commonly assessed using specific microar-
rays that sample methylation at a few % of all methylated sites.

Methods: To understand if significant information on methylation can be added by a more comprehensive analysis 
of methylation, we set up a quantitative method, bisulfite oligonucleotide-selective sequencing (Bs-OS-seq), and 
compared the data with microarray-derived methylation data. We assessed methylation at two asthma-associated 
genes, IL13 and ORMDL3, in blood samples collected from children with and without asthma and fractionated white 
blood cell types from healthy adult controls.

Results: Our results show that Bs-OS-seq can uncover vast amounts of methylation variation not detected by com-
monly used array methods. We found that high-density methylation information from even one gene can delineate 
the main white blood cell lineages.

Conclusions: We conclude that high-resolution methylation studies can yield clinically important information at 
selected specific loci missed by array-based methods, with potential implications for future studies of methylation-
disease associations.
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Introduction
DNA methylation as an epigenetic marker has gained 

popularity in assessing the role of potential environ-

mental modifiers in disease pathogenesis, leading to the 

emergence of the concept Epigenome-Wide Association 

Studies (EWAS). �e popularity of this approach has 

been facilitated by the ease of analyzing genome-wide 

methylation patterns using microarrays, such as the 

Illumina’s 450k and EPIC arrays, containing probes for 

450,000 and 850,000 potentially methylated CpG sites, 

respectively [1, 2]. �e approach suffers, however, from 

two main problems. First, the number of methylation-

susceptible CpG sites in the genome is nearly 30 mil-

lion, and thus even the EPIC array addresses fewer than 

3% of these CpG sites. Second, while single-nucleotide 

polymorphisms (SNPs) at nearby sites are often in link-

age disequilibrium, and thus their alleles can be reliably 

predicted by nearby markers’ alleles, the same does not 

seem to hold true for methylation patterns. Another 
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complicating factor is that the importance of methyla-

tion at specific sites or regions of the genome is still not 

fully understood, and much biologically important varia-

tion may remain undisclosed with array-based methods. 

�e distribution of CpG sites within the arrays is biased 

towards the CpG island with very few CpG sites scattered 

within the CpG island shores and the gene body, gene 

locations with remarkable effects on epigenetic regula-

tion. Also, methylation patterns vary by cell type, and 

even nearby methylated sites can vary in different cell 

types dependent on their functional role, and even over 

time [3]. �us, in any epigenetic methylation study there 

is a risk of potentially missing a large body of informa-

tion, but exactly how much, is typically not assessed. To 

achieve full methylation pattern coverage, one can apply, 

e.g., bisulfite sequencing of the entire genome, though the 

high cost involved obviously limits its use in large studies.

We had two aims for the current study. First, we set 

out to design an assay that is targeted, quantitative, and 

at a reasonably low cost to assess full methylation pat-

terns in targeted regions of the genome, such as genes 

considered especially interesting for a certain analysis. 

Second, we wanted to assess the amount of addition-

ally gained information by comparing the new method 

to data obtained from the same DNA samples using the 

Illumina 450  K microarray [4, 5]. �e novel method, 

Bisulfite Oligonucleotide-selective sequencing (Bs-OS-

seq), is based on the targeted capture of CpG sites using 

specific oligonucleotides across the region of interest 

followed by deep sequencing of the captured DNA mol-

ecules after bisulfite conversion. �e process yields a 

mixed population of variant sequences depending on 

the level of methylation at any given position (Fig. 1). In 

an attempt to validate this new method, we analyzed the 

methylation profiles of the IL13 and ORMDL3 genes, as 

they have both been implicated in asthma [6], represent-

ing the involvement of different cell types, and are there-

fore interesting targets to understand the variation of 

methylation as a factor possibly contributing to asthma 

pathogenesis.

Results
We analyzed DNA methylation patterns in two sets of 

samples with the new bs-OS-seq method for methylation 

analysis to assess the level of variation and the increase of 

information as compared to the reference Illumina 450k 

array data (Fig. 2), in the two asthma-related genes IL13 

and ORMDL3. One sample set consisted of sorted blood 

cell populations (CD4 + T cells, CD8 + T-cells, CD19 + B 

cells, CD14 + monocytes, granulocytes, and neutrophils) 

and PBMCs from 6 healthy adult male blood donors, 

and one set consisted of whole blood samples from 22 
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Fig. 1 A schematic description of the Bisulfite Oligonucleotide-Selective sequencing (Bs-OS-seq) method
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school-aged asthmatic children and age-matched healthy 

controls.

Targeted bs-OS-Seq identi�es methylation patterns 

in higher resolution compared to Illumina 450k microarray 

in PBMCs of healthy adult males

We analyzed DNA methylation patterns in the CpG 

islands and shores of the genes IL13 and ORMDL3, with 

bs-OS-Seq in a sample set of PBMCs from 6 healthy 

adult male donors [4, 7] to assess the level of agreement 

between the methods and the increase of information 

with bs-OS-Seq as compared to the reference Illumina 

450k array data from the same data set (Fig.  2). �e 

dense data set obtained with bs-OS-seq reveal a much 

richer pattern of methylation variation across the stud-

ied loci than is evident in the 450k array data (Fig.  2a), 

with 268 versus 14 CpG sites in IL13, and 259 versus 17 

CpG sites in ORMDL3. Hypomethylation was seen in the 

CpG island while higher methylation levels were seen 

in the surrounding CpG sites. Comparison of methyla-

tion measurements between the two methods demon-

strated a high level of agreement at the 14 (IL13) and 

17 (ORMDL3) overlapping CpG-sites, with correlation 

scores ranging from 0.856 to 0.971 (Fig.  2b, Table  1, 

Additional file 1:  Fig. 1).

Next, we analyzed the extent of methylation variation 

over the two regions revealing that among the top 10% of 

most varying methylation sites by bs-OS-seq, only 3 and 

1 sites in IL13 (Chr5: 132021824, Chr5: 132017404, Chr5: 

132021752) and ORMDL3 (Chr17: 35334712), respec-

tively, were captured by the 450  k array data (Fig.  2c). 

We thus demonstrate that targeted bs-OS-seq is highly 

quantitative as shown by analysis of PBMC samples from 
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Fig. 2 CpG methylation profiling of IL13 and ORMDL3 genes’ islands and shores and comparison of bs-OS-Seq and 450k array in PBMC from 

healthy males. a DNA methylation in 6 kb of CpG islands and shores were profiled using bs-OS-Seq. Negative (un-methylated) and positive (fully 

methylated) reference DNA extracted from whole blood of NA12878 demonstrate consistent quantitativity of the assay. Six PBMC samples from 

six healthy male donors and the reference sample NA12878 show distinct hypomethylation of the CpG island while having varying degree of 

methylation in the CpG sites residing in the shores. b bs-OS-Seq demonstrated 19x and 15x higher resolution of CpG methylation compared to 

450k array data in the PBMC samples in IL13 (268 vs. 14 CpG sites) and ORMDL3 (259 vs. 17 CpG sites) genes, respectively, while reaching concordant 

methylation results in the shared sites. c The 10% most variable CpG sites contained large variation between the PBMC samples from the six healthy 

male donors. CpG sites also covered by the 450 K array assay are highlighted with a green box

Table 1 Correlation scores (Pearson) of the methylation levels 

of common CpG sites analyzed by bs-OS-Seq and 450k arrays for 

each individual in PBMCs

IL13 ORMDL3

1 0.915 0.901

2 0.948 0.894

3 0.920 0.897

4 0.856 0.889

5 0.961 0.927

6 0.961 0.971
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six healthy adults and DNA samples fully methylated 

and un-methylated as positive and negative controls, in 

CpG islands and shores of the genes IL13 and ORMDL3 

(Fig. 2a).

Blood cell populations cluster together based 

on methylation pro�ling of IL13 and ORMDL3 using 

targeted bs-OS-Seq

To investigate the details of the methylation pattern in 

different cell types, we analyzed sorted blood cell popu-

lations (CD4+ T cells, CD8+ T-cells, CD19+ B cells, 

CD14+ monocytes, granulocytes, and neutrophils) and 

PBMCs from six healthy adult males, and whole blood 

from 22 school-aged children. Based on Kruskall–Wal-

lis statistical analysis, 62 and 96 informative CpG sites in 

the IL13 and ORMDL3 genes, respectively, were identi-

fied. Unsupervised clustering of the data obtained by 

bs-OS-seq was able to segregate the samples distinctly 

in subgroups, representing a predominance of lympho-

cytic methylation pattern, myeloid methylation pattern, 

or neither (Fig. 3), even when using data only for the two 

genes IL13 and ORMDL3 separately. �is emphasizes the 

importance of available methylation data from sorted cell 

populations that can be used to correct for methylation 

variation in different cell types (Fig.  3a) when analyz-

ing samples from, e.g., PBMCs or whole blood which is 

a commonly used source of DNA. Methylation in IL13 

showed the largest variations in CD4 + and CD8 + cells 

(cluster 1). Also, several CpG sites in ORMDL3 were 

clearly demethylated in CD4 + and CD8 + cells (cluster 1) 

compared with granulocytes (cluster 5) (Fig.  3a). When 

we added information on the three clinical subgroups 

(therapy resistant asthma, controlled asthma, or healthy) 

of the school-aged children, we demonstrated that the 

clustering based on methylation profiling of IL13 and 

ORMDL3 followed the measured cellular composition in 

the whole blood samples (Fig. 3b).

Discussion
In this study, we show that the methylation data for CpG 

sites obtained by bs-OS-seq correlate with the methyla-

tion data present at the 450k array. Our results cross-val-

idated the accuracy of the methods and revealed patterns 

of methylation variation in the targeted genes that could 

not be discovered by established microarray methods. 

Also, we could show that unsupervised clustering with 

dense methylation data result in distinct segregation 

according to cell type, using data available for the two 

studied loci ORMDL3 and IL13, separately in two inde-

pendent materials. Furthermore, we demonstrate that 

the bs-OS-seq method is highly quantitative, and level 

of methylation can be analyzed by measuring the read-

count depth.

�e dense data obtained by bs-OS-seq reveals a much 

richer pattern of methylation variation across the stud-

ied loci than is evident in the 450k array data. Our data 

suggest that much of the biologically important variation 

in methylation may remain undisclosed with the array-

based methods. �is new sequencing-based method 

would be an important strategy to verify, and increase the 

knowledge and understanding of the methylation pattern 

in loci identified by screening using existing arrays, or 

for targeted studies of candidate loci. When the probes 

are established, the same setup of CpG sites can easily be 

screened for in many samples in parallel, e.g., a number 

of different tissues, longitudinal samples from the same 

individuals or a number of cohorts. Cross-sectional 

methylation associations in children can reflect both 

risk for and effects of disease, and therefore longitudinal 

sampling and methylation analyses is fundamental. �is 

high-resolution method would facilitate detailed longitu-

dinal studies of targeted loci to clarify whether identified 

epigenetic changes is a primary or secondary effect. �is 

is a problematic issue in the field of epigenetics, which 

can only be solved with longitudinal studies.

In this comparison, we used the 450k array [1], which 

has more recently been replaced with the EPIC array [2]. 

�e EPIC covers over 850,000 CpG sites, including more 

than 90% of the CpGs from the 450k and an additional 

413,743 CpGs [2]. It has high reproducibility, reliability 

and higher coverage than the 450k array, but individual 

CpG sites especially those with low variability show a 

much lower correlation between the two arrays [2, 8, 

9]. However, the coverage is still sparse compared to 

targeted bs-OS-seq in each locus. In our analyses, cap-

ture oligos were designed to target altogether 268 and 

259 CpG positions in the IL13 and ORMDL3 genes, 

respectively. For comparison, the resolution provided by 

the well-established 450k arrays is vastly inferior, as it 

includes probes for analyzing only 14 and 17 CpG sites 

in the IL13 and ORMDL3 genes, respectively. Previously 

450k, and now EPIC arrays work well for genome wide 

screening to identify loci of interest. High-resolution 

analyses like bs-OS-seq are rather intended for targeted 

candidate gene analyses, detailed analyses of regions of 

interest identified by screening analyses performed with 

arrays. As the correlation for some individual CpG sites 

is low between the arrays [8–10], and even differ between 

tissues [10], the interpretation of methylation changes 

in specific CpG sites should be performed with caution, 

and independent validation methods, such as bs-OS-seq, 

should be considered.

�e most comprehensive, commonly used method 

for assaying methylation genome-wide is bisulfite 

sequencing. Its use is restricted by the high sequencing 

cost, as a quantitative assay of methylation percentage 
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requires deeper than the usual 30X coverage. Two tar-

geted methods, SeqCap Epi [11, 12] and QIAseq (Qia-

gen), suffer from a more complicated laboratory work 

requiring hands-on resources. Bs-OS-seq is simple to 

perform but highly targeted and will require the setup 

for the specific region of interest, increasing the cost 

for small series of samples. �e cost of setup will, how-

ever, rapidly get diluted if the assay is intended for large 

series of samples. A comparison of these four methods 

is outlined in Table 2, indicating the effort or cost with 

one to three $ signs.
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Fig. 3 a Clusters of blood cells were identified using bs-OS-Seq profiling of IL13 and ORMDL3. bs-OS-seq was able to cluster different types of 

blood cells distinctly using methylation data available only for the two gene loci separately, emphasizing the importance of available reference 

data sets that can be used to correct for cell type variation in methylation patterns. Sorted blood cell populations (CD4 + T cells, CD8 + T-cells, 

CD19 + B cells, CD14 + monocytes, granulocytes, and neutrophils) and PBMCs from six healthy adult males (adult 1–6), and 22 whole blood 

samples from asthmatic and healthy school-aged children (1–22; healthy, mild asthma, severe asthma) were included. The whole blood samples 

from the children clustered readily in subgroups representing lymphocytic methylation pattern predominance, myeloid methylation pattern 

predominance, and neither. b Childhood asthma cases clustered with specific subgroups following the composition of blood cell types. 

Clustering based on DNA methylation profiling of IL13 and ORMDL3 revealed asthma subgroups that co-clustered with specific blood cell types. 

Subgrouping based on methylation profiles followed cellular composition in the whole blood samples of the school aged children with asthma. 

CD14 +  = CD14 + monocytes, CD19 +  = CD19 + B cells, CD4 +  = CD4 + T cells, CD8 +  = CD8 + T-cells, Gran = granulocytes, Neu = neutrophils, 

PBMC = peripheral blood mononuclear cells, whole_blood = whole blood, leuk = leukocytes, neu = neutrophils, eos = eosinophils, 

lymf = lymphocytes, mono = monocytes
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DNA methylation as an epigenetic marker has 

gained popularity to explain functional variation at 

loci implicated in diseases with genetic and environ-

mental components. An important disease with such 

characteristics is asthma, where several loci have been 

robustly replicated and are thus interesting targets to 

understand the variation of methylation as a factor pos-

sibly contributing to pathogenesis (Reviewed in [13]). 

Several loci have shown methylation differences asso-

ciated with childhood asthma [14–16], and a recent 

meta-analysis showed that asthma-related differential 

methylation in blood in children was also replicated 

in eosinophils and respiratory epithelium [17]. Impor-

tantly, methylation differences involved in response 

to maternal smoking during pregnancy [18, 19] or 

prenatal exposure to air pollution [20, 21] have been 

identified, indicating a possible connection between 

environment and health through DNA methylation.

Asthma is a multifactorial disease, and both genetic 

and environmental factors are of importance [22, 23]. 

�e most replicated and significant asthma locus, espe-

cially for childhood asthma, is located on chromosome 

17q12-21 and contains a cluster of genes, among them 

ORMDL3 reviewed in [24].  ORMDL3 seems to have 

pleiotropic effects during cellular inflammation, con-

sistent with its substantial genetic influence on child-

hood asthma [25, 26]. In addition, possible explanations 

to a connection to rhinovirus infection have been sug-

gested [26, 27]. However, the definite role of ORMDL3 

in the pathogenesis of asthma remains unclear and 

needs further analyses. DNA methylation plays an 

important role in ORMDL3-mediated increased 

cytokine levels [25]. We have previously shown an 

association between asthma and differential methyla-

tion of ORMDL3  from peripheral blood leukocytes in 

asthmatic children from the Swedish Search Study, 

and methylation levels at specific sites correlated with 

gene expression [5]. In the same study [5], we could 

show that the decreased DNA methylation levels in the 

CpG island shore of ORMDL3 was mainly seen in the 

CD8+ T-cells, as is confirmed by bs-OS seq in the same 

DNA samples in this study.

Specific methylation profiles in the IL13 locus have 

been shown in airway epithelium associated with atopy 

and atopic asthma in children [28], as well as nasal epi-

thelia [29] and blood [14].

Our cohort of school-aged asthmatic children was 

too small to contribute to further understanding of the 

importance of methylation in the ORMDL3 or IL13 locus 

by high-resolution analyses, but the amount of CpG sites 

with varying methylation levels illustrates the potential 

of detailed methylation analyses in these loci, most likely 

resulting in additional biological understanding. In addi-

tion, the detailed methylation profiles identified by bs-

OS-seq support our previous findings [5] as the largest 

variations are seen in the lymphoid lineage, supporting 

that those cell populations may be functionally relevant 

for the role of these genes in the asthma pathogenesis. 

Despite a huge effort to understand both genetics and 

epigenetics in asthma data are not conclusive. �e major-

ity of the epigenetic studies have been based on array 

data, which has resulted in further understanding for a 

number of diseases. However, the connection of methyla-

tion patterns in relation to health and disease is still not 

clear, and one of the reasons might well be this lack of 

information.

Conclusions
In summary, we have developed a novel, cost-efficient 

and quantitative method for assessing DNA methylation 

at high density in selected genomic regions, based on 

bisulfite conversion, target capture, and deep sequencing. 

Our data show vastly increased information content and 

uncover methylation variation not detected by commonly 

used array methods with lower probe density. We show 

that methylation information from even one single gene, 

but provided at high resolution, contains enough meth-

ylation variation to delineate the main white blood cell 

lineages. In addition, we confirm our previous data [5] 

that decreased DNA methylation levels in the CpG island 

shore of ORMDL3 was mainly seen in CD8 + T-cells. We 

conclude that high-resolution methylation studies can 

yield clinically important information at selected spe-

cific loci missed by array-based methods, with potential 

Table 2 Comparison of costs between different sequencing-based methods for DNA methylation analyses

Bs-OS-Seq Hybridization-based
(e.g., SeqCap Epi)

Amplicon-based
(e.g., QIAseq)

Whole-genome 
bisul�te sequencing 
(WGBS)

Wet bench protocol Simple (resources: $) Complex
(resources: $$)

Complex
(resources: $$)

Simple
(resources: $)

Sequencing adapters Unmethylated
($)

Methylated
($$)

Unmethylated
($)

Methylated
($$)

Sequencing cost Targeted
($)

Targeted
($)

Targeted
($)

Whole-genome
($$$)
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implications for future studies of DNA methylation-dis-

ease associations.

Materials and methods
To compare the new Bs-OS-seq method with the estab-

lished Illumina 450k arrays, we analyzed 62 blood sam-

ples with Bs-OS-seq that had previously been analyzed 

on Illumina 450k arrays [4]. �irty-nine of these samples 

were six sorted blood cell populations (CD4+ T cells, 

CD8+ T-cells, CD19+ B cells, CD14+ monocytes, gran-

ulocytes, and neutrophils) and PBMCs from six healthy 

adult males, and 22 were whole blood samples from 15 

asthmatic and 7 healthy school-aged children.

Study participants and collection of blood samples

Healthy adult males

Peripheral blood (450 ml) was collected from six healthy 

adult male blood donors, age 38.6 ± 13.6 years recruited 

within the MALF study [7] as described elsewhere [4]. 

Briefly, isolated peripheral blood mononuclear cells 

(PBMC), CD4+ T cells, CD8+ T-cells, CD19+ B cells, 

CD14+ monocytes, granulocytes, and neutrophils were 

used in this study. PBMC and granulocytes were iso-

lated using Ficoll-Paque PlusTM (GE Healthcare, Swe-

den). Magnetic-activated cell sorting (MACS, Miltenyi 

Biotech, Germany) was used to obtain T cells, B cells, 

monocytes, and from the PBMCs and neutrophils from 

the granulocyte containing pellet. Cell purities were con-

trolled by fluorescence activated cell sorting (FACS) [4].

School-aged children with asthma and age-matched 

healthy controls

�e nationwide study on problematic severe asthma in 

Sweden is an observational, multicenter case–control 

investigation in which school-aged children with prob-

lematic severe asthma were compared to age-matched 

peers with controlled persistent asthma [30]. All patients 

were required to have been without airway infections or 

exacerbations of their asthma during a 2-week period 

prior to examination. Details concerning the inclusion 

criteria can be found elsewhere [30]. �e sample set used 

in this study consisted of a subgroup of 8 children with 

therapy resistant asthma, which was defined as having 

an insufficient asthma control despite daily inhalation 

of high doses corticosteroids (≥ 800  μg budesonide or 

equivalent) in combination with long-acting beta 2 ago-

nists and/or leukotriene receptor antagonists, no identi-

fiable aggravating environmental exposures (tobacco or 

allergens) and treatment of symptomatic rhinitis. In addi-

tion, 7 children with controlled asthma (defined as chil-

dren having an acceptable asthma control with a low to 

moderate dose of inhaled corticosteroids (< 400 μg bude-

sonide or equivalent) were included. Finally, 7 healthy 

children were recruited at Astrid Lindgren Children’s 

Hospital, Stockholm, Sweden, among children admit-

ted for elective surgical procedures unrelated to asthma. 

�e basic characteristics of the children are presented in 

Table 3. Following application of local anesthesia (EMLA 

cream, Astra Zeneca, Sweden), samples of venous blood 

were collected in EDTA test tubes and a white blood cell 

count (leukocytes, neutrophils, eosinophils, lympho-

cytes, monocytes) were performed according to the cur-

rent clinical method at the local department of clinical 

chemistry at each participating clinic.

DNA methylation analyses using Illumina 450 bead chip 

technology

DNA was extracted from PBMC, and the separated cell 

populations from the healthy adults and from whole 

blood in the Swedish search participants. For each sam-

ple, 500 ng of genomic DNA was bisulfite converted with 

the EZ-96 DNA Methylation Kit (Zymo Research Cor-

poration, USA) according to the manufacturer’s instruc-

tions. Array-based-specific DNA methylation analysis 

was performed with the Infinium Human Methylation 

450 K bead chip technology (Illumina, USA) as previously 

Table 3 Basic characteristics of the Swedish Search study

Severe asthma Controlled asthma Healthy controls

Subjects n 8 7 7

Age, years mean (range) 14.7 (9.8–18.6) 14.1 (9.8–17.5) 12.5 (7.2–15.2)

Female/male n 3/5 5/2 1/6

Eosinophils  109 ×  L−1 mean (range) 0.30 (0–0.5) 0.23 (0–0.4) 0.26 (0–0.9)

Neutrophils  109 ×  L−1 mean (range) 3.8 (2.1–5.9) 2.7 (1.7–3.7) 2.9 (2.3–3.7)

Leukocytes  109 ×  L−1 mean (range) 6.8 (4.1–9.5) 6.37 (4.7–9) 5.79 (5–6.8)

Lymphocytes
109 ×  L−1 mean (range)

2.3 (1.6–3.6) 2.83 (2.1–4.3) 2.10 (1.6–2.9)

Monocytes
109 ×  L−1 mean (range)

0.44 (0.3–0.7) 0.57 (0.3–1.1) 0.44 (0.3–0.6)
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described [4, 5]. Briefly, bisulfite-treated genomic DNA 

was whole-genome amplified, hybridized to Human-

Methylation450 BeadChips (Illumina) and scanned using 

the Illumina iScan at the Mutation Analysis Core Facility 

(MAF) or Bioinformatics and Expression Analysis Core 

Facility (BEA) at Karolinska Institutet. �e intensity of 

the images was extracted with the GenomeStudio Meth-

ylation Software Module (v 1.9.0, Illumina).

DNA methylation analyses using Bisul�te 

Oligonucleotide-selective sequencing (Bs-OS-seq)

Preparation of bisul�te converted sequencing libraries

We used golden-standard reference DNA extracted from 

whole blood of NA12878 (Coriell, NJ, USA) as a control 

samples in methylation experiments. Before conver-

sion, NA12878 was treated using CpG Methyltransferase 

(M.SssI) (NEB, Ipswich, MA) and whole-genome 

amplification using REPLI-g mini Kit (Qiagen, Hilden, 

Germany) to prepare positive and negative controls, 

respectively. 600  ng of genomic DNA from NA12878 

reference and healthy adult males, and school-aged chil-

dren were converted using the bisulfite method EpiTect 

Fast DNA bisulfite kit (Qiagen). DNA was fragmented 

and denatured during conversion. After conversion, 

whole-genome amplification method, EpiTect Whole 

Bisulfitome Kit (Qiagen) was used for second-strand syn-

thesis and to increase DNA yield. Sequencing libraries 

were generated through end repair, A-tailing and adapter 

ligation using NEBNext Ultra library kit (NEB). Cus-

tom OS-Seq adapters were used in the adapter ligation. 

After library preparation and clean-up, libraries were 

amplified using 25 cycles of PCR and EpiMark Taq poly-

merase (NEB). Amplified libraries were purified using 

1 × AMPure XP beads (Beckman Coulter, Brea, CA).

Designing and creating OS-Seq primer-probes 

and sequencing

Target-specific OS-Seq primer-probes were designed 

to capture CpG islands and shores of the ORMDL3 and 

IL13 genes (hg19 was used as a reference for obtain-

ing sequences and gene annotations). CpG islands and 

shores were defined as genomic regions of 3  kb up- 

and downstream from the CpG islands. �e genomic 

regions encompassing CpG islands and shores of IL13 

and ORMDL3 were used as targets when designing the 

primer–probe sequences. Primer–probe design algo-

rithm was optimized for hybridization efficiency and to 

minimize secondary structures and hairpin looping. �e 

specificity of the target capture was ensured by requiring 

unambiguous mapping of the probe sequences. Optimal 

sequence length was determined based on estimated 

DNA melting temperature. 35–50 base sequences were 

tiled across the target regions. Altogether, we designed 

130 primer probes for IL13 (64 forward strand and 66 

reverse strand and 129 primer probes for ORMDL3 (64 

forward strand and 65 reverse strand) (Additional file 2:  

Table  1). For capturing bisulfite converted DNA, Cs in 

the designed sequences were modified to Ts and Cs in the 

CpG sites were modified to Ys (corresponding either C 

or T). Target-specific oligonucleotides were synthesized 

and re-suspended in 1 M concentration (Integrated DNA 

Technologies, Coralville, IA). Sequencing libraries were 

sequenced using MiSeq Sequencing System (Illumina, 

San Diego, CA) using modified OS-Seq protocol [31, 32]. 

Paired-end sequencing (150-by-150) was applied (Fig. 1).

Primary data analysis

BCL2 to Fastq conversion of the sequence reads was per-

formed using CASAVA software (version 1.8; Illumina). 

Demultiplexing was carried out using custom algorithm 

(Blueprint Genetics, Helsinki, Finland). �e BISMARK 

software (version 0.10.0 [33]) performs alignment to 

four alternative reference genomes corresponding to all 

potential conversion states. �e software utilizes Bowtie 

to align bisulfite conversed sequencing data from read 1 

using parameter settings selected to maximize mapping 

efficiency. In addition, the software calls the methyla-

tion status of cytosines in the context of CpG. As the last 

step, the BISMARK algorithm estimates the proportion 

of methylated and un-methylated reads at each CpG site 

and reports it as a percentage of methylation in the sam-

ple in a BED-graph format (https:// genome. ucsc. edu/ 

golde nPath/ help/ bedgr aph. html).

Methylation pro�ling

�e BED-graph files were imported and visualized in the 

genomic context using Integrative Genome Viewer [34]. 

Additionally, BED tracks for gene models, primer–probe 

sequences and target definitions were imported for ref-

erence. Methylation profiles of 6 healthy adult males and 

school-aged children were compared.

Comparison of bs-OS-Seq and 450k array data

Agreement in measured methylation levels between the 

two methods was assessed by computing pair-wise cor-

relations (Pearson) across all sites where the methods 

had overlapping measurements. A line representing the 

best fit through the data points was added to the scatter 

plot through linear regression. �e Heatmap 3 package 

(version 1.1.1), run in the R statistical computing envi-

ronment (version 3.2) was applied to generate un-scaled 

2-dimensional hierarchical clustering of bs-OS-Seq and 

450k array data. Segregation patterns were assessed for 

the CpG sites where data were available for both tech-

nologies and the most varying sites in the bs-OS-Seq data 

https://genome.ucsc.edu/goldenPath/help/bedgraph.html
https://genome.ucsc.edu/goldenPath/help/bedgraph.html
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that were selected by identifying the 10% with highest 

coefficient of variability (CV) across all samples.

Comparison of bs-OS-Seq patterns across di�erent blood cell 

populations

�e Heatmap 3 package (version 1.1.1), run in the R sta-

tistical computing environment (version 3.2) was applied 

to generate un-scaled 2-dimentional hierarchical cluster-

ing of bs-OS-Seq methylation profiling data across whole 

blood from 22 school-aged children and six sorted cell 

population samples and PBMCs from six healthy male 

donors. In order to focus on most informative portion of 

the data, a Kruskall–Wallis statistical test was performed 

to include statistically significantly (p < 0.01) differing 

CpG sites.

Clustering of asthma cases and comparison with blood cell 

population prevalence

Asthma cases co-segregated within subgroups based on 

bs-OS-Seq analysis. Cellular composition of different 

blood cell populations in the whole blood samples col-

lected within the Swedish Search cohort was analyzed 

according to the current clinical method at the local 

department of clinical chemistry at each participating 

clinic.
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org/ 10. 1186/ s13148- 021- 01093-7.

Additional �le 1: Fig. 1. Correlation scores (Pearson) of the methylation 
levels of common CpG sites in IL13 and ORMDL3 analyzed by bs-OS-Seq 
and 450k arrays for each individual in PBMCs. X-axis shows methylation 
levels with 450k arrays and y-axis with bs-OS-Seq. One correlation plot 
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regression.
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