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High-resolution velocity spectra using eigenstructure methods 

Biondo L. Biondi* and Clement Kostov* 

ABSTRACT 

Stacking spectra provide maximum-likelihood esti- 
mates for the stacking velocity, or for the ray param- 
eter, of well separated reflections in additive white 
noise. However, the resolution of stacking spectra is 
limited by the aperture of the array and the frequency 
of the data. Despite these limitations, parametric spec- 
tral estimation methods achieve better resolution than 
does stacking. To improve resolution, the parametric 
methods introduce a parsimonious model for the spec- 
trum of the data. In particular, when the data are 
modeled as the superposition of wavefronts, the prop- 
erties of the eigenstructure of the data covariance 
matrix can be used to obtain high-resolution spectra. 
The traditional stacking spectra can also be expressed 
as a function of the data covariance matrix and directly 
compared to the eigenstructure spectra. The superior- 
ity of the latter in separating closely interfering reflec- 
tions is then apparent from a simple geometric inter- 
pretation. 

Eigenstructure methods were originally developed 
for use with narrow-band signals. while seismic reflec- 
tions are wide-band and transient in time Taking 
advantage of the full bandwidth of seismic data, we 
average spectra from several frequency bands. We 
choose each frequency band wide enough, so that we 
can average over time estimates of the covariance 
matrix. Thus, we obtain a robust estimate of the 
covariance matrix from short data sequences. 

A field-data example shows that the high-resolution 
estimators are particularly attractive for use in the 
estimation of local spectra in which short arrays are 
considered. Several realistic synthetic examples of 
stacking-velocity spectra illustrate the improved per- 
formance of the new methods in comparison with 
conventional processing. 

INTRODUCTION 

The estimation of stacking velocities is a classic problem 
in exploration seismology. A related problem is the estima- 
tion of the ray parameter of a plane wave. Both problems are 
particular cases of a more general problem: estimating the 
parameters that describe the shape of the wavefront (“shape 
parameters”) for a signal recorded at a linear array of 
receivers. In the near field, the wavefront is approximately 
spherical, and therefore the relative time delays between 
receivers are conveniently parameterized by stacking veloc- 
ities and zero-offset traveltimes. In the far field, the wave- 
front is well approximated by plane waves characterized by 
ray parameters. 

The standard approach to estimating stacking velocities is 
to pick the maxima of shape-parameter spectra (Taner and 
Koehler, 1969). The spectra are computed by the repeated 
application, for a sweep of shape parameters, of first a time
correction that aligns the wavefront in space along the array 
and then a coherency measure along the spatial direction. 
The time correction could be normal moveout (NMO) or 
linear moveout (LMO); the coherency measure could be a 
simple stacking or the computation of a semblance function. 

The stacking spectrum, and in particular the stacking- 
velocity spectrum, has many attractive properties. It yields 
the maximum-likelihood estimates of the shape parameter 
when the statistics of the data are Gaussian and there is only 
one wavefront impinging on the array. Furthermore, the 
estimate is robust -with respect tom the data’s deviations from 
the assumed simple propagation model or from Gaussian 
statistics. When two or more wavefronts impinge on the 
array, the classical procedure still yields good estimates of 
their shape parameters, provided that the wavefront shapes 
are sufficiently different. However, when a pair of wave- 
fronts are too closely interfering, the resulting estimates are 
biased. Even worse, the spectra may show only one maxi- 
mum and~indicate only one wavefront~ incident on the array. 

The main disadvantage of the stacking spectrum is its poor 
resolution, limited by the aperture of the array and by the 
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frequency of the data. For narrow-band data, the estimation 
of shape-parameter spectra is related to the estimation of 
frequency spectra for time series, and the stacking spectrum 
is equivalent to the periodogram. Many algorithms for esti- 
mating high-resolution, shape-parameter spectra from nar- 
row-band data have been developed, in particular for radar 
and sonar applications (Capon, 1969). To improve the reso- 
lution, a model for the data is introduced; this method is 
similar to the high-resolution methods for estimating fre- 
quency spectra (Pisarenko, 1972; Burg, 1975). When the data 
are modeled as a superposition of wavefronts. the covari- 
ante matrix of the data has a particular structure, and the 
properties of its eigenstructure can be exploited so that the 
resolution of the spectra is further improved (Bienvenu and 
Kopp, 1983; Schmidt. 1986). Eigenstructure methods can be 
extended to the case of broad-band signals, such as the 
seismic signal. by decomposing the data into narrow-band 
components (Wax et al., 1984; Wang and Kaveh, 1985). 

In reflection seismology, high-resolution spectra are 
needed to resolve reflection events, for instance primaries 
from reflectors with conflicting dips or a primary and an 
intrabed or peg-leg multiple. Stacking-velocity spectra typi- 
cally fail to separate interfering events at late times and high 
velocities. High-resolution spectra can be even more useful 
in the estimation of local spectra, such as local slant stacks 
(Sword, 1987) or beam stacks (Kostov and Biondi, 1987). 
The use of local spectra has two advantages over conven- 
tional methods: (I) the physical model describing the data is 
more accurate for shorter arrays (for instance the plane- 
wave approximation is appropriate only in the Fresnel zone) 
and (2) local spectra are more sensitive to small-scale 
variations in the shape parameter. On the other hand, local 
spectra have poor resolution, because their estimation uses 
shorter arrays. This limitation can be alleviated by use of 
high-resolution methods. 

The application of the eigenstructure methods to seismic 
reflections is more complicated than their application to 
sonar or radar data, because seismic data are both wide-band 
and highly nonstationary, in the sense that the shape param- 
eter of the reflections can vary rapidly with time When 
processing seismic data, only a few time samples can be used 

for the estimation of the covariance matrix; therefore, the 
redundancy of information contained in all the frequency 
bands of the data must be exploited to obtain reliable 
shape-parameter spectra. 

Previous applications in geophysics of the eigenstructure 
methods include those by Key et al. (1987) and Mars et al. 
(1987). Key et al. use only the eigenvalues of the covariance 
matrix and do not allow for interfering reflections in their 
data model. Mars et al. discuss the applications of eigen- 
structure methods to noise suppression. 

In the first section, we present the eigenstructure algo- 
rithms applied to narrow-band signals. Then we compare the 
new methods with the classical stacking method and show a 
geometric explanation for the superiority of the former. The 
third section contains an extension of the narrow-band 
method to the general case of a wide-band signal. In this 
section, we discuss the particular features of the seismic 
problem and the tradeoff between resolution and robustness 
in the application of the method to seismic signals. The last 
two sections illustrate, with a field-data example and some 

synthetic examples. the applications of the high-resolution 
methods to stacking-velocity analysis and local slant stacks. 

THE NARROW-BAND METHOD 

The recorded data are assumed to be complex and narrow- 
band, with central angular pulsation w. The seismic signal is 
real and broad-band, but it can be easily transformed into a 
narrow-band, analytical signal by use of a band-pass filter 
and the Hilbert transform (Claerbout, 1976). Some advan- 
tages of working with the analytical signal, rather than with 
the real-valued one, are discussed by Sguazzero and Ves- 
naver (1987). The data recorded at the M receivers are 
described as the combination of W wavefronts and additive 
noise. The model for the data recorded by the receiver ITS at 
time [ is 

tl(m, t) = ; s,,[r ~ T,,.(rn;e,,.)l + n(m, 11, (1) 
I, = I 

where n(m. t) is the additive noise, assumed to be uncorre- 
lated with the sources s,,.(t). The delays of the wavefronts’ 
arrivals at receiver M with respect to zero-offset traveltime 
7,, are denoted by 7,, (r?z; (I,,.). When the wavefronts are 
plane waves, the delays are expressed as 

7,,.(m; (I,,.) = 0,&&n - I), (2) 

where Ax is the spacing between the receivers and (.I,,, is the 
ray parameter of the M’ wavefront. When the wavefront 
shapes are hyperbolic, the delays are 

7,,.(177; H,,.) = pi. + H;.[Ax(m - I)]? - ?,,, (3) 

where now H,,. is the stacking slowness. In this case, the 
delays are functions of two parameters: slowness and zero- 
offset traveltime. We consider the spectra only as functions 
of slowness, but the proposed method could be applied to 
estimate spectra that are functions of both slowness and 
zero-offset traveltime. 

The sources S,,,(I) are modeled as narrow-band stochastic 
processes. Thus, the time shifts are complex exponentials; 
and the data can be expressed as 

= ,,j, yi,‘.(l) ‘yj”’ + n(rF2, t). (4) 

The recorded data are truncated in time by a window of T 
time samples containing the interfering reflections to be 
analyzed. In matrix notation the data window is expressed as 

Q = A(O)? + w, (5) 

where Q and 8 are (M x 7') data and noise matrices. S is a 
(W x T) source matrix, and A(O) is the “data steering 
matrix” function of the vector of parameters 0. The data 
steering matrix is an (M x W) matrix formed by the W “data 
steering vectors” a(f),,.): 
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Because the sources are assumed to be zero-mean sto- 
chastic processes and to be uncorrelated with the noise, the 
data covariance matrix is 

& = E[pI_)*] = ‘4(@)E[$$*]‘qO)” + It,, 

= A(@JI?,,lj(@)* + I?,). (7) 

where &,Y and R, are the respective covariance matrices of 
the sources and the noise and D” is the conjugate transpose 
of p. 

For simplicity, we assume that the noise is spatially 
uncorrelated and has equal power at all the receivers. 
Equation (7) becomes 

I&j = .4(@)&$(@)* + Uf!. (8) 

The above assumption about the statistics of the noise does 
not limit the generality of the method, because if &,, were 
known, the data could either be prewhitened (Bienvenu and 
Kopp, 1983) or the eigenstructure of the positive definite 
matrix pencil (IX,,, I?,,) could be used (Schmidt, 1986). 

Properties of the eigenstructure of the data 
covariance matrix 

When the source covariance matrix 5, is nonsingular (i.e., 
there are no pairs of fully correlated sources) and there are 
no linearly dependent steering vectors a ,, (0 ,,.), the matrices 
R,, and .A(@) have rank W (here we assume that M 2 w): and 
therefore the matrix A(@)&,A(O)* also has rank W. 

Let [A, 2 h7-...Z h,M] be the eigenvalues and 
IE,. E *, ..,, E,] be the eigenvectors of the data covariance 
matrix R(,. Equation (8) implies that the eigenvalues of IX,, 
are of the form h = p+’ 
A(@)& ,A(@)*. The rank 
properties hold true: 

(I) The minimal 
M - W. That is, 

f u,5, with kLz the eigenvalues of 
of Ij,, is W, so the two following 

eigenvalue is o,, with multiplicity 

hW+,=hW+?= . =x,+f=o;. (9a) 

(2) The eigenvectors corresponding to the minimal 
eigenvalues are orthogonal to the data steering vectors 
a,,.(O,,.). That is, 

a(O,?)*E,,, = 0, m = W + I. W + 2, . , M. (9b) 

The subspace I&,~ = [E_, i i in Ed, i 2_~. . E,] spanned by 
the eigenvectors corresponding to the minimal eigenvalues is 
called the “noise subspace.” The noise subspace is orthog- 
onal to the “signal subspace” IC, = [E, , EI, . . . . E,] that 
coincides with the subspace spanned by the data steering 
vectors a(0 ,,,). 

The first property is used in the determination of the 
number of wavefronts impinging on the array. The second 
property is used in the estimation of the wavefront shapes. 

Estimation of the number of wavefronts 

In practice, the data covariance matrix is unknown and 
must be estimated from the recorded data. After subtracting 
the mean in the off‘set direction, the maximum-likelihood 
estimate of the covariance matrix is 

Ii,,=;,*. (IO) 

Property (I) in equation (9a) is not true for the eigenvalues 
[i , 2 I, . 2 );,w] of the estimated covariance matrix 8,. 
In general, the lowest M - W eigenvalues are different from 
CT:. Therefore, the determination of the number of wave- 
fronts is based on a statistical criterion. 

Wax and Kailath (1985) have proposed two criteria by 
which the number of wavefronts can be determined. Their 
criteria are similar to the ones introduced by Akaike (1973) 
and Rissanen (1978) for model selection in system identifi- 
cation. These criteria minimize the difference between (I) 
the log-likelihood function of the maximum-likelihood esti- 
mator of the number of parameters in the model and (2) a 
term penalizing overparameterization of the model. 

The criterion (AIC) similar to that developed by Akaike 
minimizes the function 

AIC( W) = - 2 log 

+ 2W(2M - W). (11) 

The Rissanen criterion, called also the minimum descriptive 
length (MDL) criterion, minimizes the function 

/ \ IM- W)T 

MDL(W) = ~ 2 log 

+ W(2M - w) log (7J. (12) 

The two criteria yield the same estimate of the number of 
wavefronts in most practical situations. The MDL criterion 
has the theoretical advantage of yielding a consistent esti- 
mate of the number of wavefronts, while the AIC tends, 
asymptotically. to overestimate the number of signals. 

!a practice, both criteria tend to overestimate the number 
of signals when few time samples are used in the estimate of 
the covariance matrix. In seismic applications, it is seldom 
necessary to detect more than two or three interfering 
wavefronts: it is therefore useful to set a low limit, two or 
three, for the maximum number of wavefronts W. 
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and 

Estimation of the wavefront-shape parameters 

Property (2) in equation (9b) ensures that the data steering 
vectors a(O,.) are orthogonal to the noise subspace I$, and, 
consequently, that they belong to the signal subspace. Let 
{a(O)} be the continuum described by the steering vectors for 
all values of the parameter 13. Then, 6 is a solution of the 
estimation problem if a(6) belongs to the signal subspace E,. 
The solution is unique when only W vectors in {a(R)} belong 
to E,. A sufficient condition for uniqueness is that any 
W + 1 steering vectors are linearly independent. Further- 
more, a set of distinct shape parameters implies steering 
vectors that are linearly independent when the signal is not 
aliased, i.e., when the spacing between the receivers is 
smaller than the half-wavelength of the signal. 

In practice, the signal and noise subspaces are unknowns 
to be estimated from 4,. Once the number of wavefronts is 
determined, the maximum-likelihood estimates of the signal 
and noise subspaces are, respectively, @, = l6,, I?,, . . . , 
I&,], and fi,, = [I?, + ,, I?,, 2, . , kM], where the I?,,, are the 
eigenvectors of l?, (Anderson, 1963). The shape-parameter 
spectrum can be computed for every 8 by measuring the 
closeness of the “test steering vector” a(e) to the estimated 
signal subspace @,V or by measuring its orthogonality to the 
estimated noise subspace @,,. Three equivalent expressions 
for the shape-parameter spectrum are 

(13a) 

I 
P&(O) = (13b) 

I - f la(0)*&,12 
m = I 

when the signal subspace is used, or 

1 
P,*,(0) = (l3c) 

$ la(0)*fi,,12 
m=W-I 

when the noise subspace is used. P,,(O) and P,,(O) yield 
exactly the same spectrum, while P,y,(6) has the same max- 
ima as the others and therefore is equivalent for the estima- 
tion of the shape parameter 0. 

Another useful shape-parameter spectrum is 

1 
Pn,(fl) = 

! k Ia(t3)*i?,12. (14) 
WI = w + 1 ‘?I 

In general, the maxima of P,,,(O) are different from the 
maxima of P_(O). P_(e) usually yields better estimates when 
the number of time samples T is small. 

Correlated- sonrces XI& sp-atiai- smoothing 

The only assumption of the high-resolution methods pre- 
sented above that would be unrealistic for seismic data is the 

lack of correlation between the sources of the interfering 
wavefronts. When the interfering wavefronts are a primary 
and a multiple, their waveforms are probably highly corre- 
lated. 

If two sources are fully correlated, the source covariance 
matrix H, is singular: and therefore. the properties in equa- 
tions (9) are not true. In practice. even two highly but not 
fully correlated sources could be unresolvable by eigenstruc- 
ture spectra. 

An effective method to ~ncorrrlafr the sources of signal 
before applying the eigenstructure method is to apply 
“spatial smoothing” while estimating the covariance matrix 
from the data (Shan et al., 1985: Shan et al., 1987). Spatial 
smoothing increases the rank of the source covariance 
matrix &. 

The original array of M receivers is divided into K 
overlapping subarrays of (M - K + I) receivers, as shown in 
Figure I. The covariance matrix 41, can be defined for each 
subarray I?, and the spcrtially smoothed covariance matrix is 
defined as 

(15) 

Theoretically, use of the spatial smoothing technique can 
be justified only for planar wavefronts. However. if the 
number of subarrays K is small, the spatial smoothing 
technique can be applied successfully to spherical wave- 
fronts as well. 

Spatial smoothing reduces the effective aperture of the 
array from M to (M - K + I) and, consequently, reduces 
slightly the resolution of the method. 

COMPARISON WITH THE STACKING METHOD 

For narrow-band data, the shape-parameter spectrum 
computed by the classical method of time corrections fol- 
lowed by stacking can also be expressed as a function of the 
covariance matrix of the data. The stacking spectrum, or 
power of the stack. averaged over a temporal window T 
samples long can be defined as 

2 

] ; I M 
Pstack(R) = T ,&, G ,Uz ,dm, t + ‘(‘, m)l . (16) 

K subarrays, M-K+1 receivers each 

FIG. 1. Subdivision of the original array of M receivers into 
K subarrays of M - K + I receivers for application of spatial
smcrothing. 
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Al = (S + S,~)(l + cos cl), 

A? = (S - S&l - cos cl), 

and 

A,,=0 for m>2, (22) 

while the eigenvectors are the same as they are for uncorre- 
lated sources [equation (21)]. The correlation between the 
sources decreases the “effective angle” between the data 
steering vectors. When the sources are fully correlated, only 
one eigenvalue is different from zero. Then the stacking 
method and the eigenstructure spectrum yield the same 
spectra. 

Figure3a shows a stackingspe~ctrum superimposed upon 
an eigenstructure spectrum computed using equation (13b). 
The two spectra are normalized to one. The data are two 
monochromatic plane waves with frequency 25 Hz and ray 
parameters 0, = 0.2 s/km and O2 = 0.25 s/km. The array has 
40 receivers at IO m spacing: the time sampling is 4 ms. With 
these parameters, the angle (Y between the two data steering 
vectors is approximately 50”. The stacking spectrum has not 
resolved the two plane waves and shows a maximum at 
(0, + 0,)/2. The eigenstructure spectrum has resolved the 
two plane waves and shows two maxima exactly at 0, and 
02. 

Figure 3b shows the stacking spectrum and the eigenstruc- 
ture spectrum obtained when the sources are fully corre- 
lated. Neither method resolves the two correlated signals. 
On the other hand, after spatial smoothing is applied, as 

0 01 02 03 04 0.5 

Ray parameter (y/Km) 
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presented in the previous section, the eigenstructure method 
resolves the two wavefronts. Figure 3c shows the spectra 
obtained when spatial smoothing is applied by dividing the 
original array into I I subarrays. The spatially smoothed 
covariance matrix is used for the computation of both 
spectra. 

In this section, we considered the simple case of two 
planewaves and noiseless data. We did not consider the 
effect of datalength limitations on the quality of the estimate 
of the data covariance matrix. A more general discussion of 
the statistical performances of the eigenstructure method is 
in Kaveh and Barabell (1986) and Wang and Kaveh (1986). 

Seismic data are wide-band; before the narrow-band meth- 
ods described above can be applied, the data must be 
decomposed into frequency components, either by Fourier 
transform or by filtering with a bank of band-pass filters. 

The results obtained for different frequencies can be 
combined to yield a robust solution to the original wide-band 
estimation problem. This combination is possible because 
the number of wavefronts and the shape parameters remain 
the same for all frequencies. The frequency components can 
be combined at different stages of the processing: averages 
can be made of either the final estimates of the spectra (Wax 
et al., 1984) or of the estimates of the covariance matrices of 
the different components (Wang and Kaveh, 1985). In the 
latter case, the frequency components must be linearly 

Kay parameter (s/Km) 

(b) 

0.1 0.2 0.3 0 4 05 

Ray parameter (s/Km) 

Cc) 

FIG. 3. Stacking spectrum (solid line) and eigenstructure spectrum (dashed line) for two monochromatic plane waves. 
(a) Plane waves with 0, = 0.2 s/km and H2 = 0.25 s/km. The angle c1 between the two data steering vectors is 50”. Only the 
eigenstructure method resolves the two wavefronts. (b) The plane waves are fully correlated. Neither method resolves the 
two wavefronts. (c) The plane waves are fully correlated and spatial smoothing is applied. The eigenstructure spectrum 
resolves the two wavefronts. 
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transformed so that the covariance matrices are approxi- 
mately coherent with each other. The rationale of this 
method is that averaging the covariance matrices increases 
the statistical robustness of the estimates. This result is 
particularly important to the application to seismic data, in 
which only a few time samples can be used in the estimation 
of the covariance matrices. The disadvantage of combining 
the covariance matrices is that they are only approximately 
coherent. 

In our computations, we combine both methods described 
above: we average correlation matrices for nearby frequen- 
cies, and average spectra from different frequency bands. 

First the data are time corrected according to the moveout 
+z, 6), where 6 is an estimate of the shape parameter. This 
estimate can be obtained, for instance, by stacking spectrum 
analysis. The time correction increases the coherency of the 
different frequency components of the wavefronts with 
shape parameters close to 6. Before the time correction is 
applied, the phase difference between two frequency com- 
ponents, with angular frequencies w, and wZ and common 
shape parameter 6 + d6, is 

44 = (w, - 0?)T(M, e + d6). 

After the time correction, the same phase difference be- 
comes 

44 = (0, - W~)Th, do). 

A bank of band-pass filters is used to decompose the 
time-corrected data into a few wide frequency bands. The 
data covariance matrix is estimated for each band. Estimat- 
ing the covariance matrix for a wide frequency band implic- 
itly averages the estimates of the covariance matrices of the 
different frequency components within the band. Therefore, 
the wider the frequency bands, the more robust the esti- 
mates of the covariance matrices. Robustness is gained at 
the expense of resolution, because the different frequency 

Kostov 

components inside each band are not completely coherent, 
even after the time correction. 

To determine the number of wavefronts W impinging on 
the array of receivers, we select the value that minimizes the 
sum of the MDL criteria [equation (12)] for each of the F 
frequency bands, 

f MDL&W) 
r=l 

=i 
f-l I i m=w+1 

- 2 log 
1 

M-W 
2 i,UI 

m=W+I 

+ W(2M - W) log (n 

I 

(23) 

Once the number of wavefronts W is determined, the param- 
eter spectra of all the bands are averaged to obtain the 
shape-parameter spectrum. For example, the wide-band 
version of equation (13a) is 

If the signal-to-noise ratio (S/N) in each band is known, the 
terms summed in equations (23) and (24) could be weighted 
accordingly so as to increase the quality of the estimates. 

The estimation of the covariance matrix from noisy data 

Offset (Km) 

0.4 0.6 0.8 1 1.2 

FIG. 4. Synthetic CMP gather used in comparing the performance of the eigenstructure method with that of the stacking 
method. Two hyperbolic reflections are recorded with stacking slownesses 6, = 0.2 s/km and 6, = 0.25 s/km. The SIN of 
the data is 2. Random time shifts were applied to the traces. Reflection amplitudes increase linearly with offset. 
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___A_ 

0 0.1 0.2 0.3 0.4 0 
Stacking slowness (s/Km) 

can be improved by partial stacking, that is, summation of 
adjacent moveout-corrected traces. A further advantage of 
partial stacking is the reduction of the dimensions of the 
covariance matrix and therefore also of the computational 
cost of the procedure. To avoid the aliasing of wavefronts 
with shape parameters significantly different from e, one can 
perform spatial dip filtering in conjunction with partial 
stacking. 

APPLICATION TO VELOCITY ANALYSIS 

The wide-band method can be applied directly to a com- 
mon-midpoint (CMP) gather for the estimation of high- 
resolution velocity spectra. Velocity spectra are slightly 
different from and more complicated than ray-parameter 

FIG. 5. The stacking spectrum (solid line) and the eigenstruc- 
ture spectrum (dashed line) for the data shown in Figure 4. 
The eigenstructure spectrum has well resolved the two 
reflections; the stacking spectrum has not. 

Offset (Km) 

FIG. 6. A marine CMP gather recorded offshore southern California. We estimate local spectra at the intersection of a 
primary reflection and a water-bottom multiple. The region of interest is indicated by the balloon. 
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spectra. The properties of the steering vectors with hyper- 
bolic delays of equation (3) are different from those of the 
steering vectors with linear delays [equation (2)]. In partic- 
ular, the data steering vectors with hyperbolic delays are 
never orthogonal. 

Figure 4 shows the synthetic CMP gather used in our 
comparison of the performances of the eigenstructure 
method and of the usual stacking method. Two hyperbolic 
reflections are recorded by an array of 64 geophones, spaced 
20 m apart, with nearest offset of 40 m. The stacking 
slownesses are 0, = 0.2 s/km and Et2 = 0.25 s/km; the 
zero-offset time is I s. The sources are wide-band, from IO 
Hz to 50 Hz, correlated with correlation coefficient p = 0.87. 
The S/N is 2, with Gaussian white noise added. For testing 
the new method in more realistic situations, we applied to 
the traces random time shifts, drawn from a Gaussian 
distribution with standard deviation of I ms, and also in- 
creased the reflection amplitudes linearly with offset. 

Figure 5 shows the stacking spectrum and the eigenstruc- 
ture spectrum for the data shown in Figure 4: the spectra 
were computed at the correct zero-otfset time of I s and 
normalized to one. For the computation of the eigenstruc- 
ture spectrum, time corrections corresponding to a stacking 
slowness 6 = 0.225 s/km were applied; partial stacking 
reduced the number of traces to eight. The data were then 
decomposed into six frequency bands. The results from the 
different frequency bands were combined following equa- 
tions (23) and (24). The eigenstructure spectrum has well 
resolved the two reflections, while the stacking spectrum has 
not. 

APPLICATION TO LOCAL SLANT STACKS 

Using shape-parameter spectra, we implicitly assume that 
the data can be modeled by a simple propagation model as 
either plane waves or hyperbolic reflections. These simple 
models well predict the data locally but they are not accurate 
in modeling data recorded over a larger area (a cable length). 
Thus, for instance, traveltime curves are well approximated 
by straight lines only in the Fresnel zone: also. they are not 
exactly hyperbolic when the velocity is not constant. 

There are thus two conflicting needs: short arrays to 
maintain the accuracy of the model and the spatial resolution 

=l_;._.,..l,.’ ,_.r. _=;r. .;.._- - . . . . , ~~~~~~ (! 
0 02 04 06 0.6 

Ray parameter (s/Km) 

(a) 
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of the estimates and long arrays to provide the shape- 
parameter resolution. Without decreasing the resolution of 
the estimates, shorter arrays can be used in the eigenstruc- 
ture spectrum than in the stacking spectrum. Therefore, 
high-resolution spectra can prove crucial to the success of a 
local-spectra estimation method. 

Field-data example 

The advantages of the eigenstructure method are con- 
firmed by its application to the marine CMP gather shown in 
Figure 6. The data were recorded offshore southern Califor- 
nia. The data sampling rate is 2 ms in time and 32 m in the 
ofiset dimension. We estimate local spectra at the intersec- 
tion of a primary reflection and a water-bottom multiple. 

The broad frequency spectrum of the data, extending up to 
100 Hz, allows the comparison of stacking spectra and 
eigenstructure spectra for different frequency bands. As 
expected, the stacking spectrum cannot resolve the two 
reflections when the frequency of the data is too low. 
Furthermore, in order to study the tradeoff between ray- 
parameter resolution and spatial resolution of the local 
estimates, we varied the length of the subarray used in the 
estimation of local spectra. The results confirm that the 
eigenstructure method has a higher spatial resolution than 
the stacking method. 

Figure 7 shows the normalized ray-parameter spectra 
estimated from the original gather with frequencies from 15 
Hz to 100 Hz. The spectra shown in Figure 7a are estimated 
with a subarray of eight geophones. centered at the intersec- 
tion of the two reflections; while the spectra shown in Figure 
7b are estimated with a subarray of six geophones. As 
reference values, we used the reflection ray parameters 
estimated by hand from a plot of the gather; even if carefully 
measured, these values are affected by some error. To 
compute the eigenstructure spectrum (dashed line), we first 
applied a time correction corresponding to the ray parameter 
4 = 0.32 s/km; then we decomposed the data into ten 
frequency bands. When the stacking spectrum (solid line) 
was computed, semblance as a coherency measure along the 
offset direction was used. Both methods resolve the two 
reflections, independent of the subarray length. The maxima 
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FIG. 7. Normalized, local ray-parameter spectra. The dashed lines are the eigenstructure spectra; the solid lines are the 
stacking spectra. The dotted lines show two spikes at the values of the ray parameter estimated by hand. The data have 
frequencies from I5 Hz to 100 Hz. (a) A subarray of eight geophones is used. (b) A subarray of six geophones is used. The 
maxima of the spectra agree well with the ray-parameter values picked by hand. 
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of the spectra agree well with the ray-parameter values are successful in resolving both reflections even when a 
estimated by hand. subarray of only six geophones is used. 

The resolution of local spectra depends also on the fre- 
quency bandwidth of the data. Therefore, we computed the 
spectra after having band-passed the gather with different 
high-frequency cutoff values. Figure 8 shows the local spec- 
tra computed from a gather with frequencies from 15 Hz to 
70 Hz. The eigenstructure spectrum is computed after a time
correction, corresponding to the ray parameter 6 = 0.32 
s/km, is applied and after the data are decomposed into six 
frequency bands. For this bandwidth, the stacking spectrum 
(solid line in Figure 8b) fails to resolve the two reflections 
when a subarray of six geophones is used. The eigenstruc- 
ture spectrum resolves both reflections well, independent of 
the subarray length. 

CONCLUSIONS 

The methods for seismic velocity analysis presented in 
this paper are based on the eigenstructure decomposition of 
the covariance matrix of the data; these methods succeed in 
resolving closely interfering reflections better than do the 
usual stacking methods. 

Figure 9 shows the local spectra computed from a gather 
with frequencies from I5 Hz to 33 Hz. The eigenstructure 
spectrum is computed after a time correction, corresponding 
to the ray parameter 6 = 0.32 s/km, is applied and after the 
data are decomposed into four frequency bands. In this 
extreme case, the stacking method (solid lines) cannot 
resolve the two reflections when either array aperture is 
used. By contrast, the eigenstructure spectra (dashed lines) 

The data recorded by an array of geophones are modeled 
as the superposition of wavefronts: no specific assumptions 
about the geology or the source wavelet are made. This 
general model leads to a family of eigenstructure spectral 
estimators, which includes the stacking method; thus the 
comparison of spectral estimation methods can be made in a 
unified framework. 

The new eigenstructure methods for velocity analysis are 
closely related to methods that are well-known in other 
areas, such as 1 -D signal processing or radar and sonar signal 
processing. High-resolution spectral estimates are rather 
sensitive to the estimates of covariance matrices, which in 
seismic applications need to be obtained from only a few 
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FIG. 8. The stacking spectra (solid lines) and the eigenstructure spectra (dashed lines) computed when the data frequencies 
extend from I5 Hz to 70 Hz. The dotted lines show two spikes at the values of the ray parameter estimated by hand. (a) A 
subarray of eight geophones is used. (b) A subarray of six geophones is used. The stacking spectrum cannot resolve the two 
reflections when the shorter subarray is used (b). 
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FIG. 9. The stacking spectra (solid lines) and the eigenstructure spectra (dashed lines) when the data have frequencies from 
I5 Hz to 33 Hz. The dotted lines show two spikes at the values of the ray parameter estimated by hand. (a) A subarray of 
eight geophones is used. (b) A subarray of six geophones is used. The stacking spectrum fails to resolve the reflections with 
either subarray. 
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data samples in time Taking advantage of the full bandwidth 
of the seismic data, we have suggested methods for the 
robust estimation of covariance matrices from short seg- 
ments of data and for the combination of spectral estimates 
from different frequency bands. 

For eigenstructure methods. unlike for stacking, the num- 
ber of wavefronts impinging at the array must be estimated. 
This step requires that a decision be made based on a 
statistical criterion; this is to some extent subjective. How- 
ever, once the covariance matrix and its eigenstructure 
decomposition are computed, the cost of computing several 
spectral estimates-for different numbers of incident wave- 
fronts or for different spectral norms-is negligible. 

Often in seismic processing, velocity analysis is followed 
by suppression of some events, for instance water-bottom 
multiples. according to differences in apparent velocities. 
The concepts of eigenstructure decomposition could be 
applied also to the problem of wavefront separation; the 
eigenstructure decomposition already computed for the ve- 
locity analysis could be used. 

The field-data example and the synthetic examples show the 
utility of the high-resolution methods for some practical appli- 
cations. In particular, the field-data example demonstrates the 
gain in iaterai resolution that can be achieved when the 
estimation of local spectra uses the eigenstructure method. 
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