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Abstract. For more than 2 decades the IGS (Interna-
tional GNSS Service) ionosphere associated analysis centers
(IAACs) have provided global maps of the vertical total elec-
tron content (VTEC). In general, the representation of a 2-D
or 3-D function can be performed by means of a series ex-
pansion or by using a discretization technique. While in the
latter case, pixels or voxels are usually chosen for a spheri-
cal function such as VTEC, for a series expansion spherical
harmonics (SH) are primarily used as basis functions. The
selection of the best suited approach for ionosphere model-
ing means a trade-off between the distribution of available
data and their possibility of representing ionospheric varia-
tions with high resolution and high accuracy.

Most of the IAACs generate global ionosphere maps
(GIMs) based on SH expansions up to the spectral degree
n = 15 and provide them with a spatial resolution of 2.5◦×5◦

with respect to the latitudinal and longitudinal directions, re-
spectively, and a temporal sampling interval of 2 h. In recent
years, it has frequently been claimed that the spatial resolu-
tion of the VTEC GIMs has to be increased to a spatial reso-
lution of 1◦×1◦ and to a temporal sampling interval of about
15 min. Enhancing the grid resolution means an interpola-
tion of VTEC values for intermediate points but with no fur-
ther information about variations in the signal. n = 15 in the
SH case, for instance, corresponds to a spatial sampling of
12◦ × 12◦. Consequently, increasing the grid resolution con-
currently requires an extension of the spectral content, i.e., to
choose a higher SH degree value than 15.

Unlike most of the IAACs, the VTEC modeling approach
at Deutsches Geodätisches Forschungsinstitut der Technis-
chen Universität München (DGFI-TUM) is based on local-

izing basis functions, namely tensor products of polynomial
and trigonometric B-splines. In this way, not only can data
gaps be handled appropriately and sparse normal equation
systems be established for the parameter estimation proce-
dure, a multi-scale representation (MSR) can also be set up
to determine GIMs of different spectral content directly, by
applying the so-called pyramid algorithm, and to perform
highly effective data compression techniques. The estima-
tion of the MSR model parameters is finally performed by
a Kalman filter driven by near real-time (NRT) GNSS data.

Within this paper, we realize the MSR and create multi-
scale products based on B-spline scaling, wavelet coeffi-
cients and VTEC grid values. We compare these products
with different final and rapid products from the IAACs, e.g.,
the SH model from CODE (Berne) and the voxel solution
from UPC (Barcelona). In contrast to the abovementioned
products, DGFI-TUM’s products are based solely on NRT
GNSS observations and ultra-rapid orbits. Nevertheless, we
can conclude that the DGFI-TUM’s high-resolution product
(“othg”) outperforms all products used within the selected
time span of investigation, namely September 2017.

1 Introduction

The properties of the atmosphere can be described by means
of different variables, e.g., the temperature or the charge
state. In the case of temperature, we distinguish between the
troposphere (up to a height of about 15 km), the stratosphere
(about 15 to 50 km), the mesosphere (about 50 to 90 km), the
thermosphere (about 90 to 800 km) and the exosphere (above
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800 km) using increasing height above the Earth’s surface.
In the case of the charge state, the atmosphere is split into
the neutral atmosphere (up to a height of 80 km), the iono-
sphere (about 80 to 1000 km) and the plasmasphere (above
1000 km) (see, e.g., Limberger, 2015).

The ionosphere is mostly driven by the Sun; extreme
UV (EUV), X-ray and solar particle radiation cause ioniza-
tion processes. In geodesy, the main ionospheric impact is
the influence of free electrons on radio wave propagation.
This effect mainly depends on the signal frequency, i.e., the
ionosphere is a dispersive medium (Schaer, 1999). Signals
with frequencies lower than 30 MHz will be blocked and re-
flected by the ionosphere, whereas signals with shorter wave-
lengths penetrate the ionosphere but are affected with respect
to speed and direction. The ionospheric influence on radio
waves is twofold: the signal travel times are changed (delay)
and the signal paths are modified (bending). While the latter
effect can be neglected for most applications, the ionospheric
delay

dion = ±
40.3

f 2

R∫

S

Ne ds (1)

depends directly on the electron density Ne along the signal
path s between satellite S and receiver R and inversely on the
carrier frequency f . Equation (1), which can be derived from
dual-frequency measurements, is only an approximation as
higher-order effects are neglected. These terms depend on the
magnetic field, signal frequency, signal elevation, and iono-
spheric conditions and reach about 0.2 cm in zenith for GPS
signals (Bassiri and Hajj, 1993). The sign on the right-hand
side changes depending on whether it is applied for a carrier
phase observation (“−”) or for a pseudorange measurement
(“+”) (see, e.g., Langley, 1998).

Observations of space geodetic techniques, such as the
global navigation satellite systems (GNSS) and the Doppler
Orbitography and Radiopositioning Integrated by Satellite
(DORIS) tracking system as well as satellite altimetry and
ionospheric radio occultation (IRO) are based on electromag-
netic signal propagation; thus, they are disturbed by the iono-
sphere. Most of the techniques are not directly sensitive to
the electron density, but to the integrated effect along the ray
path. In Eq. (1) the integral

STEC(xS,xR, t) =

R∫

S

Ne(x, t)ds (2)

is called the slant total electron content (STEC). In Eq. (2),
in addition to the time t we introduce the position vectors xS

xR and

x = r [cosϕ cosλ, cosϕ sinλ, sinϕ]T (3)

of the satellite S, the receiver R and an arbitrary point P

moving along the signal path s; the coordinate triple (ϕ,λ,r)

comprises latitude ϕ, longitude λ and radial distance r within
a geocentric coordinate system 6E.

The vertical total electron content (VTEC),

VTEC(ϕ,λ, t) =

hu∫

hl

Ne(ϕ,λ,h, t) dh, (4)

is defined as the integration of the electron density in the
vertical direction, i.e., along the height h above the Earth’s
surface, defined as h = r − RE; RE refers to the radius of a
spherical Earth. Furthermore, in Eq. (4) hl and hu are the
respective heights of the lower and the upper boundary of
the ionosphere (see, e.g., Dettmering et al., 2011, 2014; Lim-
berger, 2015).

Equations (2) and (4) require a 3-D integration of the
electron density. Often a simplification is preferred which
is based on the so-called single-layer model (SLM). It as-
sumes that all free electrons are concentrated in an infinitesi-
mally thin shell, i.e., the sphere �H with radius RH = RE+H

(Schaer, 1999), where H is the single-layer height. As a con-
sequence of this assumption and according to

STEC(xS,xR, t) = M(z) · VTEC(xIPP, t), (5)

VTEC can be transformed into STEC by introducing a map-
ping function M(z) depending on the zenith angle z of the
ray path between satellite S and receiver R. In Eq. (5) the po-
sition vector xIPP, i.e., the spherical coordinates (ϕIPP, λIPP,
RH) define the ionospheric pierce point (IPP), which refers to
the geometrical piercing point of the straight line between S

and R with the sphere �H of the SLM. This point denotes the
reference point of an observation including the STEC, such
as a GNSS measurement (see, e.g., Erdogan et al., 2017).
Figure 1 shows, for instance, the global distribution of the
IPPs from GNSS observations on 6 September 2017 between
12:55 and 13:05 UT. However, it must be pointed out that the
introduction of a simple isotropic mapping function M(z),
depending solely on the zenith angle z, can only generate
an approximation of STEC. Recently, more sophisticated ap-
proaches, e.g., the Barcelona ionospheric mapping function
(BIMF), have been developed to improve the projection of
VTEC on STEC (see, e.g., Lyu et al., 2018).

Combining Eqs. (1), (2) and (5) yields the relation

dion(x
S,xR, t) = −

40.3

f 2
· M(z) · VTEC(xIPP, t) (6)

between VTEC and the ionospheric delay dion in the case
of a phase observation. Equation (6) can be interpreted and
applied in two ways:

– if VTEC is given from an ionospheric model, the delay
dion can be computed and used as a correction for GNSS
observations;

– or if the delay dion can be derived from double-
frequency GNSS measurements, it can be used as an
observation to develop or improve VTEC models.
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Applications, such as satellite navigation and positioning re-
quire high-precision and high-resolution VTEC models. For
this purpose the correction dion could, according to Eq. (6),
be derived from VTEC maps, usually the so-called global
ionosphere maps (GIM). The most prominent GIM is pro-
vided by the International GNSS Service (IGS) (Feltens and
Schaer, 1998; Hernández-Pajares et al., 2011) as a weighted
combination product of VTEC maps from various IGS iono-
sphere associated analysis centers (IAACs), namely (1) the
Jet Propulsion Laboratory (JPL), (2) the Center for Orbit
Determination in Europe (CODE), (3) the European Space
Operations Center of the European Space Agency (ESOC),
(4) the Universitat Politècnica de Catalunya (UPC), (5) the
Canadian Geodetic Survey of Natural Resources Canada
(NRCan), (6) the Wuhan University (WHU) and (7) the Chi-
nese Academy of Sciences (CAS). Recently, Roma-Dollase
et al. (2017) published a review paper on these seven GIMs
concerning their mapping techniques and their consistency
during one solar cycle.

There are several modeling strategies for generating
GIMs; the most prominent approach is based on spherical
harmonics (SH) and was introduced by Schaer (1999). Fur-
ther approaches include the tomographic approach based on
voxels (Hernández-Pajares et al., 1999) and other approaches
based on B-spline scaling functions and wavelets (Schmidt,
2007, 2015b; Schmidt et al., 2011), multivariate adaptive re-
gression splines (MARS) and adaptive regression B-splines
(BMARS) (Durmaz et al., 2010; Durmaz and Karslioglu,
2015), and polynomials (Komjathy and Langley, 1996).

Generally, we distinguish between GIMs provided as “fi-
nal”, “rapid”, “near real-time” (NRT) or “real-time” (RT)
products. This classification is based on the latency of the
underlying input data. For final products, for instance, only
post-processed observations and orbits are used, whereas
NRT products are based on rapid orbits and observations with
a latency of some minutes up to a few hours. GIMs are typi-
cally provided with a temporal resolution of 1 or 2 h and with
a spatial resolution of 2.5◦ × 5◦ with respect to geographical
latitude and longitude (Hernández-Pajares et al., 2017).

VTEC variations basically follow annual, seasonal, diur-
nal and semidiurnal periods. Earthquakes or incidental nat-
ural hazards can also cause small but visible signatures (Liu
et al., 2004; Zhu et al., 2013). However, during space weather
events, such as solar flares or coronal mass ejections (CME),
the number of free electrons may drastically increase. In
the latter case, solar plasma consisting of electrons, ions
and photons may enter the Earth’s atmosphere and cause
short period variations within the electron density distribu-
tion (see, e.g., Monte-Moreno and Hernández-Pajares, 2014;
Wang et al., 2016; Tsurutani et al., 2006, 2009). As a con-
sequence, the modeling of the disturbed ionosphere requires
both a high temporal and a high spatial resolution. In 2012,
during the IGS 2012 workshop in Olsztyn, Poland, it was
recommended that high-resolution IGS combined GIMs be
provided. The UPC and JPL IAACs agreed on disseminat-

Figure 1. Global distribution of the IPPs from GPS (red dots) and
GLONASS (blue stars) measurements for 6 September 2017 col-
lected within a 10 min interval between 12:55 and 13:05 UT. The
regional maps at the top are “zoom-ins” of Europe and Indonesia.

ing GIMs with a temporal resolution of 15 min and a spatial
resolution of 1◦ × 1◦ with respect to latitude and longitude,
respectively (Dach and Jean, 2013).

As already confirmed by Roma-Dollase et al. (2017), an
increase in temporal resolution allows for an improvement
in the overall accuracy of the GIMs. The authors compared
the final products with a temporal resolution of 2 h with
rapid products with a temporal resolution of 15 min using
the dSTEC analysis, which is the most reliable method of as-
sessing the accuracy of VTEC products (Hernández-Pajares
et al., 2017). Following the results of their investigations,
it can be stated that an increase in the temporal resolution
yields better results in the dSTEC analysis.

To the knowledge of the authors, the spatial resolution of
GIMs has not been investigated in detail to date. Most of the
GIMs are based on series expansions in terms of SHs with
a maximum degree of nmax = 15. This value fits to a block
size of about 12◦ × 12◦ on the sphere �H. In contrast, a grid
spacing of 2.5◦×5◦ corresponds to a maximum SH degree of
around n = 36; a 1◦×1◦ grid spacing, i.e., a spatial resolution
of around 110 km along the Equator fits to a SH expansion
up to degree n = 180. As a matter of fact, a reliable com-
putation of the corresponding SH series coefficients requires
a global input data coverage of the same spatial sampling.
As the IAAC VTEC maps are based solely on GNSS obser-
vations with a rather inhomogeneous distribution (cf. Fig. 1
showing the IPPs of NRT observations with dense clusters
over continents and large data gaps over oceans), finer iono-
spheric structures can only be monitored and modeled where
high-resolution input data are available.

By increasing the temporal resolution of the GIMs, the
number of observations supporting the individual maps de-
creases. The two “zoom-in” maps at the top of Fig. 1 show
the strong incongruity between the data distribution and the
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signal structure (cf. Fig. 9a, c). In areas with high-resolution
data, such as Europe, the US or Australia, the VTEC signal
is usually rather smooth. In areas with highly variable spatial
and temporal signal structures such as in the equatorial belt,
a much smaller number of observations is generally given.
As a consequence, for global modeling we have to deal with
a trade-off between signal structure and data resolution.

It is a well-known fact that SHs as global basis func-
tions are not suitable for representing unevenly, globally dis-
tributed data. Consequently, in such cases, a series expansion
in terms of localizing basis functions is more appropriate.
In the following, we apply tensor products of polynomial
and trigonometric B-splines as localizing 2-D basis func-
tions. Besides the localizing features, B-splines additionally
generate a multi-scale representation (MSR), also known as
multi-resolution representation (MRR). The basic feature of
a MSR is to split a target function into a smoothed, i.e.,
low-pass-filtered version, and a number of detail signals, i.e.,
band-pass-filtered versions via successive low-pass filtering
(Mertins, 1999). Hence, a spatial MSR of VTEC adapts the
model resolution to the data distribution and, thus, fulfills
IGS’ requirement of high-resolution VTEC modeling.

In this study, we compare global VTEC maps based on se-
ries expansions in terms of both globally defined SHs and
localizing B-spline functions, including the MSR with re-
spect to the spectral content. For this purpose, we use the
SH degree as the common measure for the spectral content
of a spherical signal. In detail, we study the interrelations
between the SH degree, the spatial sampling intervals of the
input data and the resolution levels of B-spline expansions. In
addition, we discuss the influence of different temporal res-
olutions of the GIMs. For the estimation of the unknown se-
ries coefficients of the B-spline expansion, we use a Kalman
filter (KF) procedure as explained by Erdogan et al. (2017).
In order to assess the quality of the approach, we perform a
dSTEC analysis (Hernández-Pajares et al., 2017).

The paper is outlined as follows: in Sect. 2 a description of
VTEC modeling procedures based on both, SH and B-spline
expansions are presented. In Sect. 2.3 we study the spectral
resolution of global VTEC maps. Section 3 comprises a de-
tailed description of the MSR and the estimation procedure.
In Sect. 4 case studies are set up to verify the results of the
previous sections numerically. Furthermore, this section pro-
vides a final assessment by means of a dSTEC validation.
The final section provides conclusions and an outlook for fu-
ture work.

2 VTEC modeling approaches

The 3-D signal VTEC(ϕ,λ, t) = f (x, t), introduced in
Eqs. (4) and (5), can be modeled as series expansion

f (x, t) =

∞∑

k=0

ck(t) φk(x) (7)

in terms of given space-dependent basis functions φk(x) and
unknown time-dependent series coefficients ck(t). 1 Assum-
ing that at discrete times ts = t0+s ·1t with s ∈ N0 and sam-
pling interval 1t the total number of Is observations y(xis ,
ts) of VTEC at IPP position Pis ∈ �H with is = 1, 2, . . . , Is

are given. Considering the measurement errors e(xis , ts), the
observation equation follows from Eq. (7) and reads

y(xis , ts) + e(xis , ts) = fN (xis , ts) =

=

N∑

k=0

ck(ts) φk(xis ). (8)

Note, that we neglect the truncation error in the following

rN (xis , ts) =

∞∑

k=N+1

ck(ts) φk(xis ) (9)

and omit other unknown parameters such as the satellite and
receiver differential code biases (DCB) for GNSS geometry-
free observations on the right-hand side of Eq. (8) (see, e.g.,
Erdogan et al., 2017).

In the following (Sect. 2.1 and 2.2), the SH expansion –
as likely the most frequently used approach in ionosphere
modeling – and the 2-D B-spline tensor product approach
are described.

2.1 Spherical harmonic expansion

In the SH approach, the observation equation, Eq. (8), can be
rewritten as

y(xis , ts) + e(xis , ts) = fnmax(xis , ts) =

=

nmax∑

n=0

n∑

m=−n

cn,m(ts)Yn,m(xis ), (10)

where the functions Yn,m(x), i.e., the SHs of degree n = 0,
. . . , nmax and order m = −n, . . . , n, are defined as

Yn,m(x) = Pn,|m|(sinϕ) ·

{
cosmλ if m ≥ 0
sin |m|λ if m < 0

(11)

with Pn,|m| being the normalized associated Legendre func-
tions of degree n and order m. The total (nmax+1)2 quantities
cn,m(t) in Eq. (10) are the time-dependent SH coefficients.
According to the sampling theorem on the sphere, the maxi-
mum degree nmax is related to the sampling intervals 1ϕ and
1λ of the input data with respect to latitude ϕ and longitude
λ, namely

1ϕ <
180◦

nmax
and 1λ <

180◦

nmax
. (12)

As can be seen from Eq. (11), SHs are basis functions of
global support. This implies that each single SH function

1Note that we do not distinguish between geographical and ge-
omagnetic spherical coordinates for latitude ϕ and longitude λ.
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is different from zero almost everywhere on the sphere �H.
Consequently, each coefficient cn,m has to be recomputed if
only one additional observation is considered in the set of
observation Eq. (10).

As the VTEC observations y(xis , ts) at the IPP positions
will usually not be given on a spatial grid with constant mesh
size, the sampling intervals 1ϕ and 1λ in the formulae of
Eq. (12) have to be interpreted as global average values.

2.2 B-spline expansion

At DGFI-TUM we rely on B-splines as basis functions for
ionosphere modeling, as they are (1) characterized by their
localizing feature and (2) they can be used to generate a
MSR. For VTEC modeling we rewrite Eq. (8) as

y(xis , ts) + e(xis , ts) = fJ1,J2(xis , ts) =

=

KJ1−1∑

k1=0

KJ2−1∑

k2=0

d
J1,J2
k1,k2

(ts) φ
J1,J2
k1,k2

(ϕis ,λis ) (13)

with initially unknown time-dependent scaling coefficients
d

J1,J2
k1,k2

(ts) and the 2-D scaling functions φ
J1,J2
k1,k2

(ϕis ,λis ) of
levels J1 and J2 with respect to ϕ and λ. The latter are defined
as tensor products

φ
J1,J2
k1,k2

(ϕ,λ) = φ
J1
k1

(ϕ) φ̃
J2
k2

(λ) (14)

of the 1-D scaling functions φ
J1
k1

(ϕ) and φ̃
J2
k2

(λ) depending
on latitude ϕ and longitude λ, respectively. As the B-spline
approach is not as well known as the SH approach, it will be
described in more detail in the following; we further refer to
Dierckx (1984); Stollnitz et al. (1995a, b); Lyche and Schu-
maker (2001); Jekeli (2005); Schmidt (2015b) and citations
therein.

To decompose VTEC into its spectral components via the
MSR in Sect. 3, Eqs. (13) and (14) need to be rewritten in
vector and matrix notation. For this purpose we introduce the
KJ1 × 1 vector

φJ1
(ϕ) = [φ

J1
0 (ϕ),φ

J1
1 (ϕ), . . .,φ

J1
KJ1−1(ϕ)]T , (15)

the KJ2 × 1 vector

φ̃J2
(λ) = [φ̃

J2
0 (λ), φ̃

J2
1 (λ), . . ., φ̃

J2
KJ2−1(λ)]T (16)

and the KJ1 × KJ2 coefficient matrix

DJ1,J2 =




d
J1,J2
0,0 d

J1,J2
0,1 . . . d

J1,J2
0,KJ2

−1

d
J1,J2
1,0 d

J1,J2
1,1 . . . d

J1,J2
1,KJ2

−1

.

.

.
. . .

. . .
.
.
.

d
J1,J2
KJ1

−1,0 d
J1,J2
KJ1

−1,1 . . . d
J1,J2
KJ1

−1,KJ2
−1




. (17)

Considering the computation rules for the Kronecker product
“⊗” (cf. Koch, 1999), Eq. (13) can be written as

f (ϕ,λ, t) = (φ̃J2
(λ) ⊗ φJ1

(ϕ))T vecDJ1,J2(t)

= φT
J1

(ϕ) DJ1,J2(t) φ̃J2
(λ) , (18)

where “vec” refers to the vec operator.

2.2.1 Polynomial B-splines

In the following, we apply polynomial quadratic B-splines

φ
J1
k1

(ϕ) := N2
J1,k1

(ϕ) (19)

of resolution level J1 ∈ N0 and shift k1 = 0, 1, . . . , KJ1 −1 to
represent the latitude-dependent variations of VTEC. To be
more specific, a total of KJ1 = 2J1 + 2 B-splines are located
along a meridian depending on the latitude ϕ ∈ [−90◦,90◦].
To construct the KJ1 B-spline functions, the sequence

−90◦ = ϕ
J1
0 = ϕ

J1
1 = ϕ

J1
2 < ϕ

J1
3 < .. . < ϕ

J1
KJ1

=

= ϕ
J1
KJ1+1 = ϕ

J1
KJ1+2 = 90◦ (20)

of knot points ϕ
J1
k1

is established; the consideration of multi-
ple knot points at the poles is called “endpoint-interpolating”
and ensures the closing of the modeling interval. The con-
stant distance between two consecutive knots ϕ

J1
k1

and ϕ
J1
k1+1

for k1 = 2, . . . , KJ1 − 1 amounts to 180◦/2J1 . Following
Schumaker and Traas (1991) and Stollnitz et al. (1995b) the
normalized quadratic polynomial B-splines can be calculated
via the recursive relation

Nn
J1,k1

(ϕ) =
ϕ − ϕ

J1
k1

ϕ
J1
k1+n − ϕ

J1
k1

Nn−1
J1,k1

(ϕ)

+
ϕ

J1
k1+n+1 − ϕ

ϕ
J1
k1+n+1 − ϕ

J1
k1+1

Nn−1
J1,k1+1(ϕ), (21)

with n = 1,2 from the initial values

N0
J1,k1

(ϕ) =

{
1 if ϕ

J1
k1

≤ ϕ < ϕ
J1
k1+1 and ϕ

J1
k1

< ϕ
J1
k1+1

0 otherwise .

Note, in Eq. (21) a factor is set to zero if the denominator is
equal to zero.

As can be seen from Fig. 2, B-splines are characterized by
their compact support or – in other words – they are different
from zero only within a small subinterval of length 1J1 ≈

3 · hJ1 , where

hJ1 =
180◦

2J1 + 1
(22)

refers to the approximate distance between two consecutive
B-splines along the meridian. As the total number KJ1 of B-
splines depends on the level J1, finer structures can be mod-
eled by increasing J1. The numerical value for the level J1
depends on the global average value 1ϕ for the input data
sampling interval in the latitudinal direction according to

1ϕ < hJ1 (23)
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Figure 2. Polynomial B-splines of level J1 = 3 with a total number
KJ1 = 23 +2 = 10 of B-splines along the meridian. The blue spline

function N2
3,4(ϕ) corresponds to the shift value k1 = 4 and covers

a subinterval of length 13 ≈ 3 ·180◦/9 = 60◦. The red spline func-
tions N2

3,0(ϕ) with shift value k1 = 0 and N2
3,9(ϕ) with shift value

k1 = 9 close the modeling interval at the poles.

(Schmidt et al., 2011). Solving Eq. (23), considering the level
value J1 from Eq. (22), the inequality

J1 ≤ log2

(
180◦

1ϕ
− 1

)
(24)

results.

2.2.2 Trigonometric B-splines

For modeling the longitudinal variations of VTEC trigono-
metric B-splines T 3

J2,k2
(λ) of order 3 and, depending on the

resolution level, J2 ∈ N0 and shift k2 = 0, 1, . . . , KJ2 − 1
are applied. As can be seen from Fig. 3, the total number
KJ2 = 3·2J2 of trigonometric B-splines are located along the
parallels of the chosen spherical coordinate system within the
interval λ ∈ (0◦,360◦). Consequently, the first and the last
two B-spline functions within the interval (0◦,360◦) have
to be completed by the so-called “wrapping around” effect.
This constraint allows trigonometric B-splines to be defined
in two different ways:

1. Following Schumaker and Traas (1991), Jekeli (2005)
and Limberger (2015) periodic trigonometric B-splines
can be calculated by means of a recurrence relation sim-
ilar to Eq. (21). Thereby, additional constraints have to
be introduced to force the periodicity of the series coef-
ficients.

2. The second option was introduced by Lyche and Schu-
maker (2001) and used by Schmidt et al. (2011) and
Schmidt (2015b). It will be described in the following
in more detail.

To be more specific, the sequence of nondecreasing knot
points

0◦ = λ
J2
0 < λ

J2
1 < .. . < λ

J2
k2

< .. . < λ
J2
KJ2−1 < 360◦, (25)

with additional knots

λ
J2
KJ2+i = λ

J2
i + 360◦ for i = 0,1,2 (26)

for considering the periodicity is introduced. Similar to
the polynomial B-splines, the distance between consecutive
knots λ

J2
k2

and λ
J2
k2+1 for k2 = 0, 1, . . . , KJ2 + 1 is given as

hJ2 =
360◦

KJ2

=
120◦

2J2
; (27)

thus, the length of the nonzero subinterval of a trigonometric
B-spline function T 3

J2,k2
(λ) reads 1J2 = 3 · hJ2 = 360◦/2J2 .

Following Lyche and Schumaker (2001) we define the func-
tions

MJ2,k2(λ) = T 3
J2,k2

(λ) = T 3
hJ2

(λ − λ
J2
k2

) . (28)

Setting hJ2 = h and λ − λ
J2
k2

= 2 for the sake of simplifica-

tion, the functions T 3
hJ2

(λ − λ
J2
k2

) = T 3
h (2) can be calculated

via

T 3
h (2) =





sin2(2/2)

sin(h/2)sin(h)
for 0 ≤ 2 < h

1

cos(h/2)
−

sin2((2 − h)/2) + sin2((2h − 2)/2)

sin(h/2)sin(h)
for h ≤ 2 < 2h

sin2((3h − 2)/2)

sin(h/2)sin(h)
for 2h ≤ 2 < 3h

0 otherwise .

(29)

Finally, we define the basis functions

φ̃
J2
k2

(λ) =





MJ2,k2(λ) for k2 = 0, . . .,KJ2 − 3
MJ2,k2(λ) + MJ2,k2(λ − 360◦)

for k2 = KJ2 − 2,KJ2 − 1
(30)

introduced in Eq. (14). Figure 3 shows trigonometric B-
splines of level J2 = 2. With larger values for level J2 the
splines become more narrow and finer structures can be mod-
eled. The choice of the level value J2 again depends on the
input data sampling interval. Analog to Eq. (23), the inequal-
ity

1λ < hJ2 (31)

has to be fulfilled, where 1λ denotes the global average value
of the data sampling interval in the longitudinal direction.
Finally, taking Eq. (27) into consideration, the inequality

J2 ≤ log2

(
120◦

1λ

)
(32)

for the level value J2 is obtained.

2.3 Spectral resolution of global VTEC models

In Sect. 2.1 we derived the relations between the maximum
degree nmax of a SH expansion and the sampling intervals
1ϕ and 1λ of the input data. In Sect. 2.2 the corresponding
relations between the level values J1 and J2 of a B-spline ex-
pansion and the data sampling intervals have been deduced.
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Figure 3. KJ2 = 3·22 = 12 trigonometric B-splines φ̃
J2
k2

(λ), accord-

ing to Eq. (30) for level J2 = 2. The blue spline function φ̃2
5(λ) with

shift value k2 = 5 is different from zero only in the subinterval of
length 1J2 = 360◦/4 ≈ 90◦. The red basis function φ̃2

11(λ) shows
the “wrapping-around” effect.

The substitution of the expression 180◦/nmax from the in-
equalities Eq. (12) into Eqs. (24) and (32) yields a total of
six inequalities

J1 ≤ log2

(180◦

1ϕ
− 1

)
≤ log2 (nmax − 1) ,

J2 ≤ log2

(120◦

1λ

)
≤ log2

(2 · nmax

3

)
. (33)

Given the numerical values 1 to 6 for the B-spline levels J1
and J2 Table 1 presents the corresponding largest numerical
values for each, the SH degree nmax and the sampling inter-
vals 1ϕ and 1λ by evaluating the inequalities using Eq. (33).

From the spectral point of view the six inequalities from
Eq. (33) comprise the following three scenarios:

1. If the global sampling intervals 1ϕ and 1λ are known,
the mid parts of the inequalities from Eq. (33) are given.
The maximum degree nmax is calculable from the right-
hand side inequalities and may be inserted into the SH
expansion in Eq. (10). The left-hand side inequalities
yield the two level values J1 and J2 which can be in-
serted into the B-spline expansion from Eq. (13).

2. With a specified numerical value for nmax the right-hand
parts of the inequalities from Eq. (33) are given. The
data input sampling intervals 1ϕ and 1λ can be deter-
mined from the mid parts of the inequalities. Next, the
two numerical values for the level values J1 and J2 can
be calculated from the left-hand side inequalities and
can be inserted into the B-spline expansion in Eq. (13).

3. If the processing time of VTEC maps has to be consid-
ered, the level values J1 and J2 are subject to certain
restrictions; this is due to the fact that the number of
numerical operations increases exponentially with the
chosen numerical values for the levels. In this case, from
the given left-hand side inequalities, the data sampling
intervals 1ϕ and 1λ can be determined from the mid
parts. Finally, the right-hand side inequalities yield nu-
merical values for the maximum SH degree nmax.

Figure 4. Schematic representation of the four-point spatial interpo-
lation to calculate the VTEC value at P(ϕi + q · 18,λk + p · 13)

from the four corner points of the grid cell of interest.

As already mentioned in the introduction, most of the
GIMs produced by the IAACs are based on series expan-
sions in SHs up to a maximum degree of nmax = 15. Fol-
lowing the abovementioned second strategy and Table 1, we
obtain the approximations J1 = 4 (for nmax = 17) and J2 = 3
(for nmax = 12) for the two B-spline levels J1 and J2 for this
example. Inserting these numbers into the B-spline expan-
sion Eq. (13) yields the spectrally closest representation to
the current IGS solutions. A numerical verification of this
choice will be presented in Sect. 4.3.

2.4 VTEC output grids

The VTEC GIMs of the IAACs are usually provided with
a spatial resolution of 18 = 2.5◦ in the latitudinal direction
and 13 = 5◦ in the longitudinal direction as well as a tempo-
ral sampling of 1T = 2 h. Note, the resolution intervals 18,
13 and 1T are usually distinct from the sampling intervals
1ϕ, 1λ and 1t of the observations introduced in Sect. 2.1.

In order to calculate a VTEC value VTEC(ϕ,λ, t) at an
arbitrary location P(ϕ = ϕi +q ·18,λ = λk +p ·13) with
0 ≤ q ≤ 1 and 0 ≤ p ≤ 1 at an arbitrary time moment t , a
simple bilinear spatial interpolation from the VTEC values
of the four given corner points P(ϕi,λk), P(ϕi,λk + 13),
P(ϕi +18,λk) and P(ϕi +18,λk +13) is performed ac-
cording to

VTEC(ϕi + q · 18,λk + p · 13,t)

= (1 − q) · (1 − p) · VTEC(ϕi,λk, t)

+ q · (1 − p) · VTEC(ϕi + 18,λk, t)

+ p · (1 − q) · VTEC(ϕi,λk + 13,t)

+ q · p · VTEC(ϕi + 18,λk + 13,t) (34)

(see, e.g., Schaer et al., 1998, Fig. 4 in this paper).
Note, by applying the interpolation formula (34), the qual-

ity of the calculated VTEC value decreases with increasing
spatial resolution intervals 18 and 13 and depends on the
position within the grid cell. In order to improve the quality
of the VTEC computation two methods can be used:
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Table 1. Numerical values for the B-spline levels J1 and J2, the maximum SH degree nmax and the input data sampling intervals 1ϕ and 1λ

by evaluating the inequalities from Eq. (33); the left part of the table presents the numbers along a meridian (upper inequalities in Eq. 33),
and the right part represents the corresponding numbers along the Equator and its parallels according to the lower inequalities in Eq. (33).

Latitude Longitude

J1 1 2 3 4 5 6 J2 1 2 3 4 5 6
nmax 3 5 9 17 33 63 nmax 3 6 12 24 48 96
1ϕ 60 36 20 10.5 5.45 2.85 1λ 60 30 15 7.5 3.75 1.875

1. the chosen model approach, e.g., the SH or the B-spline
expansion can be used directly to calculate VTEC val-
ues at any arbitrary point P(ϕ,λ);

2. the resolution intervals 18 and 13 of the output grid
can be set to smaller values, e.g., to 1◦, as was proposed
at the IGS workshop 2012.

For the calculation of a VTEC value VTEC(ϕ,λ, t) at an
arbitrary time moment t = ts + r · 1T with 0 ≤ r ≤ 1 at a
given spatial location P(ϕ,λ), an interpolation with respect
to time can be applied. Commonly, the linear interpolation

VTEC(ϕ,λ, t) = (1 − r) · VTEC(ϕ,λ, ts)

+ r · VTEC(ϕ,λ, ts + 1T ) (35)

between the two consecutive maps at epochs ts and ts + 1T

is performed (see, e.g., Schaer et al., 1998).
The previously described interpolation methods allow for

the calculation of VTEC values VTEC(ϕ,λ, t) at any spatial
location P(ϕ,λ) and at any time t . However, for a more ac-
curate calculation of VTEC an increase in the resolution is
necessary for both domains. In the following, it is shown that
the usage of a MSR based on the B-spline approach in com-
bination with a KF estimation procedure provides the possi-
bility to create VTEC maps of higher spatial and temporal
resolution. Consequently, according to Table 1 the calculated
VTEC maps cover a wider spectral band, i.e., the numerical
value of nmax becomes larger.

3 Multi-scale representation

The B-spline functions as introduced in Sect. 2.2.1 and 2.2.2
allow for the generation of a MSR. To be more specific, B-
spline tensor product wavelet functions will be constructed
which are intrinsically connected to the resolution levels of
the MSR. Usually the MSR is interpreted as viewing a sig-
nal under different resolutions, as a microscope does (see,
e.g., Schmidt, 2012; Schmidt et al., 2015a; Schmidt, 2015b;
Liang, 2017). In all of the aforementioned studies, the MSR
is based on a regional 2-D representation of VTEC in terms
of tensor products of polynomial B-spline functions only.
Within this study, however, we apply the MSR for a global
2-D representation of VTEC in terms of tensor products

of polynomial and trigonometric B-spline functions, as de-
scribed by Lyche and Schumaker (2001) and Schumaker and
Traas (1991).

3.1 Pyramid algorithm

Neglecting the time dependency, the B-spline approach
Eq. (18) reads

fJ1,J2(ϕ,λ) = φT
J1

(ϕ) DJ1,J2 φ̃J2
(λ) . (36)

In the context of the MSR the vectors φJ1
(ϕ) and φ̃J2

(λ)

are called scaling vectors, and the elements d
J1,J2
k1,k2

of the ma-
trix DJ1,J2 are denoted as scaling coefficients.

With J ′
1 = J1−J,J ′

2 = J2−J and 0 < J ≤ min(J1,J2) we
obtain the 2-D MSR of the target function f (x) introduced
in Eq. (7) as

fJ1,J2(ϕ,λ) = fJ ′
1,J

′
2
(ϕ,λ) +

J∑

j=1

3∑

ϑ=1

gϑ
J1−j,J2−j (ϕ,λ) . (37)

Following the argumentation of Schmidt et al. (2015a)
but considering the polynomial and the trigonometric B-
spline functions the low-passed-filtered level (J ′

1,J
′
2) signal

fJ ′
1,J

′
2
(ϕ,λ) and the band-pass-filtered level (J1 − j,J2 − j)

detail signals gϑ
J1−j,J2−j (ϕ,λ) can be computed via the fol-

lowing relations:

fJ ′
1,J

′
2
(ϕ,λ) = φT

J ′
1
(ϕ) DJ ′

1,J
′
2
φ̃J ′

2
(λ),

g1
j1−1,j2−1(ϕ,λ) = φT

j1−1(ϕ) C1
j1−1,j2−1 ψ̃j2−1(λ),

g2
j1−1,j2−1(ϕ,λ) = ψT

j1−1(ϕ) C2
j1−1,j2−1 φ̃j2−1(λ),

g3
j1−1,j2−1(ϕ,λ) = ψT

j1−1(ϕ) C3
j1−1,j2−1 ψ̃j2−1(λ), (38)

where we introduced the definitions j1 = J1 − j + 1 and
j2 = J2 − j + 1 for j = 1, . . .,J . Herein, the Kj1−1 × 1 and
Kj2−1 × 1 scaling vectors φj1−1(ϕ) and φ̃j2−1(ϕ) as well as
the Lj1−1 × 1 and Lj2−1 × 1 wavelet vectors ψj1−1(ϕ) and

ψ̃j2−1(λ) can be calculated by means of the two-scale rela-
tions

φT
j1−1(ϕ) = φT

j1
(ϕ) P j1 ,

φ̃
T

j2−1(λ) = φ̃
T

j2
(λ) P̃ j2 ,

ψT
j1−1(ϕ) = φT

j1
(ϕ)Qj1

,

ψ̃
T

j2−1(λ) = φ̃
T

j2
(λ)Q̃j2

(39)
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Figure 5. A 2-D MSR of the signal fJ1,J2(ϕ,λ).

with Lj1−1 = Kj1 − Kj1−1 and Lj2 = Kj2 − Kj2−1.
The numerical entries of the Kj1 × Kj1−1 matrix P j1 and

the Kj1 ×Lj1−1 matrixQj1
can be taken from Stollnitz et al.

(1995b) or Zeilhofer (2008); the corresponding entries of the
Kj2 ×Kj2−1 matrix P̃ j2 and the Kj2 ×Lj2−1 matrix Q̃j2

are
provided by Lyche and Schumaker (2001).

In Eq. (38) we introduced the Kj1−1 × Kj2−1 matrix

Dj1−1,j2−1 of scaling coefficients d
j1−1,j2−1
k1,k2

as well as the

Kj1−1 × Lj2−1 matrix C1
j1−1,j2−1, the Lj1−1 × Kj2−1 ma-

trix C2
j1−1,j2−1 and the Lj1−1 × Lj2−1 matrix C3

j1−1,j2−1 of
wavelet coefficients. These four matrices can be calculated
via the 2-D downsampling equation
[

Dj1−1,j2−1 C1
j1−1,j2−1

C2
j1−1,j2−1 C3

j1−1,j2−1

]

=

[
P j1

Qj1

]
Dj1,j2

[
P̃

T

j2
Q̃

T

j2

]
,

(40)

also known as the 2-D pyramid algorithm. The Kj1−1 × Kj1

matrix P j1 , the Kj2−1 × Kj2 matrix P̃ j2 , the Lj1−1 × Kj1

matrixQj1
and the Lj2−1×Kj2 matrix Q̃j2

can be computed
via the identities
[
P j1

Qj1

]
=

[
P j1 Qj1

]−1
, (41)

[
P̃ j2

Q̃j2

]
=

[
P̃ j2 Q̃j2

]−1
(42)

(see, e.g., Schmidt, 2007). The 2-D pyramid algorithm based
on the decomposition Eq. (37) is visualized in Fig. 5. The
“zeroth” step transforms the observations y(xij , tj ) accord-
ing to Eqs. (13) and (18) into the elements of the scaling
matrix DJ1,J2(tj ) as introduced in Eq. (17). The procedure
applied will be explained in Sect. 3.2.

The previously described MSR refers to a successive low-
pass filtering of the target function f (ϕ,λ, t) into two direc-
tions, namely latitude ϕ and longitude λ, in the same manner.
If a signal f (ϕ,λ, t) is represented according to Eq. (18) up

Figure 6. A 1-D MSR of the signal fJ1,J2(ϕ,λ) with respect to the
latitude ϕ. The “zeroth” step on the left-hand side conforms with
the one in Fig. 5.

to the level values J1 with respect to latitude and J2 with
respect to longitude, i.e., f (ϕ,λ, t) ≈ fJ1,J2(ϕ,λ, t), the ap-
plication of the MSR Eq. (37) allows for the computation of
low-pass-filtered signal approximations up to the level pairs
(J1−1,J2−1), (J1−2,J2−2),. . . . The principal structures of
the ionospheric key parameters such as VTEC, however, are
usually parallel to the geomagnetic Equator. Consequently,
we will additionally deal with a 1-D MSR of the signal
f (ϕ,λ, t) with respect to the latitude. In this case Eq. (37)
reduces to

fJ1,J2(ϕ,λ) = fJ ′
1,J2

(ϕ,λ) +

J∑

j=1

gJ1−j,J2(ϕ,λ). (43)

Thus, signal approximations up to the level pairs (J1−1,J2),
(J1 − 2,J2), . . . are obtained. From the four relations in
Eq. (38) only the first and the third one have to be consid-
ered within the 1-D MSR Eq. (43), namely

fJ ′
1,J2

(ϕ,λ) = φT
J ′

1
(ϕ) DJ ′

1,J2
φ̃J2

(λ),

gj1−1,J2(ϕ,λ) = ψT
j1−1(ϕ) C2

j1−1,J2
φ̃J2

(λ) (44)

with j1 = J1 − j + 1 for j = 1, . . .,J , 0 < J ≤ J1 and J ′
1 =

J1 − J . The Kj1−1 × KJ2 matrix Dj1−1,J2 of scaling coeffi-
cients and the Lj1−1 × KJ2 matrix C2

j1−1,J2
of wavelet coef-

ficients can be calculated from the 1-D downsampling equa-
tion
[

Dj1−1,J2

C2
j1−1,J2

]
=

[
Pj1

Qj1

]
Dj1,J2 , (45)

where the matrices Pj1 and Qj1
can be computed via

Eq. (41). The 1-D pyramid algorithm based on the decom-
position Eq. (43) is visualized in Fig. 6.

Besides the representation of a signal, e.g., VTEC, by
means of approximations on different resolution levels with
respect to latitude and longitude, the MSR also allows for the
utilization of a powerful “data compression procedure”, as
the numerical value of a large number of wavelet coefficients
is generally close to zero depending on the signal structure
(see, e.g., Zeilhofer, 2008).
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3.2 Estimation of unknown model parameters

To estimate the elements of the unknown KJ1 × KJ2 ma-
trix DJ1,J2(ts) from VTEC observations y(xis , ts) (cf. Eq. 8)
within the “zeroth” step of the MSR we apply Kalman filter-
ing according to Erdogan et al. (2017).

In the linear formulation the Kalman filter consists (1) of
the state equation

βs = Fs βs−1 +ws−1 (46)

and (2) of the system

ys + es = As βs (47)

of observation equations. In Eq. (46 ) the u × 1 vector βs =

vecDJ1,J2(ts) – known as the state vector – of the u =

KJ1 · KJ2 unknown scaling coefficients at time moment ts
is predicted from the state vector βs−1 of the previous time
moment ts−1 by means of the u × u transition matrix Fs

and the u × 1 vector ws−1 of the process noise. In Eq. (47)
ys = (y(xis , ts)) and es = (e(xis , ts)) are the Is × 1 vectors
of the observations and the measurement errors, respectively;
the (is)th row vector aT

is
of the Is ×u coefficient matrix As is

given by the expression

ais = φ̃J2
(λis ) ⊗ φJ1

(ϕis ), (48)

as introduced in Eq. (18). The measurement error vector es
and the vector ws of the process noise are assumed to be
white noise vectors with expectation values E(es) = 0 and
E(ws) = 0, and fulfill the requirements

E(ws w
T
l ) =6w δs,l , E(es e

T
l ) =6y δs,l,

E(ws e
T
l ) = 0, (49)

where δs,l is the delta symbol that equals 1 for s = l and 0 for
s 6= l. In Eq. (49) 6y and 6w are given covariance matrices
of the observations and the process noise, respectively.

The solution of the estimation problem as defined in
Eqs. (46) and (47) generally consists of the sequential ap-
plication of a prediction step (time update) and a cor-
rection step (measurement update). In the prediction step,
the estimated state vector β̂s−1 and its covariance matrix
D̂(β̂s−1) = 6̂β,s−1 are propagated from the time moment
ts−1 to the next time moment ts by means of

β−
s = Fs β̂s−1 , (50)

6−
β,s = Fs 6̂β,s−1FT

s +6w, (51)

where the symbol “–” indicates the predicted quantities. The
prediction step is followed by the measurement update

β̂s = β−
s +Ks (ys − As β

−
s ) , (52)

6̂β,s = (I −Ks As) 6
−
β,s, (53)

where β̂s and 6̂β,s are the updated state vector and its co-
variance matrix, respectively. In Eqs. (52) and (53) the u×Is

Kalman gain matrix

Ks =6−
β,s AT

s (As 6
−
β,s AT

s +6y)
−1 (54)

behaves as a weighting factor between the new measure-
ments and the predicted state vector. The chosen step size
ts − ts−1 within the KF determines the maximum temporal
resolution of the output.

Using the estimations β̂s and 6̂β,s from Eqs. (52) and (53),
a V ×1 vector f s of function values f (ϕi,λk, ts) at arbitrary
locations P(ϕi,λk) with i = 1, . . . , I , k = 1, . . . , K and V =

I · K can be estimated by

f̂ s = As β̂s , (55)

6̂f,s = A
T

s 6̂β,s As , (56)

where 6̂f,s is the estimated V × V covariance matrix of the
estimation f̂ s . The V × u matrix As is set up in a simi-
lar way to matrix As in Eq. (47) with Eq. (48). In the fol-
lowing, we will interpret the function values f (ϕi,λk, ts) =

VTEC(ϕi,λk, ts) as VTEC values.

3.3 B-Spline model output

The previously explained procedure allows for the dissemi-
nation of two products to the users:

– Product 1: a set of estimated scaling coefficients

d̂
J1,J2
k1,k2

(ts)
∣∣
k1=0,...,KJ1−1,k2=0,...,KJ2−1 (57)

from Eq. (52) at time moments ts for level values J1 and
J2 at the spatial positions k1 in the latitudinal direction
and k2 in the longitudinal direction, respectively, as well
as their estimated standard deviations

σ̂
J1,J2
d;k1,k2

(ts)
∣∣
k1=0,...,KJ1−1,k2=0,...,KJ2−1 (58)

extracted from the covariance matrix Eq. (53).

– Product 2: estimated VTEC values given as

V̂TECJ1,J2(ϕi,λk, ts)
∣∣
i=1,...,I,k=1,...,K

(59)

according to Eq. (55) at time moments ts for level values
J1 and J2 in the latitudinal and longitudinal direction,
respectively, calculated at grid points P(ϕi,λk) as well
as their estimated standard deviations

σ̂
J1,J2
VTEC(ϕi,λk, ts)

∣∣
i=1,...,I,k=1,...,K

, (60)

extracted from the covariance matrix Eq. (56).

According to Eq. (35), the time interval 1T between two
consecutive maps of the coefficients Eq. (57) and their stan-
dard deviations Eq. (58) or the VTEC grid values Eq. (59)
and their standard deviations Eq. (60) at times ts and ts +1T

can be chosen arbitrarily, e.g., as 10 or 15 min, 1 h or 2 h.
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Following Eq. (34), the coordinates ϕi and λk of all of the V

grid points P(ϕi,λk) are defined as ϕi = −90◦+(i−1) ·18

with 18 = 180◦/(I − 1) and λk = 0◦ + (k − 1) · 13 with
13 = 360◦/K . As previously mentioned, the spatial reso-
lution intervals 18 and 13 are usually chosen as 1◦, 2.5◦

or 5◦, i.e., I = 181, 73, 37 and K = 360, 144, 72.
The two products, i.e., the set of coefficients or the VTEC

grid values reflect the two strategies of dissemination. In
case of a SH expansion for RT applications as introduced
in Sect. 2.1 the corresponding SH coefficients cn,m from
Eq. (10) can be transferred to the user by means of a RTCM
(Radio Technical Commission for Maritime services) stan-
dard 1264 message. This message allows for the considera-
tion of SH coefficients, but only up to degree n = 16. In the
case of the B-spline expansion Eq. (13), however, an encoder
procedure for the B-spline coefficients Eq. (57) is necessary,
because the user has to evaluate the B-spline model just as
in the SH case by substituting the B-spline tensor product
Eq. (14) for the SHs Eq. (11). Due to the two restrictions,
namely the sole use SH expansions and only up to a maxi-
mum degree nmax = 16, the RTCM message format for data
dissemination has to be urgently discussed and must be set
up in a more flexible way (refer to the comments in Sect. 5).
To apply the RTCM format in its current form, the VTEC
grid values Eq. (59) can alternatively be used as observations
y(xis , ts) in Eq. (10) to calculate SH coefficients cn,m(ts) by
means of a least-squares estimation. This way each GIM can
be sent at a high update rate to the user for RT applications.

For Product 2, the VTEC grid values Eq. (59) as well as
there standard deviations Eq. (60) are disseminated as VTEC
and standard deviation maps, i.e., GIMs, with given spatial
resolutions 18 and 13 in the latitudinal and longitudinal
direction, respectively, in IONEX format to the user.

4 Numerical investigations

In the following, the described modeling approach developed
at DGFI-TUM is applied to real data. To be more specific,
we use GPS and GLONASS NRT data in hourly blocks and
apply ultra-rapid orbits. A detailed explanation of the data
preprocessing and the setup of the full observation equations
is presented by Erdogan et al. (2017). The IGS IAACs pro-
vide final products based on post-processed GNSS observa-
tions and orbits with a latency of more than 1 week. Several
IAACs additionally provide rapid products with a latency of
1 d using rapid orbits. An overview on the products used in
the this paper is given in Table 2.

For the evaluation of the data we have to define an appro-
priate coordinate system. Here we follow the standard pro-
cedure and use a sun-fixed geomagnetic coordinate system.
To be more specific, we identify the coordinate system 6E
introduced in the context of Eq. (3) with the Geocentric So-
lar Magnetic (GSM) coordinate system (see, e.g., Laundal
and Richmond, 2017). Consequently, the SH and B-spline

Table 2. List of GIM products used in this paper. Information on
names, types and latencies are taken from the following references:
(1) Roma-Dollase et al. (2017), (2) Orus et al. (2005) and (3) this
paper.

Institution Product Type Latency Reference

CODE codg Final > 1 week (1)
UPC uqrg Rapid > 1 d (2)
DGFI- oplg
TUM ophg NRT < 3 h (3)

theory as presented in the previous sections is applied in the
orthogonal GSM system. As diurnal variations of the iono-
sphere are mitigated in this coordinate system, the transition
matrix Fs introduced in the state Eq. (46) of the KF can be
set to the identity matrix I, i.e., Fs = I. In other words, the
dynamic system of the KF is set to a random walk process.
Furthermore, for the time update in Eq. (46) we fix the step
size ts − ts−1 to 5 min.

While the scaling coefficients Eq. (57) and their standard
deviations Eq. (58) of Product 1 are located within the GSM
system, the VTEC values Eq. (59) and their standard devi-
ations Eq. (60) of Product 2 are provided in the aforemen-
tioned IONEX format on a regular grid defined in a geo-
graphical geocentric Earth-fixed coordinate system. Thus, a
coordinate system transformation has to be interposed.

4.1 Validation procedure

For validation purposes we rely on the dSTEC analysis which
is currently regarded as the standard method for the qual-
ity assessment of VTEC models (see, e.g., Orus et al., 2007;
Rovira-Garcia et al., 2015).

This analysis method is based on the calculation of the
difference between STEC observations STEC(xS,xR, ts) at
discrete time moments ts according to Eq. (2) and a reference
observation STEC(xS,xR, tref) along a specified satellite arc
as

dSTECobs(ts) = STEC(xS,xR, ts)

− STEC(xS ,xR, tref) . (61)

The reference time moment t = tref is usually referred to the
observation with the smallest zenith angle z = zref. In the
same manner, the differences

dSTECmap(ts) = M(zs) · VTEC(xIPP, ts)

− M(zref) · VTEC(xIPP,tref) (62)

are calculated by means of Eq. (5) from the VTEC map to be
validated. The quality assessment is performed by studying
the differences

dSTEC(ts) = dSTECobs(ts) − dSTECmap(ts) (63)

with expectation value E(dSTEC(ts)) = 0.
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Figure 7. Global distribution of the IPPs from GPS (red dots) and
GLONASS (blue stars) measurements for 6 September 2017, at
13:00 UT.

4.2 Estimation of B-spline multi-scale products

Figure 7 shows the global distribution of the IPPs related to
GNSS VTEC observations y(xIPP, ts) = VTEC(xIPP, ts) as
introduced in Eq. (13) for 6 September 2017 at 13:00 UT. As
the B-spline model is set up in the GSM coordinate system
and the scaling coefficients are restricted to the state equation

d
J1,J2
k1,k2

(ts) = d
J1,J2
k1,k2

(ts−1) + w(ts−1) (64)

according to Eq. (46), we select 1ϕ = 5◦ and 1λ = 10◦ as
appropriate values for the global average sampling interval
of the input data as introduced at the end of Sect. 2.1. Con-
sequently, the B-spline levels to J1 = 5 and J2 = 3 are taken
from Table 1.

The covariance matrices 6y and 6w of the observations
and the process noise, respectively, as defined in the formu-
lae of Eq.(49), are set up according to Erdogan et al. (2017).
In more detail, 6y consists of two diagonal block matrices
related to GPS and GLONASS VTEC observations. The rel-
ative weighting between the blocks, i.e., between GPS and
GLONASS, is performed by manually defined variance fac-
tors.

Figure 8a shows with J1 = 5,J2 = 3, KJ1 = 2J1 + 2 = 34
and KJ2 = 3 · 2J2 = 24, the numerical values of the total
816 = 34 · 24 scaling coefficients are

d̂
5,3

k1,k2
(ts)

∣∣
k1=0,...,33, k2=0,...,23 (65)

according to Eq. (57), estimated by means of Eq. (52). As the
shift values k1 and k2 determine the location of the scaling
coefficients, they can be plotted. Figure 8b shows the corre-
sponding standard deviations as defined in Eq. (58). A test of
significance is performed for each of the scaling coefficients
according to Koch (1999).

While Fig. 8a and b show the results of Product 1 in the
GSM system, Fig. 8c and d depict the corresponding results
of Product 2 in a geographical geocentric coordinate sys-
tem. With the choices 18 = 2.5◦ and 13 = 5.0◦ for the grid
spacing in the latitudinal and longitudinal directions, respec-
tively, Product 2 provides the VTEC grid values

V̂TEC5,3(ϕi,λk, ts)
∣∣
i=1,...,73,k=1,...,72 (66)

and the corresponding standard deviations σ̂
5,3
VTEC from

Eqs. (59) and (60).
Note that for the visualization of VTEC and their standard

deviations in Fig. 8c and d, we computed function values on
a much denser grid using the interpolation formula (34).

From the comparison of Fig. 8a and c, it can be stated that
the numerical values of the scaling coefficients directly re-
flect the signal structure, i.e., the signal energy. This fact is
the consequence of the localizing character of the B-spline
functions. Figure 8b and d reveal that the standard devia-
tions are generally larger where no or only a few GNSS ob-
servations from IGS stations are available, namely over the
oceans, e.g., the Southern Atlantic, but also over specific con-
tinental regions such as the Sahara and the Amazon region.

Figure 8a, i.e., the plot of the set of scaling coefficients
d̂

5,3
k1,k2

in Eq. (65) can be interpreted as a visualization of the
34 × 24 matrix D5,3 defined in Eq. (17) and displayed in the
top-left boxes of Figs. 5 and 6 for the 2-D and the 1-D MSR,
respectively. Consequently, Fig. 8a and b are the results of
the zeroth step within the pyramid algorithm, as explained in
Sect. 3. Applying the first step of the 1-D pyramid algorithm,
the downsampling Eq. (44) provides both the 18 × 24 matrix
D4,3 of estimated scaling coefficients d̂

4,3
k1,k2

for the level val-

ues J1 = 4 and J2 = 3 as well as the 16 × 24 matrix C2
4,3 of

estimated wavelet coefficients. Consequently, the definition
of Product 2 in Sect. 3.3 can be extended to “Multi-Scale

Products 2”:

– ophg: estimations with levels J1 = 5, J2 = 3

V̂TEC5,3(ϕi,λk, ts), σ̂
5,3
VTEC(ϕi,λk, ts)

18 = 2.5◦, 13 = 5.0◦; (67)

– oplg: estimations with levels J1 = 4, J2 = 3

V̂TEC4,3(ϕi,λk, ts), σ̂
4,3
VTEC(ϕi,λk, ts)

ĝ4,3(ϕi,λk, ts), σ̂ 4,3
g (ϕi,λk, ts)

18 = 2.5◦, 13 = 5.0◦. (68)

We denote the two Multi-Scale Products 2 as “ophg” and
“oplg”’, where the first symbols refer to the OPTIMAP pro-
cessing software, which was developed within a third-party
funded project (see Acknowledgements). The “p” is cho-
sen according to the temporal output sampling 1T of maps,
with “t” for 1T = 10 min, “1” for 1T = 1 h and “2” for
1T = 2 h. The third symbol describes the spectral resolution
and is selected as “l” for “low” and “h” for “high”. Finally,
the last symbols indicates the model domain and is set to “g”
for “global”. Furthermore, we want to mention again, that the
“ophg” and “oplg” products are all presented in geographical
coordinates.
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Figure 8. Estimated scaling coefficients (a) and their standard deviations (b) for level values J1 = 5 and J2 = 3 within the GSM coordinate
system. Estimated VTEC values (c) and their standard deviations (d) as GIMs within a geographical coordinate system; all sets calculated
for 6 September 2017 at 13:00 UT.

4.3 Comparison of VTEC maps from B-spline and

spherical harmonic expansions

As mentioned in the context of Table 1, the B-spline levels
J1 = 4 for latitude and J2 = 3 for longitude fit best to the
highest degree nmax = 15 of a SH expansion Eq. (10). To
be more specific, we compare the multi-scale product “o1lg”
with the product “codg” provided by CODE. “codg” is char-
acterized by a SH expansion up to degree nmax = 15 and a
time interval 1T = 1 h of two consecutive maps (Schaer,
1999).

Figure 9 shows the VTEC and standard deviation maps
for 6 September 2017 at 13:00 UT as well as the difference
map between “o1lg” and “codg”. Although the structures of
the two VTEC maps are rather similar, the difference map
shows deviations of up to ±6 TECU. To judge this amount, a
comparison of VTEC GIMs from different IAACs was per-
formed (not shown here). This investigation stated that devi-
ations between individual IAAC products can reach ±10 %
or even more. Studying the structures within the difference
map no larger systematic patterns are visible and, thus, jus-
tify our assumption that the quality of “o1lg” is comparable
with the quality of the IAAC products. The standard devia-
tion maps in Fig. 9b and d show different structures that are
mainly caused by the application of the different estimation
strategies, namely KF (“o1lg”) and least-squares estimation
(“codg”).

To numerically assess the comparability we apply the
dSTEC analysis described in Sect. 4.1. First we define a net-
work of receiver stations which are used in Eq. (61).

The chosen set should not be used within the computation
of the VTEC maps. Fulfilling both requirements at the same
time is difficult and, thus, the set of stations shown in Fig. 10
contains both independent stations and stations used simul-
taneously in all VTEC models. As GNSS measurements are
taken along the satellite arcs, the corresponding IPPs are lo-
cated spatially within a grid cell and temporally between the
discrete time moments of the “o1lg” and “codg” products. In
order to calculate the VTEC values in Eq. (62), the spatial
and temporal interpolation formulae (34) and (35) have to be
applied. Figure 11 shows the RMS values of the differences
Eq. (63) during the time span between 1 and 30 Septem-
ber 2017, at the chosen receiver stations.

As can be seen, the RMS values vary between 0.3 and
1.6 TECU. By comparing the RMS values of “o1lg” with
a mean RMS value of 0.80 TECU and “codg” with a mean
RMS of 0.77 TECU we can state that the quality of these two
products is very close to each other.

The results indicate that the overall quality of the NRT
product “o1lg” is comparable with that of the final prod-
uct “codg” including the developed and implemented prepro-
cessing strategies and steps of the GNSS data (see Table 2).

4.4 Assessment of the multi-scale VTEC products

The two multi-scale VTEC products “ophg” and “oplg” have
been introduced in the two equation blocks Eqs. (67) and
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Figure 9. VTEC maps “codg” (a) and “o1lg” (c) as well as their standard deviation maps (b, d); difference map of the two VTEC maps (e);
all data for 6 September 2017 at 13:00 UT.

Figure 10. Distribution of the 10 IGS receiver stations used for the
dSTEC analysis.

(68). In what follows, we study them during a solar storm
of medium intensity on 8 September 2017 and during the
strongest storm of the last 10 years, the prominent St. Patrick
storm, which occurred on 17 March 2015. Figure 12a, c, and
d show the results of the 8 September 2017 event at 19:00 UT

Figure 11. RMS values for the “codg” (green) and “o1lg” (blue)
products computed at the 10 receiver stations shown in Fig. 10.
The values in parentheses in the legend are the average RMS values
over all 10 receiver stations for the entire test period between 1 and
30 September 2017.

and Fig. 12b, d, and e display the corresponding maps for the
St. Patrick storm event on 17 March 2015 at 19:00 UT.

As already mentioned in the context of Eq. (43), it is ex-
pected that the detail signal Eq. (44) is dominated by struc-
tures parallel to the geomagnetic Equator. The detail signal
g4,3(ϕi,λk, ts) shown in Fig. 12e and f meets these expecta-
tions. Especially during the St. Patrick storm event, the detail
signal shows strong signatures. It should be mentioned that

Ann. Geophys., 37, 699–717, 2019 www.ann-geophys.net/37/699/2019/



A. Goss et al.: High-resolution VTEC maps 713

Figure 12. Multi-scale VTEC products for solar storm events: high-resolution VTEC map “ophg” for 8 September 2017 (a) and for
17 March 2015 (b); low-resolution VTEC map “oplg” for 8 September 2017 (c) and for 17 March 2015 (d); panels (e) and (f) show the
detail signals introduced in equation block Eq. (68) and computed by means of Eq. (44) for the two solar events.

a large number of estimated wavelet coefficients collected in
the matrix C2

4,3 are characterized by absolute values smaller
than a given threshold. The neglect of these coefficients al-
lows for a high data compression rate. Consequently, the
number of significant coefficients as the outcome of a MSR
would go drastically below the number of scaling coefficients
within the set Eq. (57) of Product 1; the reader can get an im-
pression of the number of neglected coefficients by paying
attention to the light green and light blue colors in Fig. 12e
and f. This advantageous feature of the MSR was not stud-
ied within this work but will be applied and published in the
future.

Next, we focus on the solar storm during September 2017
and study the temporal sampling intervals of different GIMs.
In summary, we distinguish between six products of different
spectral content and different sampling intervals.

Figure 13 depicts the RMS values computed by the dSTEC
analysis at the stations shown in Fig. 10. It is assumed that
a product with a larger sampling interval 1T is less accu-
rate than a product with a smaller sampling interval. Conse-

Figure 13. RMS values for the “o2hg”, “o1hg”, “othg”, “o2lg”,
“o1lg” and “otlg” products computed at the 10 receiver stations
shown in Fig. 10 during September 2017. The values in parentheses
in the legend are the average RMS values over all 10 receiver sta-
tions for the entire test period between 1 and 30 September 2017.

quently, the average RMS values of “o2hg” and “o2lg” are
larger than the corresponding values for a shorter sampling
interval. Furthermore, it is assumed that RMS values for a
product with higher B-spline levels, e.g., “othg”, are smaller
than for the corresponding product with lower B-spline level
values such as “otlg”. By comparing the corresponding color
bars in Fig. 13, i.e., orange (“o2lg”) vs. red (“o2hg”), light
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Table 3. Relative improvements (in percentage) for a downsizing of
the sampling interval of the “o2lg”, “o1lg”, “otlg”, “o2hg”, “o1hg”
and “otlg” products.

Product RMS [TECU] Percentage Improvement

o2lg 0.92 100%
o1lg 0.80 87.0% 13.0%
otlg 0.77 83.7% 16.3%

o2hg 0.90 100%
o1hg 0.72 80.0% 20.0%
othg 0.68 75.6% 24.4%

Table 4. Results (in percentage) of the comparisons of the high-
resolution products “ophg” with the low-resolution products “oplg”.
Positive (bold) numbers mean an improvement, and negative (italic)
values represent a reduction in the quality.

o2lg o1lg otlg

o2hg 2.2% −12.5% −16.9%
o1hg 21.7% 10.0% 6.5%
othg 26.1% 15.0% 11.7%

blue (“o1lg”) vs. blue (“o1hg”) and green (“otlg”) vs. yellow
(“othg”), the aforementioned assumptions are confirmed.

The differences in the RMS values of the first three prod-
ucts, “o2lg”, “o1lg” and “otlg”, are caused by their different
sampling intervals. Comparing the mean RMS values of 0.92
and 0.80 TECU for “o2lg” and “o1lg”, respectively, we find a
relative improvement of approximately 13.0 %. By decreas-
ing the sampling from 1T = 2 h to 1T = 10 min, a further
improvement of 16.3 % can be achieved.

Comparing the RMS values 0.90, 0.72 and 0.68 TECU of
the “o2hg”, “o1hg” and “othg” products, respectively, we
find relative improvements of 20 % and 24.4 % by downsiz-
ing the sampling interval from 2 to 1 h and finally to 10 min.
A summary of the relative improvements is given in Table 3.

In the next step, we compare the quality of the multi-
scale products “ophg” and “oplg” directly. First, we compare
“o2lg” with “o2hg” and obtain an improvement of approxi-
mately 2.2 % . In the same manner, we compare “o1lg” with
“o1hg” and “otlg” with “othg” and find that improvements
of 10.0 % and 11.7 % can be achieved, respectively. Table 4
shows the results for the comparison of each pair of products;
an improvement is indicated by numbers in bold font, and a
deterioration is indicated by numbers in italic font. As a con-
sequence, an increase of the numerical value for level J1, i.e.,
the enhancement of the spectral resolution with respect to the
latitude yields a significant improvement in the RMS values
as long as the temporal sampling 1T is less than 2 h.

From the investigations in Sect. 4.3, it could be concluded
that the quality of the “o2lg” product is comparable to the
quality of the IAAC products. It can be seen from Table 4

Figure 14. RMS values for the “uqrg” and “othg” products com-
puted at 9 IGS receiver stations during September 2017. The val-
ues in parentheses in the legend are the average RMS values over
all 9 receiver stations for the entire test period between 1 and
30 September 2017.

that there is a strong improvement of more than 26 % when
using the “othg” product instead of the “o2lg” product. It is
worth mentioning that both products are based on the same
input data and are spatially related to each other by means of
the MSR.

4.5 Assessment of high-resolution VTEC models

As the “othg” product outperforms all other products used in
the previous sections we now compare it with UPC’s “uqrg”
product (Roma-Dollase et al., 2017) which provides smaller
values in the relative standard deviation of their dSTEC anal-
ysis in comparison with the products of other IAACs. “uqrg”
is a rapid product and is provided with a sampling interval
1T = 15 min. As the “NKLG” station is not used in the cal-
culation of “uqrg”, it is excluded from the calculation of the
overall RMS value shown in the legend.

As can be seen, the RMS values vary between 0.5 and
1.8 TECU but are mostly below 1.0 TECU. The dominant
RMS value of “uqrg” at the “CHPI” station reduces its qual-
ity significantly. If “CHPI” is neglected, the mean RMS value
of “uqrg” decrease to 0.59 TECU. Summarizing these inves-
tigations, we can state that the overall quality of the two prod-
ucts is very similar. Considering the fact that “othg” is a NRT
product with a latency of less than 3 h, it also outperforms
“uqrg” which is a rapid product with a latency of around 1 d
(see Table 2). However, for a final assessment, further val-
idation studies have to be performed between the different
products.

5 Conclusions and outlook

This paper presents an approach to model VTEC solely from
NRT GNSS observations by generating a MSR based on
B-splines; the unknown model parameters are estimated by
means of an KF. Based on this approach, a number of prod-
ucts have been created which differ both in their spectral con-
tent and in their temporal resolution. From our investigations
we state that the MSR provides B-spline models comparable
to the standard GIMs of the IAACs, mostly based on SH ex-
pansions up to degree nmax = 15. As the core of the numer-
ical study we compare our results with the most prominent
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Figure 15. DGFI-TUM’s processing modules, including (blue
boxes) the download and preprocessing module for GNSS obser-
vations, the modeling module by means of B-splines, MSR and
Kalman filtering (orange boxes) with possible output as Product 1
and Product 2 (yellow boxes) and the validation module.

VTEC maps of the IAACs to rate the quality. As the dSTEC
analysis is the most frequently used validation method, we
abandon a comparison with satellite altimetry products here.
To summarize the validation studies, it can be stated that the
high-resolution “othg” product outperforms all products used
within the selected time span of investigation.

Besides the facts, that our models can handle data gaps due
to the utilization of localizing basis functions, the applica-
tion of a KF to include a dynamic prediction procedure and
the use of the MSR to create products of different spectral
content at the same time, it should be mentioned that DGFI-
TUM’s products

– are based on NRT GNSS observations only, i.e., are us-
ing input data with a latency of less then 3 h (in contrast,
“codg” relies on post-processed data with a latency of
larger than 3 weeks, and “uqrg” relies on rapid data with
a latency of at least 1 d; cf. Table 2);

– rely on specially developed software modules (cf.
Fig. 15), e.g., the preprocessing module using ultra-
rapid orbits;

– and can be disseminated to users with a delay of 2–3 h.

In general, the dissemination of these products to users can
be undertaken in two different ways: based on estimated scal-
ing coefficients (Product 1) or by calculated VTEC grid val-
ues (Product 2). For RT applications, however, the dissemi-
nation in terms of Product 1 is preferred, in particular the us-
age of the RTCM format. In the scope of the developments in
the recent years, RT applications have become more impor-
tant, e.g., in unmanned or autonomous vehicle development;
thus, the restriction of the RTCM message to allow only for
SH coefficients needs to urgently be discussed. Particularly
from the point of view that there are also other modeling
methods, a modification of the RTCM format would be ap-
propriate. The MSR allows for significant data compression
to be obtained due the step-wise downsampling of the scal-
ing coefficients according to the pyramid algorithm. Details

represented in the signal fJ1,J2 of the zeroth step are stored
in wavelet coefficients for the following steps (see Fig. 5). A
large number of estimated wavelet coefficients are character-
ized by absolute values smaller than a given threshold and,
thus, most of them can be neglected for the reconstruction
of the original signal. Hence, the overall number of scaling
and wavelet coefficients can be reduced drastically. Consid-
ering this powerful feature of data compression, we propose
replacing the scaling coefficients of the highest levels with
the significant wavelet coefficients of the lower levels for a
definition of an alternative and more appropriate format for
data dissemination in terms of Product 1.

The results presented encourage the further development
of high accuracy VTEC maps. By extending the models by
a fourth dimension, i.e., modeling of the electron density
directly, inaccuracies due to the mapping function can be
avoided. To model the vertical structure of the electron den-
sity, additional observations have to be incorporated, e.g.,
from DORIS, satellite altimetry and ionospheric radio occul-
tations. This would mitigate the inhomogeneity of the data
distribution and, in turn, even higher levels of the B-spline
expansion can be chosen.

Data availability. The global VTEC maps in IONEX format used
in the comparisons were acquired from the Crustal Dynamics Data
Information System (CDDIS) data center by the following FTP
server: ftp://cddis.gsfc.nasa.gov/gnss/products/ionex/. The hourly
available GNSS data from IGS sites were operationally down-
loaded in real time through mirroring to the different IGS data
centers, i.e., the CDDIS (ftp://cddis.gsfc.nasa.gov/pub/gps/data/
hourly/), the Bundesamt für Kartographie und Geodäsie (BKG)
(ftp://igs.bkg.bund.de/IGS/nrt/), the Institut Geographique National
(IGN) (ftp://igs.ensg.ign.fr/pub/igs/data/hourly) and the Korean As-
tronomy and Space Science Institute (KASI) (ftp://nfs.kasi.re.kr/).
Furthermore, the ultrarapid orbits of GPS and GLONASS satellites
utilized in the data preprocessing step can be accessed through FTP
servers: for GPS via ftp://cddis.gsfc.nasa.gov/pub/gps/products, and
for GLONASS via ftp://ftp.glonass-iac.ru/MCC/PRODUCTS/.
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