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Abstract
Forecasting wind speed near the surface with high-spatial resolution is beneficial in agricultural management. There is a dis-
crepancy between the wind speed information required for agricultural management and that produced by weather agencies. 
To improve crop yield and increase farmers’ incomes, wind speed prediction systems must be developed that are customized 
for agricultural needs. The current study developed a high-resolution wind speed forecast system for agricultural purposes 
in South Korea. The system produces a wind speed forecast at 3 m aboveground with 100-m spatial resolution across South 
Korea. Logarithmic wind profile, power law, random forests, support vector regression, and extreme learning machine were 
tested as candidate methods for the downscaling wind speed data. The wind speed forecast system developed in this study 
provides good performance, particularly in inland areas. The machine learning–based methods give the better performance 
than traditional methods for downscaling wind speed data. Overall, the random forests are considered the best downscaling 
method in this study. Root mean square error and mean absolute error of wind speed prediction for 48 h using random forests 
are approximately 0.8 m/s and 0.5 m/s, respectively.
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Introduction

Wind speed affects many agricultural activities and crop 
characteristics, including growth and development (Retuerto 
and Woodward 2004; Gardiner et al. 2016), and the high 
value of wind speed can cause fruit falls (McAneney et al. 
1984; Gravina et al. 2011), lodging of cereals (Sterling 
et al. 2003; Feng et al. 2019), and physical damage to crops 
(Cleugh et al. 1998; Van Gardingen and Grace 1991; Retta 
et al. 2000). Providing farmers with future wind speed infor-
mation will increase profits by enabling them to take miti-
gating actions against adverse impacts of high-speed winds 
and will improve crop cultivation efficiency (Gardiner et al. 
2016). Thus, forecasting wind speed near the land surface is 
beneficial to agricultural management.

Agricultural production predicted by agricultural simu-
lation model (ASM) using weather forecasts from climate 
models and numerical weather prediction systems varies 
with the spatial resolution of weather forecast data (Mearns 
et al. 1999; Kim et al. 2015). For example, field scale is 
often preferred for spatial resolution of climate models 
and numerical weather prediction systems for agricultural 
use (Hansen and Indeje 2004; Takle et al. 2014; Shin et al. 
2020b). For the simulation and forecast of agricultural pro-
duction, weather prediction data with high spatial resolution 
should be developed.

To observe and predict wind speed directly affecting agri-
cultural environments, the measuring height of wind speed 
should be similar to the height of crops. For example, wind 
speed data at 3 m aboveground are desired for agriculture 
(Cermak 1979). The standard protocol for measuring wind 
speed, recommended by WMO (2018), is at a height of wind 
speed of 10 m aboveground; therefore, climate models and 
numerical weather prediction system have been designed 
to simulate and predict wind speed at 10 m aboveground 
(WS10M). However, due to the difference between ane-
mometer heights and crops, the direct use of wind speed 
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predictions by climate models and numerical weather pre-
diction systems sometimes may be inappropriate in agricul-
tural simulations and modeling for specific purposes such 
as scheduling pesticide spraying, pollen disposal, lodging 
prediction, and estimating canopy-top evapotranspiration. 
Therefore, a methodology is required to downscale wind 
speed from 10 m aboveground to a lower height above-
ground. Wind profiling methods have been developed to 
predict wind speed at different heights aboveground using 
WS10M observations, including LOGarithmic wind profile 
(LOG) and POWer law (POW) methods (Monin and Obuk-
hov 1954; Peterson and Hennessey 1978), and performances 
and limitations of these methods have been explored in 
studies (Lubitz 2009; Optis et al. 2016). Recently, machine 
learning (ML) algorithms have been tested for wind profil-
ing methods (Mohandes et al. 2016; Bodini and Optis 2020; 
Vassallo et al. 2020); however, most of these studies focused 
on predicting WS10M; therefore, the utility of these methods 
for agricultural simulation and modeling is unclear. Moreo-
ver, despite its applicability to various fields, climate models 
and numerical weather prediction systems predict WS10M 
with a coarse spatial resolution, which causes a discrepancy 
between the information required by agricultural manage-
ment and that produced by the weather service. To improve 
crop yield and increase the income of farmers, wind speed 
prediction systems that are customized for specific agricul-
tural purposes, need to be developed.

The current study aimed to develop a wind speed fore-
cast system for agricultural purposes where the wind speed 
data has a 100-m spatial resolution at 3 m aboveground. 

Korea Meteorological Administration Post Processing 
(KMAPP) was employed for obtaining WS10M predic-
tion data having 100 m × 100 m horizontal resolution. For 
agricultural purposes, wind speeds at 3 m aboveground 
(WS3M) were measured across South Korea. Furthermore, 
the WS10M prediction from the KMAPP was downscaled 
to WS3M using ML algorithms and traditional methods, 
such as LOG and POW that are constructed by relationship 
between WS10M predictions and WS3M observations; 
these downscaled products were compared. Geographi-
cal and geological information, as well as other meteoro-
logical variables, was tested before using them as input 
features for the ML methods. The backward elimination 
method was used to select relevant input features for each 
ML algorithm for downscaling WS3M.

High‑resolution wind speed forecast system 
for agriculture

In this study, the wind speed prediction system was devel-
oped using weather forecast data from numerical weather 
prediction system and post-processing this data, followed by 
downscaling wind speed data from 10 to 3 m aboveground. 
The KMAPP data were used as the weather forecast data. 
For downscaling methods, several methods including tradi-
tional and ML methods are employed. A schematic diagram 
of the high-resolution wind speed forecast system for agri-
culture is presented in Fig. 1.

Fig. 1  Schematic diagram of the high-resolution wind speed forecast system for agriculture in the current study
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Weather forecast data from numerical weather 
prediction system

The Local Data Assimilation and Prediction System 
(LDAPS) was configured for weather prediction over the 
Korean peninsula and surrounding waters (KMA 2011). 
The output of LDAPS has a spatial resolution of 1.5 km 
(H602 × V781) and consists of 70 vertical levels up to 
40 km (Cho et al. 2020; Kim et al. 2020). Since the spa-
tial resolution is too coarse to be used in other fields, the 
National Institute of Meteorological Sciences developed 
KMAPP for producing high-resolution weather forecast 
data. This model was developed based on the United King-
dom Post Processing method which was proposed by UK 
met Office. KMAPP produces high-resolution (100 m × 
100 m) weather forecast data using the outputs of LDAPS 
by spatial downscaling, which is essentially the spatial 
interpolation of coarse outputs (Yun et al. 2021). Oro-
graphic adjustment is adopted for locations with com-
plex terrain. For downscaling wind speed data, additional 
adjustments are made, based on roughness length and 
height (Howard and Clark 2007). The reduction rate of 
air temperature based on height is accounted for while 
downscaling air temperature (Sheridan et al. 2010, 2018).

KMAPP data consist of surface and level data with 
an hourly temporal resolution and a lead time of 48 h. 
Outputs of KMAPP are operationally produced at 00, 06, 
12, and 18 UTC within a day. The u (east direction) and 
v (north direction) components of WS10M, air tempera-
ture, relative humidity, downward shortwave flux, visibil-
ity, and mean sea level are produced for surface data in 
the KMAPP. The level data consists of 29 levels within 
approximately 3 km that is considered the mixing height. 
For the level data, u and v components, air temperature, 
and air pressure are produced. In the current study, six var-
iables, including u and v components of WS10M, air tem-
perature, relative humidity, mean sea level pressure, and 
downward shortwave flux in the surface data of KMAPP, 
were used as input features for downscaling methods. The 
information of KMAPP data is summarized in Table S1 in 
Supplementary Information (SI).

Downscaling methods

The WS3M for agriculture was predicted by downscaling 
the WS10M from climate models and numerical weather 
prediction system. ML algorithms were employed as the pri-
mary algorithm for downscaling. However, for comparison, 
LOG and POW methods were also used as the traditional 
downscaling method. Random Forests (RF), support vector 
regression (SVR), and extreme learning machine (ELM) are 
selected for the candidate of ML algorithm.

Logarithmic wind profile method

Based on the LOG method, the mean wind speed at a spe-
cific height aboveground (z m aboveground) can be calcu-
lated by Eq. (1) (Blackadar and Tennekes 1968; Tennekes 
1973; Kent et al. 2018):

where U(z) , u∗ , � , zd , and z0 are mean wind speed at z m 
aboveground, roughness velocity, von Karman’s constant, 
zero-plane displacement, and roughness length, respectively. 
The value of � is 0.4, obtained from a wind tunnel experi-
ment (Garratt 1994). WS3M can be predicted by Eq. (2), 
based on the prediction of WS10M.

Power law method

The POW method could describe the relationship between 
wind speeds at two different heights aboveground. This is 
defined in Eq. (3) (Emeis 2014; Kent et al. 2018):

where  z1,  z2, and α are wind speed at first height above-
ground, wind speed at second height aboveground, and 
wind shear exponent, respectively. The wind shear exponent 
ranges from 0 to 1. In this study, Eq. (4) was employed for 
predicting WS3M based on WS10M using the POW method:

Random forests

RF has been widely used as an alternative for classification 
and regression problems (Shin et al. 2020a, 2021; Hansen 
and Indeje 2004; Pal 2005; Smith 2010; Cho et al. 2020; 
Watt-Meyer et al. 2021). Breiman (2001) proposed the RF 
algorithm, which uses many decision trees constructed by 
the bagging method; thus, the RF can be considered as an 
ensemble of decision trees. Each decision tree is grown 
using a selected subset that is randomly resampled with 
randomly selected features from the original datasets. The 
RF consists of randomness and ensemble learning. The 
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randomness comes from random resampling of the entire 
dataset and the selection of features with which every clas-
sification and regression tree is built. The ensemble learning 
method in RF means that all individual decision trees in a 
collection of decision trees (ensemble) contribute to a final 
prediction. The classification and regression tree, without 
pruning, is used to construct a single decision tree. The final 
predicted label is the most frequent among the predicted 
labels of all individual trees. The “ranger” library in R was 
used to construct the RF model (Wright and Ziegler 2017).

Extreme learning machine

Extreme learning machine is a feed-forward network consist-
ing of a single network with randomly generated weights and 
bias between input and hidden layers (Huang et al. 2006). 
The weights and biases of conventional neural network are 
iteratively optimized while they are tuned in a single itera-
tion because of the randomized weights and biases. The 
ELM can be expressed in Eq. (5):

where Y, H and β are labels, the output vector of the hid-
den layer, and weight matrix between hidden layer to out-
put layer, respectively. H is nonlinear feature mapping. H is 
defined by Eq. (6):

where fa(∙) , X, W, and B are activation function, input fea-
ture, weight matrix between input layer to hidden layer, and 
bias, respectively. The sigmoid function ( fa(x) =

1

1+exp(−x)
 ) 

was employed as the activation function in the ELM in this 
study.

Support vector regression

SVR is applied as a regressor to many regression problems 
in various fields (Yang et al. 2006; Yao et al. 2017; Abbas 
et al. 2020; Liu et al. 2021; Zhang et al. 2021). The SVR 
algorithm is a modified version of support vector machine 
(SVM). The SVR was developed for solving classification 
problems based on mathematics, unlike other ML algo-
rithms, such as ELM and RF. SVM was developed for build-
ing classifiers that maximize the margin, that is, the distance 
between any two groups. The distance between two groups 
is determined by the distance between support vectors, that 
is, the nearest vector to another group. Unlike the SVM, the 
support vectors indicate the two most distant vectors in the 
datasets for the SVR. Additionally, the regression line that 
minimizes the margin represents the regressor in the SVR. 
To figure out the hyperplane minimizing the margin, the 

(5)Y = Hβ

(6)H = fa(XW + B)

optimization problem (Eqs. (7)–(9)) with its constraints has 
to be solved:

subject to yi
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where, v �i , and �(∙) are regularization constant that ranges 
from 0 to 1, slack variable for ith data point, and kernel func-
tion. The radial basis function is used for kernel function in 
the SVR used in this study, and the “e1071” library in the 
R was employed for conducting SVR (Meyer et al. 2021).

Data

Meteorological data

In this study, meteorological data from the Automated Agri-
cultural Observing System (AAOS) were used. AAOS sta-
tions are located in agricultural areas, such as farms and 
orchards, and measure 14 meteorological variables related 
to the agricultural environment, e.g., air temperature, wind 
speed, and relative humidity. In this study, hourly observed 
WS3M data from AAOS were employed for the target data. 
Hourly wind speed depicts 10-min mean wind speed data 
observed at 00 min in each hour. The wind speed data can 
be downloaded from Nongeupnalssi 365 (weather.rda.
go.kr). The recording period was from July 2019 to June 
2020 (12 months). To obtain reliable data, the meteorologi-
cal observation data were inspected by a quality check (QC) 
procedure based on KMA guideline of QC for automatic 
weather station, using the relocation of the measuring instru-
ment, location of the measuring instrument, proportion of 
missing data, and proportion of zero values. The stations 
where the displacement of instrument is higher than 150 m 
were extracted; in addition, when the instruments were 
installed in improper location such as near road and high 
building, the data in these stations were not used. If propor-
tions of missing data and null wind speed were higher than 
10%, measures in these stations were not employed. Based 
on the QC results, 104 stations were of sufficient quality 
to be used in the modeling. The selected 104 stations are 
presented in Fig. 2.

Terrain‑based spatial data

Surface wind speed varies with surface characteristics such 
as topography and land cover (Wu et al. 2016). Use of these 
surface characteristics for input features of machine learning 
algorithm led to improvements in near-surface wind speed 
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prediction (Jung and Schindler 2020). In this study, land 
cover and agricultural suitability maps were used as input 
features for the ML methods as they are related to the agri-
cultural environment. Land cover maps represent the land 
cover type at the specific location, based on predefined cat-
egories, and have three levels: top, medium, and low, based 
on the hierarchy of land cover types. These types in the 
map provide the most detailed information at the low level. 
Medium-level map, with a scale of 1:25,000 that horizon-
tal resolution is approximately less than 10 m, was used in 
this study as it has sufficient detail to represent land cover 
characteristics in agricultural areas. This data was obtained 
from the environmental geographic information service 
(egis.me.go.kr). The agricultural suitability map, with 
a scale of 1:25,000 scale, includes information related to 
cultivation, e.g., soil properties, yield potential, and degree 
of yield constraint, to help decision-making for increasing 
agricultural production and yield. The agricultural suitability 
map used in this study can be downloaded from the Korean 
soil information system (soil.rda.go.kr). The land cover and 
agricultural suitability maps are transformed to grid data 
that matches the KMAPP grid, using the nearest neighbor 
resampling method.

Terrain is critical in determining wind speed, because air 
flow is largely associated with terrain, such as mountains, 
valleys, and flat planes (Cao and Tamura 2006; Schmidli 
and Rotunno 2012). Elevation data at a specific location may 
have a limited capacity to represent topological character-
istics; hence, the slope and curvature were used as input 
features representing topological characteristics in this study. 
The slope and curvature were calculated from the digital 
elevation map used in KMAPP. These calculated slope and 
curvature were then employed as input features of the ML 
algorithm. The slope indicates a first-order differential eleva-
tion, with respect to location, and has been widely used in 
geomorphometrics (Evans 1972; Ghandehari et al. 2019). 
The curvature is defined as a second-order differential eleva-
tion, with respect to location (Ghandehari et al. 2019).

Application

Traditional methods estimate WS3M using WS10M predic-
tions from KMAPP. To compute WS3M using traditional 
methods, some parameters, such as z0 , � , and zd should be 
defined. In this study, z0 and � were given based on the land 

Fig. 2  Location of the used 
weather stations. Note that the 
red and green colored stations 
are selected for performance 
evaluation at individual stations 
while all stations are employed 
for evaluating overall perfor-
mances of the developed model
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cover type of the location (Aghbalou et al. 2018; Chavan 
et al. 2017). The values of z0 and � used in this study are 
listed in Tables S2 and S3 in SI. The value of zd was set to 
2/3 of the canopy height, assuming that the canopy height 
is 1 m (De Bruin and Verhoef 1997).

For WS3M prediction using ML algorithms, 801,769 data 
points were collected. Sixty (481,051), 20 (160,359), and 
20% (160,359) of the all data points used were randomly 
resampled for training, validation, and test datasets, respec-
tively, without replacement. Thus, the number of data points 
for the validation and test datasets was 160,359 and 160,359, 
respectively. The observed WS3M is unbalanced data in that 
the values of data are not uniformly distributed. The use of 
unbalance data leads to overfitting of model for the most 
frequent values. Thus, this unbalance data can worsen per-
formances for less frequent values. To avoid overfitting from 
the unbalanced data, oversampling was performed for the 
training dataset. In oversampling, the number of data point 
in each bin that has 1 m/s interval becomes the same by resa-
mpling data points in the training dataset. Hence, the num-
ber of data points for the training data set was 16,113,150. 
To optimize input feature selection, backward elimination 
was carried out (Xu and Zhang 2001). Forty-eight features 
were considered as the initial input feature in the backward 
elimination method, including six meteorological variables 
predicted by the KMAPP, 30 features from the agricultural 
suitability map, one feature from the land cover map, two 
features from the slope, two features from the curvatures, 
four features indicating time, and three features indicating 
geological location. The input features of all ML methods 
were selected using the backward elimination method, based 
on root mean square error (RMSE) for the validation data-
set. According to the backward elimination method, the ML 
methods employed a total of 18 input features: six from 
KMAPP (u and v components of WS3M, air temperature, 
relative humidity, mean sea level pressure, and downward 
shortwave flux), three from the agricultural suitability maps 
(drainage level, land form, and soil suborder), one from the 
land cover map, two from the slopes (of north and east direc-
tion), two from the curvatures (of north and east direction), 
one feature from time (month), and three features from geo-
logical information (elevation, latitude, and longitude).

The hyperparameters of the ML methods were opti-
mized based on the RMSE value of the trained models for 
the validation dataset. To determine the number of trees in 
RF, 300–700 trees were tested. When there were 500 trees, 
the RMSE of the trained RF was the lowest; hence, 500 
trees were used in the RF. For the SVR, 0.01–1 were tested 
for gamma, and 1–10 were tested for the cost using vali-
dation dataset. Based on the cross validation, the smallest 
RMSE was obtained when the gamma and cost were equal 
to 0.05 and 1, respectively. The hyperparameters of ELM 
used in this study were the number of nodes and the tuning 

parameter. For ELM, 1000–4000 nodes were tested and 
0.01–10 were tested for the tuning parameter, and 2000 and 
0.1 were used as the number of nodes and tuning parameter, 
respectively, based on the cross validation.

Results

Overall performance of models

All evaluation measures were calculated using the test data-
set. The proposed system predicts WS3M at 4.6 million 
points across South Korea. WS3M prediction at 104 points 
that match the AAOS weather stations were used for a per-
formance evaluation. Correlation, RMSE, mean absolute 
error (MAE), and mean bias error (MBE) of WS3M pre-
dictions from all the models are presented in Fig. 3. Based 
on correlation, RMSE, and MAE, the ML-based methods 
performed better than LOG and POW methods. Among 
the ML algorithms, RF was the best method, while ELM 
performed the worst. The RMSE value of the prediction 
for RF was < 0.8 m/s, while that for ELM was > 1.1 m/s. 
The RMSE values for traditional wind profiling methods, 
LOG and POW, were > 1.4 m/s. Similarly, RF had the best 
performance for all lead time with MBE < 0.2 m/s. The 
MBE of ELM and LOG was > 0.6 m/s. Among the meth-
ods, POW had the largest MBE value > 0.9 m/s with a long 
lead time. Prediction performances of ML-based methods 
gradually decreased as lead time increased, whereas the 
prediction performances of traditional methods drastically 
reduced after a 2-h lead time. The mean, median, and stand-
ard deviation of observed WS3M for all employed stations 
are presented in Figure S1. The mean value of mean and 
median wind speed is 1.27 m/s and 0.98 m/s, respectively. 
Thus, the approximate relative absolute error ( = 0.5

1.27
× 100 ) 

based on mean value of MAE (0.5 m/s) for WS3M predic-
tion by RF is 39.4%.

Figure 4 represents the overall performances of the 
tested models for all stations evaluated using density 
plots comparing WS3M and the KMAPP prediction for 
WS10M. The predictions of KMAPP are higher than 
the observed wind speed due to the difference in meas-
uring height resulting in a correlation value of 0.557. 
Though the LOG and POW provided lower wind speed 
than the KMAPP, large positive biases remain in their 
predictions. The correlations for POW and LOG were 
0.536 and 0.460, respectively. The predictions of RF 
and SVR were found to have good agreement with the 
observations, as their scatter points are located around 
the diagonal line. Unlike RF and SVR, the ELM led to 
an overestimation. The RF method showed the highest 
correlation with a value of 0.827. However, the RF algo-
rithm overestimated wind speed lower than 1.5 m/s and 
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underestimated above 2 m/s. The SVR had the second-
highest correlation with a value of 0.763. Overall, the 
SVR overestimates wind speed. Based on the evaluation 
measures, RF was determined as the best method; hence, 
the prediction performance of RF for various lead times 
was described using the density plot. These density plots 
for predictions at nowcasting (0 h), 8, 16, 24, 32, and 
40 h are presented in Fig. 5. The correlations decrease 
as lead time increases, and the distributions of scatter 
points for different lead times were found to be similar. 
The highest correlation (0.84) was found for predictions 
at current time.

Spatial distribution of evaluation measures

To further investigate the prediction performance of the RF 
algorithm, correlation, RMSE, MAE, and MBE for each lead 
time and station are presented in Fig. 6. The medians of 
correlations were approximately 0.8, which decrease as the 
lead time increases. Spatial variation of evaluation measures 
(depicted as ranges of boxes) ranged from 0.7 to 0.85 and 
was consistent for all lead times. The results indicate that the 
spatial variation of prediction performances for all models is 
consistent for all lead times. Overall tendencies of RMSE, 
MAE, and MBE are similar to the correlation. For MAE, the 

Fig. 3  Performance evaluation 
of five models for all stations 
using the test data set based 
on four evaluation measures: a 
correlation, b RMSE, c MAE, 
and d MBE
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medians are approximately 0.5 m/s, and its spatial variation 
ranged from 0.3 to 0.7 m/s. Medians of RMSE were between 
0.6 and 0.7 m/s, and the its spatial variation ranged from 
0.5 to 0.9 m/s. For MBE, the medians were approximately 
0.1 m/s, and its spatial variation was between 0 and 0.2 m/s.

The spatial distribution of RMSE from POW, LOG, RF, 
SVR, and ELM is presented in Fig. 7, to investigate the spa-
tial characteristics of prediction performances for all models. 
The spatial distribution of RMSE for KMAPP is also illus-
trated for comparison. For all models, RMSEs for stations in 
coastal region are larger than in inland regions. The spatial 
distribution of RMSEs for KMAPP was also similar. The 
RMSEs for stations in inland regions are > 1.8 m/s, while 
the RMSEs for stations in coastal regions are > 3.6 m/s. Tra-
ditional methods, such as POW and LOG, lead to smaller 
RMSE than KMAPP, but RMSEs for some coastal stations 
are > 3.6 m/s, even though the wind speed is downscaled at 
3 m aboveground. The ML-based models provide smaller 
RMSEs than the traditional methods; the RF gives the small-
est RMSEs of all the models (< 1.8 m/s for all stations). To 
investigate the variation of performance depending on lead 
time, the RMSEs for RF in six lead-times are presented in 
Fig. 8. For six lead times, the RMSEs for stations in coastal 
regions were larger than in inland regions. RMSEs increase 

as the lead time becomes longer. The increments of RMSEs 
for stations in coastal region are larger than in inland regions.

Discussion

In this study, traditional and ML methods were employed 
for downscaling wind speed data and predicting WS3M. 
Overall, the ML methods lead to a better prediction per-
formance than traditional methods. The poor performances 
of traditional methods for downscaling may result from the 
use of inaccurate values for z0 , � , and zd . The values of these 
parameters can be accurately obtained by considering com-
plex conditions, such as type, density, and height of vegeta-
tion. Some studies have reported that these parameters are 
associated with the type and density of vegetation (Shaw and 
Pereira 1982); therefore, information on these parameters 
is needed to successfully implement traditional methods 
for downscaling wind speed data in agricultural areas. The 
crop growth stage depends on various conditions, such as 
weather, vegetation type, soil properties, farmers, and days 
after sowing. The crop growth stage can represent the height 
and density of vegetation; thus, these parameters are strongly 
linked to the crop growth stage. However, collecting all the 

Fig. 4  Density plots of five models as well as KMAPP for all stations using the test data set: a KMAPP, b POW, c LOG, d RF, e SVR, and f 
ELM
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information related to changes in the crop growth stage for 
farm areas nationwide is virtually impossible. Thus, in tra-
ditional methods, the inaccurate estimations of these param-
eters are an inevitable limitation. Overcoming some of the 
limitations of traditional methods, the ML methods provide 
a better prediction performance for downscaling wind speed 
in agricultural areas. ML algorithms can incorporate detailed 
information of surface, meteorology and meteorological pre-
diction, and time. Although these parameters cannot directly 
represent vegetation properties in the area of interest, they 
can indirectly represent vegetation, and thus, improving the 
performance of the ML method in predicting WS3M.

Among the tested ML methods, RF performed the best 
at downscaling the wind speed data. The ELM algorithm 
performed the worst, but its performance was better than 
traditional methods. Agricultural suitability map and land 
cover map (categorical variables) were used as input fea-
tures, e.g., mountain, flat plane, and slope near mountain. 
The ELM method may have poor performance because of 
the activation functions, e.g., sigmoid and hyperbolic tan-
gent functions, which are normally used for continuous 
numeric variables. The categorical variable such as the farm 
for land cover cannot be directly used in the ELM, and this 
variable has to be digitized like one or two for use in the 

ELM. The ELM inherently accounts for the magnitude of 
digits for input feature as strength of signal due to the activa-
tion function. However, because the magnitude of digits for 
the digitized categorical variable is meaningless, the ELM 
may not fully use information from the categorical variable.

Performance of wind speed prediction in inland areas is 
better than that in coastal areas for all tested downscaling 
methods. The performance difference between two areas 
results from wind speed prediction skill of KMAPP. The 
KMAPP provides better prediction skill for WS10M in 
inland areas than that in coastal regions (Yun et al. 2021). 
Because the WS3M prediction comes from the WS10M pre-
diction by KMAPP, the prediction performance of WS3M 
is strongly associated to WS10M prediction. The result sup-
ports that the difference comes from the difference between 
prediction skills in inland and coastal areas. Subsequently, 
the proposed WS3M prediction system provides better per-
formance in inland region as compared to the performance 
in coastal areas.

For some agricultural purposes, wind speed prediction 
at lower height than 10 m is required. WS3M data is valu-
able information in modeling canopy-top evapotranspiration 
(Allen et al. 1998). Additionally, when unmanned aerial 
vehicles (UAVs) are used to spraying pesticide, the flying 

Fig. 5  Density plots of prediction from the RF model for different lead times using the test data set: a lead time (L) = 0 h, b L = 8 h, c L = 16 h, d 
L = 24 h, e L = 32 h, and f L = 40 h
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height should be lower than 4 m in South Korea due to the 
government regulation on avoiding long drift of pesticide 
(NAAS 2018). Though there is no standard flying height 
for UAVs, the flying height is less than 5 m aboveground 
(Martin et al. 2019). Thus, WS3M can be used to make deci-
sion to spray pesticides onto farm using the UAV in South 
Korea. For modeling serial crop lodging, wind speed at 2 m 
aboveground often has been adopted in some studies (Wen 
et al. 2019). In addition, the information of wind speed at 
lower height than 10 m can be used to model pollen dis-
posal, which can be used in yield modeling (Tackenberg 
2003). The height of wind speed data should be selected 
based on type of plants. Hence, there is no consensus for 
use of WS3M in agricultural modeling and simulation. For 

instances, the American Society of Agricultural and Biologi-
cal Engineers recommended wind speed data at from 2 to 
3 m (ASBAE 2006), the American Association of State Cli-
matologists recommended WS3M (AASC 1985), and WMO 
recommended 2 m for height of anemometer (Gommes et al. 
2010). In downscaling wind speed at low height that is lower 
than 3 m, use of WS3M may lead to more accurate data than 
use of WS10M. However, it needs to explore what is an 
appropriate height for wind speed measure in agriculture.

The downscaling methods proposed in this study have 
certain limitations. First, the downscaling methods provide 
poor performances for downscaling WS3M near the coast. 
The RMSE values of stations in inland areas are < 1 m/s, and 
it varies depending on whether lead time is small. However, 

Fig. 6  Boxplots of the 
employed evaluation measures 
for all lead time in all stations: 
a correlation, b RMSE, c MAE, 
and d MBE
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the RMSEs of stations near the coast are larger than in inland 
areas, and the variation of RMSE depending on lead time is 
large. Hence, further research is required to improve the per-
formance of the downscaling method for wind speed near the 
coast. Second, the proposed downscaling system provides 
an inaccurate WS3M prediction for wind speed greater than 
4.5 m/s. The RF methods led to an underestimation of high 
value of wind speed. Hence, the developed models have a 
limited capacity for warning the risk or damage from high 
winds. High values of wind speed near surface are strongly 
associated to the turbulent kinematic energy under mixing 
height (Seibert et al. 2000; Brasseur 2001). In this study, 
because near-surface wind speed predictions from numerical 
weather prediction model were used for predicting WS3M, 
turbulent kinematic energy was not considered. This limita-
tion may lead to poor performance for predicting high wind 
speed. Thus, to improve predictability of high wind speed, 
the prediction data for high altitudes will be considered 
in wind speed prediction. Third, the proposed ML-based 
models can only predict WS3M. The ML-based models 
were trained using WS3M; therefore, these models cannot 
predict wind speed at different heights. Although the tradi-
tional methods can predict wind speed at various heights, 
a large amount of information is required to implement 

these methods accurately. Thus, these limitations should be 
explored in future research. Also, based on results of back-
ward elimination method, slope and curvature representing 
characteristics of terrain were selected for input variables. 
The characteristics of terrain would be associated to wind 
speed mechanism at low altitude. In this study, quantifying 
how terrain is relevant in WS3M prediction was not carried 
out for consistency. Investigating impact of terrain on wind 
speed at low altitude is a good research question to improve 
our understanding on wind speed mechanism, particularly 
in agriculture areas. Hence, a relationship between terrain 
and wind speed, particularly in agriculture areas, should be 
investigated in future research.

Conclusions

The current study developed a high-resolution wind speed 
prediction system for agriculture purposes. The developed 
system consists of two parts: WS10M prediction and down-
scaling WS10M to WS3M. For downscaling method, tradi-
tional and ML-based methods were employed. The perfor-
mance of WS3M prediction from the developed system was 
evaluated using the observed WS3M across South Korea. 

Fig. 7  Spatial distributions of RMSE for six models in the used stations: a KMAPP, b POW, c LOG, d RF, e SVR, and f ELM
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The developed wind speed prediction system provides a 
good performance for predicting WS3M, and this can be 
beneficial for agricultural applications. This performance 
can provide valuable wind speed information for scheduling 
pesticide spraying, pollen disposal, lodging prediction, and 
estimating canopy-top evapotranspiration in South Korea. 
The ML-based methods are more appropriate to predict 
wind speed at a fixed height, e.g., 3 m, than the traditional 
methods. Because the ML-based methods can integrate vari-
ous variables related to wind speed and the developed model 
inherently pursue predicting wind speed at a fixed height, 
they can lead to better performances for predicting wind 
speed at a fixed height than the traditional methods which 
use roughness length, zero-plane displacement, and wind 
shear exponent. RF is considered as the most appropriate 
algorithm of the tested ML algorithms for downscaling wind 
speed to the fixed height. The ML method, e.g., ELM, which 
has the limited capacity to consider categorical variable may 
need delicate procedure to preprocessing the categorical var-
iables for considering them. Thus, applying an algorithm 
that is easy to consider categorical variables would lead to 
successful implementation for wind speed prediction. These 
results bolster the fact that the ML algorithm, which can 

successfully consider categorical variables, would be a good 
option for predicting weather variables related to agriculture.
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