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Recent wind-tunnel tests at the NASA Langley Research Center National Transonic 

Facility utilized high-pressure bellows to route air to the model for evaluating aircraft 

circulation control.  The introduction of these bellows within the Sidewall Model Support 

System significantly impacted the performance of the external sidewall mounted semi-span 

balance.  As a result of this impact on the semi-span balance measurement performance, it 

became apparent that a new capability needed to be built into the National Transonic 

Facility’s infrastructure to allow for performing pressure tare calibrations on the balance in 

order to properly characterize its performance under the influence of static bellows pressure 

tare loads and bellows thermal effects.  The objective of this study was to design both 

mechanical calibration hardware and an experimental calibration design that can be 

employed at the facility in order to efficiently and precisely perform the necessary loadings 

in order to characterize the semi-span balance under the influence of multiple calibration 

factors (balance forces/moments and bellows pressure/temperature).  Using statistical design 

of experiments, an experimental design was developed allowing for strategically 

characterizing the behavior of the semi-span balance for use in circulation control and 

propulsion-type flow control testing at the National Transonic Facility. 

Nomenclature 

AF = Axial Force (lb) 

AFC = Active Flow Control 

AOA = Angle of Attack 

AMS = Angle Measurement System 

ANOVA = Analysis of Variance 

CFD =  Computational Fluid Dynamics 

DRM =  Data Reduction Matrix  

FAST-MAC = Fundamental Aerodynamic Subsonic/Transonic-Modular Active Control 

NASA = National Aeronautics and Space Administration 

NF = Normal Force (lb) 

OLS = Ordinary Least Squares 

NTF = National Transonic Facility 

PAI = Propulsion Airframe Integration 

PM = Pitch Moment (in-lb) 

RCM =  Regression Coefficient Matrix  

RM = Roll Moment (in-lb) 

SF = Side Force (lb) 

SMSS = Sidewall Model Support System 

SPD = Split-Plot Designs 

SP = Sub-Plot 

VIF =  Variance Inflation Factor 

WP = Whole Plot 

X = Design Matrix 

Y = Matrix of Responses (rNF, rAF, rPM, rRM, rYM) 

YM = Yaw Moment (in-lb) 
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I. Introduction 

ctive flow control (AFC) continues to be a fertile research field that holds promise to enhance the aerodynamic 

performance of conventional aircraft and enable the development of unconventional vehicles. A wide variety of 

AFC techniques are being pursued, ranging from direct boundary layer manipulation using steady or pulsed blowing 

methodologies, to indirect methods including induced plasma flows near a surface. Computational Fluid Dynamics 

(CFD) methods are maturing to the point that they are being used as tools to improve and optimize flow control 

techniques on realistic configurations. The confidence in these CFD tools can be improved as they are systematically 

validated. In general, CFD validation is defined by determining how well the CFD model predicts the performance 

and flow physics when used for its intended purposes. The level of CFD validation can be defined by the complexity 

of the code and the experiment being used for validation. 

 

Circulation control has reemerged in AFC research. The circulation control method introduces momentum 

directly to the near wall region via a blowing slot, typically located near the trailing edge and directed over a simple 

short-cord flap. The resulting simplified high-lift system can generate maximum lift values significantly higher than 

that of a conventional multi-element high-lift system. On an aircraft, one supply option for the circulation control 

system is engine bleed air, which was shown to be viable by a recent e-STOL aircraft design study. It is worthy to 

note that unsteady circulation control methods are also being examined to reduce the bleed air requirements. 

Another advantage, which has yet to be fully addressed, is the application of the circulation control technique during 

transonic cruise for either drag reduction or for simplified maneuvering systems. 

 

To address this overarching need, a research project was begun to develop the capability to test AFC concepts 

and propulsion simulations at high Reynolds numbers in the National Transonic Facility (NTF) at the NASA 

Langley Research Center.
1
 The new flow control and propulsion simulation capability at the NTF is focused on the 

use of semi-span models due to the relative ease of routing high-pressure air to the model, and the increased model 

size compared to a conventional sting mounted full-span model. The increased model size allows higher model 

fidelity, as well as increased internal volume for housing the flow control mechanisms and instrumentation. A new 

high-pressure air delivery station has been designed which has a low mass-flow segment for flow control 

simulations, and a high mass-flow segment for propulsion simulations. Two new wind tunnel models were 

developed for the initial testing with this air station. The first is a simple model, which employs two check-standard 

nozzles to verify the operational characteristics of the air station. The second model is a high-performance transonic 

wing that will be used to evaluate various circulation control concepts at both transonic cruise conditions, as well as 

low-speed high-lift conditions. The modular design employed for the new transonic semi-span model is emphasized, 

as it can readily be reconfigured for testing other flow control techniques. Lastly, a new higher load capacity semi-

span force and moment balance has been completed and calibrated for the transonic testing.
2 

 

In order to route high-pressure air out to the semi-span model, the NTF air station was designed as a dual flow 

air delivery system capable of providing two independently controlled air lines to the semi-span model via a set of 

concentric air lines.  These dual air lines are coupled to the semi-span model via a concentric set of bellows (low & 

high mass flows), and a model interface choke plate.  Both the high and low flow legs of the system can provide up 

to 1200 psig capability.  The high mass-flow leg of the system is capable of providing 0.1-20.0 lbm/sec of air flow, 

while the low mass-flow leg is capable of providing 0.1-8.0 lbm/sec directly to the model.  The integration of the 

new air delivery station and the pressure bellows that will be directly linked to the metric end of the NTF-117S 

semi-span balance adds a complexity to the system that can impact the performance of the balance.  In order to 

determine the significance of these pressure tare effects on the performance/accuracy of the NTF-117S balance, an 

experiment was designed involving performing a set of calibration loads on the balance.  This calibration process 

will involve varying the combination of 7 factors (applied NF, AF, PM, RM, YM, static pressures applied to 

bellows, and bellows average temperature).   

 

 With the demand for performing semi-span wind tunnel testing on the rise, the demand to provide highly 

accurate and precise semi-span force balances has increased.  This report provides detail on the design and 

calibration of a new semi-span balance developed for use at the NTF at NASA Langley Research Center, as well as 

discusses test data from recent wind tunnel tests that utilized this new measurement capability.  

A 
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II. Background 

A. Test Facility 

 There are two general types of balances; internal and external.  

Internally mounted balances are mounted internal to the wind 

tunnel model during the testing process.  Externally mounted 

balances, typically referred to as semi-span balances, are mounted 

external to the wind tunnel model being tested.  Semi-span 

balances are used to test semi-span test models, as shown in 

Figure 1 below (Fundamental Aerodynamic Subsonic/Transonic-

Modular Active Control (FAST-MAC) semi-span test model, 

tested at the NTF facility at NASA Langley Research Center).  

The recent increase in the need for semi-span balances is directly 

linked to the benefits that semi-span model testing provides over 

full-span model testing, such as an increased Reynolds number 

capability, higher model fidelity, reduction in aero-elastic effects 

during testing, a substantial reduction in the costs associated with 

model fabrication.
3-7

 It is also significantly easier to supply 

pressure out to a semi-span model than it is to route the pressure 

up through a sting, and bridging over an internal force balance.  

Since most semi-span tests are not concerned with measuring 

aerodynamic side forces, routing pressure in line with the side 

force vector presents less repeatability issues than when trying to route the pressure in-line with the axial force 

measurement component of the typical internal force balance.   

 

 While there are significant advantages to semi-span model testing, there are also several disadvantages.  These 

disadvantages include increased negative impacts due to tunnel wall interference, interaction of air-flow over the 

semi-span model with the tunnel wall boundary layer, and thermal stability issues that are observed by the externally 

mounted semi-span force balances
5,7,8

.  While each of these negatively impacts data accuracy, a significant amount 

of research has been performed to determine any proper corrective measures. 

 

The NTF is a cryogenic, high-pressure, closed-circuit wind tunnel facility that was developed in the 1970’s due 

to the increased need for a facility that was capable of providing high Reynolds number testing capabilities.
9,10

  The 

need for this high Reynolds number capability allows for simulating full-scale aircraft operating conditions.  The 

NTF is a fan-driven facility with a test section that measures 8.2’ x 8.2’ x 25’, and has both slotted floors and 

ceilings to help prevent any near-sonic flow ‘choking’ effects.  The facility operates over a dynamic press range of 

15-125 psia and +150°F to -260°F, which yields Mach numbers ranging from 0.2-1.2.  In order to test at cryogenic 

temperatures, liquid nitrogen (LN2) is injected into the tunnel directly up-stream of the fan and this liquid nitrogen 

evaporates resulting in a cool down as a result of the heat of vaporization and latent heat.  By testing with liquid 

nitrogen as the test medium, the resulting increased Reynolds number capability is achieved through reducing the 

kinematic viscosity and increasing the density of the air stream.
10

 When testing in air, the heat is removed from the 

tunnel by an upstream water-cooled heat exchanger. 

 

In order to conduct semi-span model tests, the model is supported in the tunnel by the SMSS.  Before 

mechanically attaching the model to the SMSS, a segment of the test section wall is removed so that the SMSS can 

be installed behind the test section.  Once the SMSS is attached to its appropriate structure behind the tunnel wall, 

the removed test section wall is re-installed.  The center of the SMSS (and semi-span balance) is located 13 feet aft 

of the plane where the test section begins.  When the semi-span model is mounted, it is mechanically joined to the 

semi-span balance by fastening it to the SMSS top-hat adapter.  During model installation a stand-off is place in 

between the test section wall and the model, to help reduce any negative effects between the interaction of the 

sidewall boundary layer and the performance of the semi-span model. 

B. NTF-117S Balance Design & Instrumentation 

In recent years the NTF has devoted a considerable amount of effort in developing its semi-span model testing 

capability
3-5,7

. The increased interest in semi-span testing at the NTF has sparked the development of new balance 

 
Figure 1. Fundamental Aerodynamic 

Subsonic/Transonic-Modular Active 

Control (FAST-MAC) Semi-Span Test 

at NTF (NASA Langley Research 

Center) 
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design requirements, which in turn resulted in the development of new semi-span balances capable of measuring the 

aerodynamic loads on these semi-span test models.  Initially, a single semi-span balance was designed (NTF-114S) 

that had a NF measurement capability of 6,100 lb.  The NTF-114S semi-span balance has traditionally been used 

primarily for high-Reynolds number testing for low-speed high-lift model configurations.
2
 As new semi-span model 

configurations and testing technologies continue to be developed that will require testing at high-speed transonic 

testing regimes, the required NF measurement capability needed at these testing conditions surpasses the capability 

of the existing NTF-114S balance.  The limited measurement capability of the existing NTF-114S semi-span 

balance prompted the development of the new NTF-117S balance
2
, which has a NF measurement capability (12,000 

lb) that nearly doubles that of the NTF-114S.  Table 1 below compares the design loads for both the NTF-114S and 

NTF-117S, to show the increase in measurement capability as a result of the development of the new NTF-117S 

balance. 

 

Table 1. Current NTF Semi-Span Balance Capabilities 

  NF (lb) AF (lb) PM (in-lb) RM (in-lb) YM (in-lb) 

NTF-114S 6,100 1,300 70,000 353,800 75,400 

NTF-117S 12,000 1,800 90,000 670,000 100,000 

 

 As seen in Figure 3, the balance has flange type mounting interfaces on both the metric and non-metric 

interfaces, which allow for rigidly attaching the non-metric end of the balance to the SMSS, and the metric end of 

the balance to the semi-span model (with a thermal insulation disk located between the balance and top-hat, to 

decrease thermal gradient effects).  The balance was designed with an 8.0” diameter hole down its centerline, which 

accommodates all of the wiring and instrumentation that is routed between the semi-span model and the data 

acquisition system.  As will be discussed in a later section, the hole down the centerline of the balance will be used 

as a passage way to route high-pressure air lines from the NTF high-pressure air-station, and out to the semi-span 

models. 

 

 
 

Figure 2. NTF-117S Critical Dimensions 

 

The NTF-117S balance is instrumented with 5 primary and 5 secondary strain gage circuits, wired into double-

Wheatstone bridges to reduce both interaction and thermal gradient effects.  The primary and secondary bridges are 

excited separately using two power sources that supply 5 volts to a set of main terminals located on the balance. +/- 

Power, monitor, and sense leads are wired to the main terminals where the bridge circuits terminate and are 

paralleled wired. This allows the voltage to be monitored and sensed as close to the bridges circuits as possible, 

while reducing the number of lead wires that exit the transducer to a data system.  

 



 
American Institute of Aeronautics and Astronautics 

 

 

5 

    
                                         a)                                                                                     b)          

Figure 3. NTF-117S Semi-Span Balance, a) w/o external balance covers, b) w/ external balance covers 

 

 The balance reference coordinate system is shown in Figure 4, used to define all balance frame forces/moments 

during the calibration and use during testing. 

 
Figure 4. Balance Reference Coordinate System 

 

In addition to the strain gage instrumentation, a total of 32 PRT’s are are distributed throughout the balance such 

that both the global temperature profile can be observed, as well as being able to measure the local temperatures 

near the strain gage locations. The balance also has an on-board AOA measurement package, which provides an 

absolute reference of the balance and model pitch attitude (angle-of-attack) during testing.  This AOA was 

operational during the calibration of the balance, and was used to compare the pitch deflection measurements from 

the AMS (which was mounted to the calibration hardware during the duration of the calibration).  The difference in 

the pitch measurement between the AOA and AMS packages provides an estimate of the pitch deflections induced 

on the balance and calibration hardware as a result of the applied calibration loads.  Figure 5 below shows some of 

the instrumentation (strain gages, AOA package) installed on the NTF-117S balance. 

 

     
                         a)                                                      b)                                                          c) 

Figure 5. a) AF/RM flexure beams, b) NF/PM/YM flexure beams, c) on-board AOA measurement package 
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C. Balance Standard Calibration 

The most critical portion of the balance design process is the balance calibration, which is the process by which 

known loads are applied to the balance and the measured responses from each of the measurement bridges are 

recorded.  The purpose of performing a balance calibration is to develop a mathematical model that characterizes the 

behavior of the balance. This mathematical model is used to estimate the aerodynamic loads imparted on the balance 

during the wind tunnel test.  As a general procedure, when calibrating a force balance a set of pre-determined 

independent variables (applied calibration loads) are applied to the balance, and the resulting dependent variables 

(electrical output response of each measurement bridge) are recorded.  The range of the calibration loads applied to 

the balance during the calibration process defines the ‘design space’.  Historically, the load schedule used to 

calibrate a balance (which defines the load combinations and the order that they are to be performed) has been a 

standardized process that is the same for all balance types.  NASA Langley’s traditional calibration model is based 

on a Taylor series, and is given by: 

 

                                                                                                                𝑦 = 𝛽! + 𝛽!𝑥!
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                                                                                                            (1) 

 

where k is the number of independent variables (k = 5), xi’s are the ith independent variable, and the β’s represent 

the calibration coefficients determined from a multiple linear regression procedure. For a standard six-component 

balance, there are 6 main-effect terms, 15 two-factor interactions and 6 pure quadratic terms.  The calibration 

coefficients are included within a calibration matrix, which is essentially a curve-fit to the calibration data.  Based 

on Eq. (1) above, 1 + 2k + [k(k-2)/2] calibration points are required with at least 3 unique levels of each independent 

variable in order to estimate the model terms for a full quadratic model with k number of independent variables. 

 

 When characterizing any balance, it is critical to perform a sufficient number of independent calibration loads 

such that all the model terms can be independently estimated. Each term in the mathematical model represents 

certain physical properties of the balance. The linear interactions can be attributed to machining errors, errors in both 

location and alignment of strain gages, and variations in the gage factor for the strain gages. The first-order 

interaction terms are typically associated with the magnitude of the deflections present during loading of the 

balance. Typical balance calibrations have all been conducted with only applied loads as being the calibration 

factors, but it is possible to include additional factors, such as pressure and temperature, within the calibration 

design if it is suspected that they have an effect on the response(s)
21

. 

 

The original calibration of the NTF-117S force balance involved applying different load combinations to the 

balance with dead weights (shown in Figure 6), where these dead weights are applied to precisely defined load 

points on the balance calibration hardware.  The balance is supported on the non-metric end by mechanically 

grounding it to a calibration stand, which supports the balance during the application of all calibration loads.  The 

calibration stand has actuators that allow for re-leveling the balance in both pitch and roll after each load is applied, 

to ensure that applied loads are orthogonal with the balance coordinate system before the data acquisition system 

collects the data for that load point.  For the calibration of the NTF-117S balance, 62 different loading sequences 

were performed, with each sequence containing 5 increments (0 load, 50% load, 100% load, 50% load, 0 load).  Of 

these 62 different loading sequences, combinations of single and multi-component loading were applied to the 

balance, providing a total of 310 data points to be used estimating the mathematical calibration model.   

 

Of the 310 total load points performed during the calibration, 280 points were used to build the calibration 

model, and 30 points were used as confirmation points.  The 30 confirmation points are a set of independent used to 

validate the prediction capability of the calibration model.  Each of the 62 loading sequences were performed at a 

nominal ambient room temperature.  The calibration loads are transferred through a configuration of double knife-

edge decoupling devices, which are used to minimize coupling of unwanted moments on the balance during 

calibration.  With most manual calibration systems, there are limitations that prevent being able to apply pure 

moments during the calibration.  In order to simulate applying pure moments, the long-arm calibration technique is 

used where all moments are applied to the balance by applying small magnitude loads to calibration arms that are 

relatively long.  This process helps minimize inaccuracies, and helps isolate the interaction effects.
12
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The 62 different load sequences used to calibrate the balance were 

selected to enable for exploring the entire design space capability of 

the balance. After each of the 310 calibration loads were completed 

(over the course of 5 weeks), the appropriate 280 data points were 

used to estimate the mathematical model using least squres regression.  

Once the calibration coefficients were computed from the data 

reduction process, the calibration model for each of the balance 

responses was used to back-calculate the response residuals for all 310 

data points (error in the prediction capability of the calibration 

models). 

 
 By using the calibration models to back-calculate the residuals for 

the calibration data points, the % full-scale accuracies for each 

measurement component are computed.  The calibration residuals and 

the resulting measurement accuracy are used to assess the associated measurement accuracy and uncertainty of the 

balance.  There are 3 main sources of uncertainty associated with the calibration; 1) calibration model that is created 

from the calibration data, 2) the measurement repeatability of the balance, and 3) the uncertainty of the calibration 

system (hardware, data system) used during the calibration. As seen from the Tables below, all of the individually 

computed accuracies (from the back-computed residuals) are less than 0.25% full-scale. The final calibration 

accuracies and full-scale outputs are provided shown below in Tables 2, and the calibration regression coefficients 

for each measurement component are contained within Table 3.  The accuracy quotes shown in Table 2 represent the 

prediction accuracy over the full-scale range for each component. 

 

Table 2. Primary Bridge Calibration Results 

 

P
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Component Calibration Load Range 

Full Scale 

Output 

(mV/V) 

Sensitivity 

Constant 

(lb/mV/V) 

Accuracy %F.S. 

(two-sigma) 

NF -12000 to 12000 lb 1.332 9010.86 0.05 

AF -1800 to 1800 lb 1.224 1470.4 0.14 

PM -90000 to 90000 in-lb 1.734 51900.06 0.16 

RM -669000 to 669000 in-lb 1.873 357224.4 0.12 

YM -100350 to 100350 in-lb 0.291 345046.5 0.09 

 

Table 3. NTF-117S Balance Calibration Regression Coefficients (0’s denote term removed from model 

during ANOVA) 

 
GAGE_OUT_NAME rNF rPM rYM rRM rAF 

INTERCEPT 1.60564E+02 -1.20950E+02 -1.38856E+02 -6.64028E+01 1.29521E+01 

NF (x1) 1.11025E-01 -9.68044E-04 1.42867E-04 2.80835E-04 1.28196E-04 

PM (x3) 2.95848E-05 1.92697E-02 -2.40036E-05 -2.43735E-05 -4.90413E-05 

YM (x5) -2.77010E-06 1.79854E-05 2.89201E-03 0 -9.56848E-05 

RM (x4) 3.32584E-05 -1.55666E-06 -5.14725E-06 2.79868E-03 -2.82064E-07 

AF (x2) 9.48169E-03 -3.88319E-04 5.76849E-03 -6.80751E-04 6.80862E-01 

NF*NF 0 0 0 0 0 

PM*PM 0 0 0 0 0 

YM*YM 0 0 0 0 0 

RM*RM 0 0 -3.45403E-13 0 2.21075E-12 

AF*AF 0 0 0 0 0 

NF*PM 0 0 0 0 1.57276E-09 

NF*YM 0 3.09947E-09 0 0 0 

NF*RM -5.52829E-11 0 1.90425E-11 0 0 

NF*AF 0 0 0 0 0 

PM*YM 2.86868E-10 0 0 0 0 

PM*RM 1.79898E-11 0 6.40036E-12 0 1.55642E-09 

PM*AF 0 0 0 0 0 

YM*RM -8.38589E-12 -1.34878E-10 0 0 0 

YM*AF 0 0 0 0 0 

RM*AF 0 1.43742E-08 0 0 0 

 

 
Figure 6. 5.2% NTF-117S Balance 

Calibration Setup 
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III. Circulation Control & Propulsion Simulation Testing at NTF 

D. NTF Air Station  

Recent facility modifications at the NTF have 

incorporated a high-pressure air station, which is capable 

of providing high-pressure air to semi-span models that 

are mounted to the metric end of the SMSS’s internal 

semi-span force balances.  In order to route this high-

pressure air out to the semi-span model, the NTF air 

station was designed as a dual flow air delivery system 

capable of providing two independently controlled air 

lines to the semi-span model via a set of concentric air 

lines.  These dual air-lines are coupled to the semi-span 

model via a concentric set of bellows (low & high mass-

flows), and a model interface choke plate.  Both the high 

and low flow legs of the system can provide up to 1200 

psig capability.  The high mass-flow leg of the system is 

capable of providing 0.1-20.0 lbm/sec of air flow, while 

the low mass-flow leg is capable of providing 0.1-8.0 

lbm/sec directly to the model.  The air delivery station 

provides continuous flow of dry air to the semi-span 

model.  Figure 7 depicts a schematic of the SMSS with 

the high-pressure airflow paths routed through the SMSS and out to the model. Figure 8 shows the NTF wind-tunnel 

circuit, the location of the SMSS inside the circuit, and a general representation of how the air station provides high-

pressure air to the model during testing. 

 

 
 

Figure 8. NTF Dual Flow High Pressure Air Delivery System 

 

Semi-span models interface with the SMSS by mechanical joining the model to both the model interface plate, 

and the top-hat.  The top-hat is bolted directly to the semi-span balance; therefore the balance and pressure bellows 

set are directly linked to each other through the model interface attachment.  As a result of the pressure bellows and 

balance being mechanically linked, any stiffness attributed to the internal bellows pressure can impact the 

performance by inducing both pressure and momentum tare effects.  See Figure 9 below, which shows the internal 

configuration of the SMSS and all of the important components for the scope of this report.  The newly incorporate 

air lines that are routed through the internal cavity of the balance are joined to the internal turn-table pitching 

mechanism, which allows the entire system (balance, model, internal instrumentation tube, pressure lines, bellows, 

etc) to rotate as a single unit.  

 

 
Figure 7. Schematic of NTF SMSS Flow Paths 

routed to Model 
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Figure 9. SMSS cutaway showing NTF-117S balance and pressure lines/bellows 

 

 Figure 10 below shows the external/internal (high mass-flow/low mass-flow) convoluted bellows, as designed 

for use with the high pressure air system integrated at the NTF.  The bellows are designed with the convolutes under 

the idea that each behaves as a linear spring under load with minimal stiffness so that under load the interaction of 

the bellows is minimal on any joined components (specifically to minimize the interaction effect on the 

stiffness/performance of the balance).  The internal bellows fits concentric within the eternal bellows via a slip-fit 

with o-rings, which are used to seal off the flow between the two legs.   

 

     
 

Figure 10.  Large External Bellows (left), Small Internal Bellows (right) 

 

 The inner and outer bellows have nominal lateral stiffness values of 62 lb/in and 1594 lb/in, respectively.  The 

NTF-117S balance has nominal stiffness values in the axial force and normal force planes of 533,297 lb/in and 

6,589,514 lb/in, respectively.  Assuming the internal/external bellows act in parallel with each other and the bellows 

assembly acts in parallel with the balance (as depicted in the spring/mass system in Figure 11), the contribution of 

the bellows assembly stiffness on the balance is approximately 0.310% in the axial force plane, and 0.025% in the 

normal force plane.  Based on these estimates, it was assumed that the addition of these pressure bellows would 

introduce minimally impact the stiffness and measurement output of the balance component bridges.  If necessary, 

the effects could be calibrated out with a integrated system calibration of the balance/SMSS. 

 

 
 

Figure 11. Bellows & Balance Spring/Mass system 
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E. NTF Circulation Control Testing 

An area of research that has shown increased interest in the aircraft research field is that of AFC.  AFC research 

has shown promise in its ability to increase aerodynamic performance of existing conventional aircraft designs, as 

well as leading to the development of non-conventional aircraft designs.
1
  There are many varieties of AFC, but the 

one technique that is of interest for upcoming tests at the NTF that will utilize the NTF-117S balance is the area of 

circulation control.  The concept of circulation control works by increasing the velocity of the airflow over the 

leading edge and/or trailing edge of a wing using high-pressure air that is ejected out of a set of blowing slots.  

Increasing the momentum of the airflow over the wing by introducing this high-pressure air allows for increasing the 

resulting lifting capability of the wing, which is critical during both takeoff and landing of any aircraft (research has 

also shown that circulation control techniques can assist in both drag reduction and simplified maneuvering systems 

during transonic cruise test conditions
13

).  The circulation control testing community has been pushing forward 

building their aerodynamic database, but one area of research that has not been published is circulation control data 

at actual flight Reynolds numbers, which limits the scalability of the techniques.
 

 

The NTF typically utilizes two types of models that utilize blowing, AFC & Propulsion Airframe Integration 

(PAI) models.  An example of an AFC model that was tested in NTF is the Fundamental Aerodynamic Subsonic 

Transonic Modular Active Control (FAST-MAC) model shown in Figure 12.  This model was used to characterize a 

circulation control blowing concept that focused on a high-speed jet that blows over the flap region of the wing.  The 

performance results of the FAST-MAC model are described
14

, and the highlighted issues with the blowing 

characteristics are shown in Figure 12.  The cruise performance that is highlighted in the pressure profile data shown 

in Figure 13 indicates an improvement in drag characteristics for different blowing levels by reattaching the 

boundary layer and moving the shock aft on the wing.  To quantify the drag benefit it will be necessary to validate 

the pressure data with the pressure tare corrected balance data, which prompted the necessity for performing the 

work described in detail in this manuscript.  

 

   
   a)                                                                                                b) 

Figure 12. a) The semi-span FAST-MAC model mounted in NTF, b) FAST-MAC high-lift performance at 

different blowing conditions. 

 

 
Figure 13. Surface pressure distribution for the cruise configuration of the FAST-MAC model at a Mach 

number of 0.85 and chord Reynolds number of 30x10
6
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IV. NTF-117S Pressure Tare Calibration 

F. Pressure Tare Calibration 

 As discussed, the integration of the new air delivery station and the pressure bellows linked to the metric end of 

the NTF-117S semi-span balance present more independent variables into the system that can impact the 

performance of the balance.  Initial check-loads and test data from several circulation control wind-tunnel tests 

suggests that the presence of these pressure bellows significantly impact the performance of the balance, requiring 

that the balance be calibrated as a complete system mounted inside of the SMSS.  As shown, the SMSS assembly is 

quite complex, and any attempt at assembling the balance and simulating the mounting configuration within the 

SMSS in the balance calibration lab was deemed to be too difficult, and not truly representative of the as-tested 

configuration.  Therefore, it was decided by the research team and the NTF personnel to pursue developing and 

reinforcing the capability at the facility for performing necessary calibrations on semi-span balances within the 

SMSS. 

G. Pressure Tare Calibration Hardware & Experimental Design 

For calibration applications, the limitations of the calibration apparatus cannot be ignored when developing an 

experimental design.  The most important phase of an experiment is the pre-experimental planning, where the goals, 

response variables, and input factors of the experiment are established.  Based on the objectives and possible 

outcomes of an experiment, a successful approach can be formulated. In general, most force balance characterization 

applications utilize response surface methods, either explicitly or implicitly, where the calibration system is 

reasonably well-understood and delivering a mathematical calibration model is required.  However, in instances 

where no previous system knowledge is available, a preliminary, factor-screening experiment can be conducted to 

eliminate unimportant factors before the comprehensive characterization experiment.  This approach is known as 

sequential experimentation and is a strategic and rigorous approach often used in experimental design.
15,16 

 

 During the planning phases of the NTF-117S balance pressure tare calibration, the design team designed and 

fabricated necessary calibration hardware that allowed for the loading the necessary load combinations during the 

calibration.  The required load combinations needed during the calibration were determined based on the previous 

load envelopes from both standard semi-span testing at the NTF, and from the recent circulation control testing load 

envelopes.  As with most semi-span balance and semi-span balance calibration systems, there are inherent 

limitations on what possible load combinations can be applied, due to the physical size of most of the balances.  

With semi-span testing, there are generally model/wing loading combinations that are not feasible to expect during 

typical testing (ex. +NF/-RM, -NF/+RM, +AF/+YM, -AF/-YM in combination with each other).  The Table of all 

possible loading combinations, and the cardinal angles is listed in Table 4. 

 

Table 4: Single, 2-Component, 3-Component Feasible Loading Combinations (at cardinal angles) 

 
NF Loadings AF Loadings 

Load Orientation Load Orientation 

+NF 0 deg +AF +90 deg 

+NF/+PM 0 deg +AF/+PM +90 deg 

+NF/-PM 0 deg +AF/-PM +90 deg 

+NF/+RM 0 deg +AF/-YM +90 deg 

+NF/+PM/+RM 0 deg +AF/+PM/-YM +90 deg 

+NF/-PM/+RM 0 deg +AF/-PM/-YM +90 deg 

-NF 180 deg -AF -90 deg 

-NF/+PM 180 deg -AF/+PM -90 deg 

-NF/-PM 180 deg -AF/-PM -90 deg 

-NF/-RM 180 deg -AF/+YM -90 deg 

-NF/+PM/-RM 180 deg -AF/+PM/+YM -90 deg 

-NF/-PM/-RM 180 deg -AF/-PM/+YM -90 deg 

  

 Prior to performing the calibration, a series of experiments were run while varying the applied static pressure 

loadings on the pressure bellows and the loadings on the balance.  During these initial experiments it became evident 

that while varying the applied static pressure on the also affected the internal temperature, which significantly 

influenced the output of the balance measurement bridges.  Similar behavior revealing significant temperature 

swings on the bellows during initial wind-tunnel tests using the NTF-117S and the convoluted pressure bellows 

assembly was observed prior to the initial pressure tare calibration of the balance (during the wind-tunnel test the 
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range of temperatures observed at the pressure bellows was approximately 15 to 85°F).  As a result of these 

observations, it was decided to add the average bellows temperature sate as an additional calibration factor to the 

experimental calibration design.   

 

 The response variables are the parameters that are measured during an experiment.  In force balance calibration, 

the response variables are the strain-gage outputs and are shown in Table 5. The input factors can be divided into 

four types: controlled design factors, held-constant factors, uncontrolled factors, and nuisance factors.  Controlled 

design factors are varied during the experiment over specified ranges to study their effects on the response variables.  

The controlled design factors for this calibration are shown in Table 6. Held-constant and uncontrolled factors are 

not studied during an experiment because the effects on the responses due to these factors are small and assumed to 

be negligible.  Nuisance factors can be controlled or uncontrolled but their effect on the responses may not be small.  

While these nuisance factors may not be of interest, it should be recognized that they are present, and precautions 

should be taken to limit their effect.  Blocking is a useful technique in limiting the effect of nuisance factors.
15,16 

 

Table 5. Calibration Response Variables 
 

Response Response, Units Nomenclature 

1 Normal Force Bridge Output, mV/V rNF 

2 Axial Force Bridge Output, mV/V rAF 

3 Pitching Moment Bridge Output, mV/V rPM 

4 Rolling Moment Bridge Output, mV/V rRM 

5 Yawing Moment Bridge Output, mV/V rYM 

 

Table 6. Calibration Design Factors 
 

Factor Design Factor Nomenclature Range 

1 (x1) Normal Force NF -12000 to 12000 lbs 

2 (x2) Axial Force AF -1800 to 1800 lbs 

3 (x3) Pitching Moment PM -90000 to 90000 in-lbs 

4 (x4) Rolling Moment RM -669000 to 669000 in-lbs 

5 (x5) Yawing Moment YM -110000 to 110000 in-lbs 

6 (x6) Bellows Average Pressure BelP 14.7 to 1150 psia 

7 (x7) Bellows Average Temperature BelT 15 to 85 °F 

 

 Prior to performing the calibration, some preliminary testing was conducted to determine the amount of time 

required to achieve a stable bellows temperature, while also maintaining a stable temperature level on the balance.  

During these tests a set of vortex coolers were used to decrease the bellows temperature from ambient to 

approximately 15°F. The vortex cooler system used required approximately 8-9. Due to the significant amount of 

time required to change the bellows temperature, restricted randomization was employed. 

 

 In order to accommodate this practical execution restriction, the bellows temperature was set and held constant 

while the other six factors were varied randomly.  This type of experimental design is known as a split-plot design 

(SPD).  The ideology and concepts of a SPD are attributed to their application in agricultural experiments.
17

 Hard-

to-change factors were applied over large plots of land and were conveniently called whole plots (WP).  The easy-

to-change factors were crops (and other variables) within a large plot of land and became known as subplots (SP).  

Temperature was the only WP factor in the calibration while the other factors were subplot factors.  By design, 

every WP in the calibration contained the same subplot design, which is known as a crossed design.  These types of 

SPD’s have convenient statistical properties, such as equivalent estimation.  However, with any SPD, the error 

structure must be considered in the analysis.
18-20 

 

The general form of the mathematical model for a SPD can be written as: 

 

                                                                                 𝐲 = 𝐗𝜷 + 𝛅 + 𝛆      (2) 
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Where y is a (N x w) matrix of responses, X is a (N x p) model matrix, β is a (p x w) matrix of regression 

coefficients, δ is a (N x w) matrix of random WP errors, ε is a (N x w) matrix of random subplot errors, N is the total 

number of runs, w is the number responses, and p is the total number of terms in the model (including the intercept).  

Eq. (2) is a more flexible form of the generic linear model form, which is written as: 

 

                                                                                  𝐲 = 𝐗𝜷 + 𝜺 (3) 

 

where ε is a (N x 1) vector of random errors.  Notice the difference between eq. (2) and (3) above is the addition of 

the δ matrix for the SPD, which takes into account the random WP errors due to the WP structure of the design and 

permits correlation and nonhomogeneous variances.  Similar balance calibrations at NASA Langley Research 

Center have been performed to characterize balance system performance where restricted randomization was 

employed
21

. 

 

 In addition to building a SPD, another statistical experimental design concept employed for this calibration was 

the use of the IV-optimal design
15

.  In order to reduce the amount of required time to complete the calibration, it was 

decided to not perform a standard one factor at a time (OFAT) calibration.  In order to optimize the calibration 

design, and to minimize the number of necessary load points in order to develop the desired mathematical model, it 

was decided to develop a load schedule employing IV-optimal (integrated-variance optimal) design criteria.  

Typically in traditional experimental designs where the independent variables are un-constrained a full factorial, 

fractional factorial or response surface design would be employed allowing for estimating the desired coefficient 

terms in the mathematical model.  In the case where some factor settings are constrained, and it is desired to obtain a 

minimum data set (due to time constraints) an optimal design can be utilized.   

 

 The IV-optimal search algorithm employed seeks to minimize the average prediction variance over the set of 

points identified from the design, which is powerful in the case of a balance calibration design where the resulting 

mathematical models will be used for prediction purposes.  Given a set of independent variables and ranges for these 

variables, standard IV-optimal search algorithms will search the entire design space to determine the appropriate 

factor setting combinations that minimize the prediction variance.  Most search algorithms also provide the 

capability to provide an input list of all possible factor settings combinations, which is then used during the search.  

This capability is powerful for calibrations and setups where there are physical constraints that restrict the feasible 

setting combinations.  For the calibration of the NTF-117S balance a list of all possible load combinations was 

developed and input into the search algorithm.  Approximately 1100 points were identified in the candidate list. 

 

 Based on previous experience with similar semis-span balances, it was decided to construct an experimental 

design capable of supporting the development of a full quadratic model on all independent variables (linear terms, 

interaction terms, quadratic terms).  The supported 35-term calibration mathematical model for each strain gage 

output can be characterized as: 

 

                                                                                                                        𝑦 = 𝛽! + 𝛽!𝑥!

!

!!!

+ 𝛽!"𝑥!𝑥!

!

!!!!!

!

!!!

+ 𝛽!!𝑥!
!

!

!!!

                                                                                                            (4) 

 

Recall from the last term group in eq. (4) above that no pure quadratic term for temperature is included, as the 

original calibration design only included performing loadings at 2 levels (room and ‘cold’).  

H. Properties of Calibration Design 

Three concepts are typically emphasized and considered during the experimental design process: randomization, 

replication, and blocking.
16

 Randomization defends against systematic errors in an experiment.  Because the runs are 

executed randomly, any effects due to hysteresis, or other systematic behaviors, are minimized.  Replication 

provides information about the pure experimental error of the response variables.  For a given set of factor 

combinations that is replicated t times, then there are t-1 degrees of freedom available to estimate the repeatability, 

which is an important statistic in any calibration.  Finally, as mentioned earlier, blocking is a preventative technique 

that is used to minimize the effect of any lurking variables in the experiment.  Blocks are organized such that 

orthogonality of the factors is retained in the design matrix.  Orthogonality, from the regression perspective, ensures 

linear independence between terms in the mathematical model.  
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When developing the experimental design for characterizing the NTF-117S force balance, several important 

features were incorporated.  These experimental design features were directly related to addressing the specific 

experimental objectives.  Some of the features included in the NTF-117S design were
16

: 

 

‒ Sufficient number of data points throughout calibration design space 

‒ Precise model coefficient estimates 

‒ Favorable prediction variance over calibration design space 

‒ Robust calibration 

‒ Execution efficiency 

 

As with any experimental design, the quality of the NTF-117S experimental design was evaluated prior to 

executing the calibration. The variance inflation factor (VIF) is one metric for assessing the quality of the 

experimental design.  It is a measure of the multicollinearity, or linear dependency, in the regressor variables.  The 

VIF is calculated as: 

 

 VIF 𝛽 = diag 𝐑
!
𝐑

!!  (5) 

 

where R is the correlation matrix for the design.
22

 For completely orthogonality, (R’R) = I, where I is the identity 

matrix.  It is a generally accepted in the balance community to set the upper limit of 5-10 on the VIF.
23,24

 The 

presence of multicollinearity within a linear regression directly impacts the precision in which regression 

coefficients can be estimated, so any values of VIF greater than 10 indicates possible flaws within the experimental 

design.  

 

The standard error of prediction, or prediction variance, is a computed value that provides a estimate on the 

quality of the predicted responses, based entirely on the experimental design.  Given a particular experimental 

design, the prediction variance is calculated as 

 

 Var 𝑦 𝑥! = 𝜎
!
𝑥!
!
𝐗
!
𝐗

!!
𝐱!  (6) 

 

where x0 represents the location of a point within the design space.  Essentially, the variance is a scale factor for the 

prediction variance.  For a SPD, Eq. 6 becomes 

 

 Var 𝑦 𝑥! = 𝐱!
!
𝐗
!
𝚺
!!
𝐗

!!
𝐱! (7) 

 

Response surface plots are an efficient method to check the prediction variance of a design.  Ideally, the surface 

should be flat, which signifies constant prediction properties across the entire design space of the balance.   

 

Table 7 shows the identified loading combinations, with a descriptor in the right hand column distinguishing 

points used to build the calibration models (design points) and points used to validate the models (confirmation 

points). A total of 53 points were identified (28 points used to build models, 5 to estimate LOF, 15 replicates for 

estimation of pure error, and 5 center points to test/detect curvature at the center of the design space).  A unique set 

of confirmation points were selected for each WP by selecting points from the candidate list not selected to build the 

calibration models.  In Table 7 confirmation run points 54 thru 64 were performed during the first WP at room 

temperature, and used for model validation purposes. 

 

 While the initial load schedule was designed using all achievable load points as a candidate set for the IV-

optimal algorithms to generate the required number of loadings required for an optimal calibration, it was decided to 

slightly augment the design with additional points for added benefit.  As will be discussed in the calibration 

execution section, instead of simply running the load schedule in Table 7 for each WP, it was decided for the first 

calibration to transform each run identified in Table 7 into a traditional incremental load series performed during 

most traditional balance calibrations.  It was decided to pursue this course for the primary reason that since a 

significant amount of setup time is required to get to each set point (applied pressure, temperature, manually moving 

weight basket to each position) it was advantageous to acquire additional data points for the calibration, and no 

significant increase in time required to collect those additional data points.  It should be noted that there implications 
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with performing each load series in this manner, as there is a certain level of correlation that will exist between runs 

purely attributed to the sequential nature of the pressurization/applied loadings in each series. 

 

Table 7. Calibration Load Schedule Design (Room Temperature Only) 

 
Run	  Point	   NF,	  x1	  (lb)	   AF,	  x2	  (lb)	   PM,	  x3	  (in-‐lb)	   RM,	  x4	  (in-‐lb)	   YM,	  x5	  (in-‐lb)	   Pressure,	  x6	  (psi)	   Point	  Type	  

1	   866	   75	   0	   56001	   -‐55750	   1150	   design	  

2	   0	   40	   0	   4563	   -‐275	   575	   design	  

3	   866	   500	   0	   56001	   -‐55750	   575	   design	  

4	   866	   75	   -‐7500	   56001	   -‐55750	   1150	   design	  

5	   866	   75	   0	   56001	   -‐55750	   1150	   design	  

6	   966	   -‐259	   0	   0	   0	   575	   design	  

7	   -‐3000	   0	   -‐22500	   -‐168002	   0	   1150	   design	  

8	   1992	   174	   -‐15000	   112001	   -‐111500	   0	   design	  

9	   1992	   174	   0	   112001	   -‐111500	   1150	   design	  

10	   1932	   78	   -‐15000	   112001	   -‐111500	   0	   design	  

11	   -‐996	   87	   7500	   -‐56001	   -‐55750	   0	   design	  

12	   11954	   -‐1046	   -‐90000	   0	   0	   0	   design	  

13	   -‐866	   -‐75	   0	   -‐56001	   55750	   1150	   design	  

14	   866	   75	   0	   56001	   -‐55750	   1150	   design	  

15	   -‐87	   149	   7500	   56001	   55750	   575	   design	  

16	   1932	   -‐78	   0	   112001	   111500	   ds	   design	  

17	   -‐12000	   0	   0	   -‐672009	   0	   1150	   design	  

18	   87	   149	   -‐7500	   56001	   55750	   0	   design	  

19	   866	   75	   0	   56001	   -‐55750	   1150	   design	  

20	   0	   40	   0	   4563	   -‐275	   575	   design	  

21	   1932	   78	   -‐15000	   112001	   -‐111500	   0	   design	  

22	   3000	   0	   -‐22500	   168002	   0	   1150	   design	  

23	   0	   40	   0	   4563	   -‐275	   575	   design	  

24	   -‐866	   500	   7500	   0	   0	   0	   design	  

25	   1992	   174	   -‐15000	   112001	   -‐111500	   0	   design	  

26	   1992	   174	   0	   112001	   -‐111500	   1150	   design	  

27	   -‐866	   -‐75	   0	   -‐56001	   55750	   1150	   design	  

28	   -‐5977	   523	   45000	   0	   0	   575	   design	  

29	   866	   75	   7500	   0	   0	   1150	   design	  

30	   966	   -‐259	   7500	   56001	   55750	   0	   design	  

31	   -‐1932	   78	   15000	   -‐112001	   -‐111500	   1150	   design	  

32	   -‐12000	   0	   90000	   0	   0	   575	   design	  

33	   866	   75	   7500	   0	   0	   1150	   design	  

34	   9000	   0	   67500	   0	   0	   0	   design	  

35	   866	   75	   -‐7500	   56001	   -‐55750	   1150	   design	  

36	   1992	   174	   -‐15000	   112001	   -‐111500	   0	   design	  

37	   -‐866	   75	   -‐7500	   0	   0	   1150	   design	  

38	   0	   -‐800	   6000	   0	   0	   1150	   design	  

39	   866	   500	   0	   56001	   -‐55750	   575	   design	  

40	   -‐87	   -‐996	   -‐7500	   56001	   55750	   1150	   design	  

41	   1932	   78	   -‐15000	   112001	   -‐111500	   0	   design	  

42	   866	   75	   0	   56001	   -‐55750	   1150	   design	  

43	   -‐866	   75	   -‐7500	   0	   0	   1150	   design	  

44	   -‐12000	   0	   -‐90000	   -‐672009	   0	   0	   design	  

45	   0	   40	   0	   4563	   -‐275	   575	   design	  

46	   0	   40	   0	   4563	   -‐275	   575	   design	  

47	   -‐866	   -‐75	   0	   -‐56001	   55750	   1150	   design	  

48	   -‐5977	   523	   45000	   0	   0	   0	   design	  

49	   866	   75	   7500	   0	   0	   1150	   design	  

50	   -‐12000	   0	   -‐90000	   0	   0	   575	   design	  

51	   12000	   0	   0	   672009	   0	   575	   design	  

52	   -‐12000	   0	   90000	   -‐672009	   0	   0	   design	  

53	   5977	   -‐523	   45000	   0	   0	   575	   design	  

54	   0	   -‐800	   0	   0	   44600	   0	   confirmation	  

55	   0	   -‐800	   -‐6000	   0	   44600	   350	   confirmation	  

56	   0	   -‐800	   6000	   0	   44600	   0	   confirmation	  

57	   -‐87	   -‐796	   6000	   -‐44600	   44600	   0	   confirmation	  

58	   -‐70	   -‐796	   -‐6000	   -‐44600	   44600	   150	   confirmation	  

59	   -‐12000	   0	   -‐90000	   -‐669000	   0	   900	   confirmation	  

60	   -‐5977	   523	   -‐45000	   0	   0	   800	   confirmation	  

61	   87	   996	   7500	   44600	   44600	   0	   confirmation	  

62	   939	   342	   -‐7500	   55750	   -‐55750	   350	   confirmation	  

63	   1992	   174	   -‐15000	   0	   0	   0	   confirmation	  

64	   5977	   -‐523	   -‐45000	   0	   0	   1150	   confirmation	  
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 An example of an as-run unpressurized and pressurized load series are shown in Table 8.  Notice that in the 

unpressurized load series there is start/end un-loaded state, and the middle increment is the full load combination 

based on the run/point identified from the optimal design defined in Table 7.  The pressurized style load series have 

an initial un-loaded state, the static pressure set point is then applied to the inner/outer bellows while the balance is 

not loaded with any force/moments, then after the static pressure settles out the balance is physically loaded to 

achieve the desired resultant forces/moments (as identified in the optimal load schedule in Table 7).  These 

additional data points aided in simplifying the data analysis procedures (simplified the weight tare correction 

computations, since each series has an un-loaded reference state), and also yielded additional data/information 

during this initial exploratory calibration, which aided in better assessment of the system calibration.  It should be 

noted that the augmentation of the optimal design to incorporate each load into a incremental series as identified 

above require minimal additional effort/time, since the majority of the required time for each load goes into 

manually moving the weight basket from point to point in between each different load combination. 

 

Table 8: Example As-Run Load Series (Unpressurized & Pressurized) 

 

	  	   	  	   Resultant	  Forces/Moments	   	  	   	  	  

U
n
p
re
ss
u
ri
ze
d
	  

Applied	  Load	   NF	  (lb)	   AF	  (lb)	   PM	  (in-‐lb)	   RM	  (in-‐lb)	   YM	  (in-‐lb)	  
BelP_Low	  

(psi)	  

BelP_High	  

(psi)	  

0	   0	   0	   0	   0	   0	   0	   0	  

9000	   8966	   -‐784	   -‐67500	   0	   0	   0	   0	  

0	   0	   0	   0	   0	   0	   0	   0	  

	  	  
	   	   	   	   	   	   	  

	  	  

P
re
ss
u
ri
ze
d
	   0	   0	   0	   0	   0	   0	   0	   0	  

0	   0	   0	   0	   0	   0	   1150	   1150	  

6000	   5977	   -‐523	   -‐45000	   0	   0	   1150	   1150	  

0	   0	   0	   0	   0	   0	   1150	   1150	  

0	   0	   0	   0	   0	   0	   0	   0	  

 

 

 Table 9 contains detail on the number of loadings performed during each WP or temperature setting.  Each WP 

contained a set number of calibration runs, used for building the models, and a certain number of confirmation 

points used for model validation purposes.  At the end of the calibration a set of loadings were performed at a mid-

level temperature of approximately 45°F, and these data were used to test the models for prediction capability 

purposes at a temperature level not used during the calibration.  Note that WP1 contains significantly more 

calibration runs than the other WP’s, this was due to the fact that during the loadings a certain set of single 

component loadings were performed at each cardinal angle, to establish a set of baseline performance criteria for the 

simplest possible loading conditions.  

 

Table 9: Execution of Experimental Design 

 

	  	   WP	  1	   WP	  2	   WP	  3	   WP	  3	  
Mid-‐Temperature	  

Confirmation	  Runs	  
Total	  

Calibration	  Runs	   278	   213	   221	   215	   0	   927	  

Confirmation	  Runs	   45	   41	   27	   37	   38	   188	  

Total	  Runs	   323	   254	   248	   252	   38	   1115	  

Temperature,	  °F	   77	   20	   77	   20	   45	   -‐	  

Pressure	  Levels	  	   3	   3	   3	   3	   3	   -‐	  

 

I. Calibration Hardware Design & SMSS Configuration 

 The design of the load schedule and the mechanical design of the calibration hardware used to calibrate the 

balance were conducted in parallel.  During this process all of the possible load combinations (as shown in Table 4) 

were determined based on the feasible loading conditions expected during testing, and then the hardware was 

designed to set the desired loads.  Due to the high load capacity of the balance, it was critical to design the 

calibration system to provide the correct load points, while keeping in mind the fixture needed to have sufficient 

stiffness in order to minimize deflections under load.   
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 The calibration fixture was designed to be as lightweight yet stiff as possible, and it incorporated a 

bearing/bushing that allowed the fixture to rotate relative to the balance.  The addition of this bushing design into the 

fixture allows the fixture to stay vertically aligned with gravity, while the balance is pitched inside of the SMSS.  

This feature allows the balance to be pitched to any desired angle during the calibration, which is extremely 

desirable in that it is best to calibrate the balance where each of the measurement components are loaded 

simultaneously at various factor settings that lie within the design space of the balance.  The ability to apply multi-

component loadings to the balance allows the ability to design a more efficient calibration load schedule that allows 

for exploring the balances design space, and provides the ability to estimate the interaction terms with more power. 

 

 Several angle measurement system (AMS) packages were integrated into the design of the fixture at different 

locations, which were used to measure and correct for any deflections and relative slipping between the balance and 

the fixture.  In order to secure the fixture to the balance a friction joint was used to lock the fixture to the metric end 

of the balance.  The calibration fixture is shown in Figure 14.  Figures 15 thru 16 show the calibration fixture 

mounted to the balance, where the balance is mounted inside of the SMSS.  The first 3-axis AMS package was 

mounted to a flat on the top of the bushing shaft (used to measure the balance metric end pitch/roll angles).  The 

second 3-axis AMS was mounted to the upper flat surface on the vertical plate, and was used to measure any relative 

pitch slip between the fixture and the metric end of the balance. The last 3-axis AMS was mounted at different 

locations on the base of the fixture (used to measure deflections at the point of load application, to allow for 

correcting the applied loads for any deflections that cause the load point to move from the nominal position). 

 

  

 
                                             a)                                                                                         b) 

Figure 14. Calibration Fixture, a) Mounted to Balance in the stand, b) Schematic 

 

 Figure 13 shows the configuration of the calibration load fixture, the locations of the AMS packages, and 

identified the locations of the 6 load points.  Load points 1 thru 3 are located at the balance moment center (BMC), 

where point 2 is directly at BMC, points 1 and 3 are forward and aft of BMC, respectively.  Applying a load at point 

2, with the balance in the –NF position (–NF down) would result in a ‘pure’ –NF being applied to the balance.  

Applying a load at point 1 in the –NF position would result in a –NF/–PM load combination (point 3 would result in 

a –NF/+PM load combination).  Load points 3 thru 6 are located at a station offset from BMC, providing the other 

possible combinations with the balance in the –NF orientation (point 4 = –NF/–PM/–RM, point 5 = –NF/–RM, point 

6 = –NF/+PM/–RM).  By rotating the balance through +/- 180 degrees, nearly any possible single or multi-

component load combination can be achieved, except for combinations previously discussed. 

 

 The NTF SMSS is a highly integrated unit, which is composed of several sub-systems, listed below which are 

used during all semi-span testing at the facility.  

 

1. External Semi-Span balance 

2. Interface with high-pressure air station, and all routing of high-pressure air to semi-span models 

3. Instrumentation interface between test model and facility DAS 

4. Pitching mechanism used to pitch model during testing 
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5. Balance heater controls & recirculation system for controlling balance temperatures at elevated 

temperatures (approximately 100 °F) during testing in tunnel 

 

 As seen in Figure 15, the high-pressure air is routed into the rear of the SMSS, down the center of the 

mechanism, through the balance and interfaces with the pressure bellows assembly forward of the balance.  During 

testing and calibration of the balance, a model/calibration interface plate is fastened to the top-hat interface, and the 

bellows are then fastened to this model/calibration interface plate.  As a result of this assembly configuration, any 

stiffness imparted by the bellows (due to pressurization) will directly be seen by the balance, therefore requiring the 

balance to be calibrated as a system assembly for proper characterization. 

 

 
Figure 15: Cross Section of SMSS and Balance Calibration Assembly (SMSS stand not shown) 

  

 Figure 16 shows a close-up cross-section view of the balance/calibration fixture interface, showing the highly 

complex configuration of the different internal components of the SMSS, and how the different component inside 

the SMSS interact with the balance during operational use.  While the inner/outer pressure bellows were originally 

designed with convoluted sections to minimize introduction of any stiffness into the system, it is clear that the 

bellows are an integrated part of the system, and any non-ideal behavior of the bellows under load (from balance or 

applied pressure) can directly influence how the balance behaves.  There are multiple joints in between the grounded 

end of the balance and the calibration fixture, each of which are designed to minimize any relative motion between 

the two joined components. 

 

 
 

Figure 16: Cross Section of SMSS and Balance Calibration Assembly 
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J. Calibration Setup & Execution 

 As discussed, the calibration was broken into WP’s due to the fact that the time required to reach a desired point 

takes 8-12 hours.  While at each WP temperature, the various load combinations for identified in Table 7 were 

completed by varying the angle of the balance, and the applied forces/moments/bellows pressures.  In order to 

physically apply the forces/moments to the balance, it was required to move a weight stack to different points on the 

calibration fixture (to be described in the next section discussing the calibration fixture design), with the weight 

stack containing 12,000 lb of lead weights.  Moving the 12,000 lb weight stack from one position to another requires 

manually pushing it, requiring several technicians.   

 

      
                                                      a)                                                                             b) 

Figure 17. Model Preparation Area, a) Air Cart Configuration, b) Vortex Cooler Configuration 

 

 In order to set the applied static pressure to the internal bellows, the NTF routed a high-pressure airline from the 

air-station in to the MPA where a separation high-pressure air cart was designed with various pressure relief valves, 

gauges, and valves to allow for independently applying desired pressures to both the pressure bellows and vortex 

coolers (used to set/control bellows temperatures).  Figure 17 shows the high-pressure air-cart configuration 

developed in the MPA, allowing for localized pressure changes during the calibration, and allowing for 

independently varying the applied static pressure in each bellows.  In order to achieve the desired bellows 

temperature setting, the facility incorporated a duel vortex cooler/tube system, which uses shop air pressure to drive 

the vortex coolers/tubes.  The vortex coolers are mechanical devices that separate an incoming compressed gas (in 

our case shop air) into hot and cold air streams.  

 

 The ‘cold’ air side of the vortex cooler was routed through instrument passages in the fixture/top-hat interface 

assembly, and into the internal cavity of the balance where the bellows are located.  The lines were routed such that 

the ‘cold’ air lines from the vortex coolers were directed at the flange of the bellows directly fastened to the inner 

surface of the top-hat interface (where the bellows are capped off), allowing thermal conduction from one side to the 

other, thus cooling the bellows.  The conduction of the temperature through this assembly resulted in a longer 

duration for achieving set points, but resulted in a more stable temperature setting once achieved.  Prior to 

installation of the calibration fixture the flanges and outer convolutes of the outer bellows were instrumented with a 

series of thermocouples, allowing for the temperature state of the outer bellows to be monitored/recorded during 

calibration. 

 

Prior to performing the calibration bounds were set on the set points for the bellows pressure and bellows 

temperature, in order to establish an acceptable range in which to target the defined set points.  The bellows pressure 

were measured at the back of the SMSS, where the high-pressure air lines from the air cart are connected into the air 

supply flanges.  The pressure sensors have a measurement accuracy of +/- 0.5 psia, and the set point acceptable 

range during the calibration was set to +/- 5 psia (opened up range to account for initial drift during settling time).  A 

total of seven type K thermocouples were instrumented on the bellows (three on the flange, 4 on the convolute 

section), with each having a nominal measurement accuracy of +/- 0.5°F.  The desired range of the bellows 

thermocouple setting once the set point was reached was +/- 2°F.  During the course of the calibration it was 

observed that the bellows temperature was unstable when under the influence of applying a static pressure to the 

bellows.   
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When pressurizing the bellows to any pressure level above approximately 200 psia, it was observed that the 

temperature state of the bellows (both convolutes and flange temperatures) increased outside of the nominal noise 

floor, and the magnitude of the temperature ‘spike’ varied between all the instrumented locations.  Typically this 

initial temperature spike due to the bellows pressurization was on the order of 1-4°F when the bellows was initially 

at room temperature, while the spike was on the order of 3-12°F when the bellows was initially at the ‘cold’ 

temperature set points.  This observation is critical, as it required varying amounts of time between data collection 

depending on the temperature state of the bellows.  While calibrating the system at room temperature, once the 

bellows was pressurized to its set point there was a period of 10-15 minutes required for the bellows temperature to 

stabilize to a point where the initial gradient of the temperature spike leveled out.  The time required for the bellows 

temperature to stabilize when the bellows was initially at a ‘cold’ state required 20-30 minutes between the initial 

pressurization and the start of data collection. 

 

 

 
                                               a)                                                                                         b) 

Figure 18. BelP  & BelT time-history plots for a) Room & b) Cold Temperature Loadings  

 

 The temperature instability of the bellows while pressurizing the bellows required more time required per data 

point collected, and also introduced the realization that after allowing the bellows temperature to stabilize it never 

returned back to its initial start point (the temperature state observed prior to pressurizing the bellows).  Since the 

calibration models are being developed as continuous functions, the critical feature is that the actual factor settings 

be measured, which was achieved during this calibration.  The only complication presented by this temperature 

instability is the fact that the replicated load points within the design are never going to truly be replicates.  While 

the measured factor settings (primarily the average bellows temperature) are relatively close within the replicated 

settings, they will have a magnitude of induced error due to the fact that the temperature can not be controlled to the 

point where the set point can be accurately set for these replicated points. Figure 18 plots out the applied bellows 

pressures and temperature measurements of the bellows during both room and ‘cold’ temperature loadings during 

the calibration.  As seen from the figure, every time time the bellows is pressurized each of the temperature sensors 

on the bellows sees an immediate spike, and then an exponential decay.  The nature of the bellows to not return back 
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to its original temperature state is clearly seen in Figure 18a, as the temperature state trends such that the bellows 

heats up over the course of the calibration. 

K. Pressure Tare Calibration Results & Analysis 

 At the conclusion of the calibration the collected responses (measurement bridge outputs) and the theoretical 

applied loads were tabulated and analyzed.  Typical analysis for most balance calibrations requires computing the 

tare weight contribution during each load point in the calibration (this is done through an iterative process), and then 

statistically analyzing the tare corrected loads and responses for each calibration load.  The analysis consists of 

performing statistical tests on the significance of each regression coefficient in the desired model.  It should be noted 

here that since the experimental load schedule design was constructed as a nearly crossed design, it is assumed that 

the equivalency property holds and the ordinary least squares (OLS) approach is appropriate for estimating the 

model coefficients for each response.  While this is true, it should be noted that since the experimental design was 

constructed as a SPD design, applying model reduction techniques in conjunction with OLS does not take into 

consideration the estimation of the correlation among the observations/responses.  For this initial assessment model 

reduction was employed while using OLS, assuming the data sets as complete randomized design (assuming no 

restriction on the randomization), and the consequences of applying this method were assumed to be minimal when 

quoting the final back-computed residual accuracies.  The author acknowledges and accepts the consequences 

employed for this initial assessment. 

 

 Table 10 below shows the statistically significant model terms remaining after the analysis of variance 

(ANOVA) and removing any non-significant terms (level of significant, alpha = 0.01 for this analysis).  The terms 

remaining in each model after the model reduction are indicated by 1’s in the table, and 0’s represent all non-

significant terms.  As observed from Table 10, the intercept terms were included for each model.  Since the separate 

WP’s were combined, the final models include linear and two-factor combinations involving the temperature factor 

for each measurement response.   

 

Table 10: Statistically Significant Model Terms (0 = not significant, 1 = significant) 

 
GAGE_OUT_NAME rNF rPM rYM rRM rAF 

INTERCEPT 1 1 1 1 1 

NF (x1) 1 1 1 1 1 

PM (x3) 1 1 1 1 1 

YM (x5) 0 1 1 1 1 

RM (x4) 1 1 1 1 1 

AF (x2) 1 1 1 0 1 

BelP (x6) 1 1 1 1 1 

BelT (x7) 1 1 1 1 1 

NF*NF 0 1 0 0 0 

PM*PM 1 0 1 1 0 

YM*YM 0 0 1 1 0 

RM*RM 0 0 0 1 0 

AF*AF 0 0 0 0 0 

BelP*BelP 1 0 1 0 1 

NF*PM 0 1 1 0 1 

NF*YM 0 0 0 0 0 

NF*RM 0 0 0 0 0 

NF*AF 0 0 1 0 0 

NF*BelP 1 0 1 0 1 

NF*BelT 0 1 1 1 1 

PM*YM 0 0 0 0 0 

PM*RM 0 1 1 0 1 

PM*AF 0 0 0 0 0 

PM*BelP 0 0 0 0 1 

PM*BelT 1 0 0 0 0 

YM*RM 0 0 0 0 0 

YM*AF 0 0 0 0 1 

YM*BelP 0 0 0 1 0 

YM*BelT 0 0 0 1 0 

RM*AF 0 0 1 0 0 

RM*BelP 0 0 1 1 0 

RM*BelT 0 0 0 0 0 

AF*BelP 0 0 1 0 1 

AF*BelT 1 1 1 0 1 

BelP*BelT 0 0 1 0 1 
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 Table 11 below reveals the final regression coefficient matrix (RCM) after performing the analysis.  The 

coefficients are shown in engineering units, not in a coded form.  This RCM expresses the bridge outputs as 

functions of the applied factor settings
25

.  This global regression is performed using the applied loads (factors) as the 

independent variables, and the voltage responses from the balance measurement bridges as the dependent variables.    

While this RCM is important, when the balance is delivered to the facility for use during testing it is used in a 

manner in which the bridge responses are the independent variables, and the loads computed using the RCM are the 

dependent variables.  As a result of this, it is critical to transform the RCM into what is known as the data reduction 

matrix (DRM)
21,25

.  The balances end function is to measure forces/moments as a function of the measured bridge 

responses, therefore it is necessary to perform an iterative computation procedure in order to transform the RCM 

into the DRM.  Detail on these computations, and implementation at the facility will be described in the next 

section. 

 

Table 11: NTF-117S Pressure Tare Calibration Regression Coefficients 

 
GAGE_OUT_NAME rNF rPM rYM rRM rAF 

INTERCEPT 1.61727E+02 -1.24569E+02 -1.39605E+02 -6.35135E+01 2.18983E+01 

NF (x1) 1.10958E-01 -8.61028E-04 7.86034E-05 8.04556E-04 1.45923E-04 

PM (x3) 7.63063E-06 1.90528E-02 -2.12038E-05 -2.52789E-05 -1.17604E-05 

YM (x5) 0 -2.35561E-05 2.88012E-03 9.55517E-05 6.90880E-05 

RM (x4) 5.97836E-06 5.28222E-08 -6.55755E-06 2.76258E-03 -2.61533E-06 

AF (x2) 1.12074E-02 -2.30562E-04 5.09453E-03 0 6.56795E-01 

BelP (x6) -2.17716E-02 -9.99133E-04 2.40943E-05 -1.22247E-02 -6.34672E-03 

BelT (x7) -5.08414E-03 6.94177E-03 -6.85808E-04 1.38419E-03 -1.47881E-02 

NF*NF 0 1.36242E-08 0 0 0 

PM*PM -3.00296E-10 0 -4.29171E-11 -2.10387E-10 0 

YM*YM 0 0 -3.77811E-11 4.52053E-10 0 

RM*RM 0 0 0 4.43658E-12 0 

AF*AF 0 0 0 0 0 

BelP*BelP -3.42372E-06 0 -3.80904E-07 0 5.50889E-06 

NF*PM 0 3.42919E-09 -9.55530E-10 0 -8.88327E-09 

NF*YM 0 0 0 0 0 

NF*RM 0 0 0 0 0 

NF*AF 0 0 -1.44288E+01 0 0 

NF*BelP -3.99136E-07 0 -3.98825E-08 0 4.86459E-07 

NF*BelT 0 -6.29626E-06 8.73617E-07 -3.51847E-06 1.25740E-06 

PM*YM 0 0 0 0 0 

PM*RM 0 -6.43266E-11 4.22236E-11 0 2.80147E-10 

PM*AF 0 0 0 0 0 

PM*BelP 0 0 0 0 -5.45154E-08 

PM*BelT 4.04374E-07 0 0 0 0 

YM*RM 0 0 0 0 0 

YM*AF 0 0 0 0 -7.60783E-09 

YM*BelP 0 0 0 3.41352E-08 0 

YM*BelT 0 0 0 -3.32922E-06 0 

RM*AF 0 0 4.22268E-09 0 0 

RM*BelP 0 0 9.36478E-10 -4.48058E-09 0 

RM*BelT 0 0 0 0 0 

AF*BelP 0 0 -9.47774E-08 0 -5.37341E-06 

AF*BelT -3.01819E-05 -7.46821E-06 1.01104E-05 0 2.30568E-04 

BelP*BelT 0 0 1.463930-5 0 -1.75377E-04 

 

 

 Table 12 below expresses the regression coefficients from Table 11 in terms of percent of full-scale effect, based 

on the full-scale load component for each term.  It is useful to look at the percent contribution of each term both for 

diagnostic purposes, and to determine which terms are the most dominant in each model.  For the rNF bridge, the 

NF coefficient has a 100% full-scale contribution, as would be expected because the balance is primarily a linear 

device, so the linear NF term should be dominant.  Also, notice the linear BelP model term for the rNF bridge, it has 

a -1.96% contribution within the model of the response, indicating that the influence of the bellows pressure on the 

behavior of the rNF response is significant, and relatively large compared to other interaction terms.  Many of the 

BelP and BelT model terms for each response are significant, revealing that the addition of the bellows into the 

system has an effect on the overall performance characteristic of the balance.  While ideally it would be preferred 

for the introduction of the bellows to have zero influence on the balance, these results show that the influence is 

significant, and performing this calibration was necessary in order to properly characterize the balance/SMSS 

integrated system. 
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Table 12: Percent of Full-Scale Effects for Model Terms 

 
	  	   rNF rPM rYM rRM rAF 

GAGE	  OUT	  NAME	   %	  FS	  Effect	   %	  FS	  Effect	   %	  FS	  Effect	   %	  FS	  Effect	   %	  FS	  Effect	  

INTERCEPT	   12.15 -7.27 -44.07 -3.44 1.85 

NF	  (x1)	   100.00 -0.60 0.30 0.52 0.15 

PM	  (x3)	   0.05 100.00 -0.60 -0.12 -0.09 

YM	  (x5)	   0.00 -0.15 100.00 0.57 0.64 

RM	  (x4)	   0.30 0.00 -1.38 100.00 -0.15 

AF	  (x2)	   1.52 -0.02 2.89 0.00 100 

BelP	  (x6)	   -1.96 -0.07 0.01 -0.79 -0.64 

BelT	  (x7)	   -0.03 0.03 -0.02 0.01 -0.1 

NF*NF	   0 0.11 0 0 0 

PM*PM	   -0.18 0 -0.11 -0.09 0 

YM*YM	   0 0 -0.14 0.30 0 

RM*RM	   0 0 0 0.11 0 

AF*AF	   0 0 0 0 0 

BelP*BelP	   -0.37 0 -17.00 0 0.67 

NF*PM	   0 0.22 -0.33 0 -0.81 

NF*YM	   0 0 0 0 0 

NF*RM	   0 0 0 0 0 

NF*AF	   0 0 -0.44 0 0 

NF*BelP	   -0.43 0 -0.18 0 0.59 

NF*BelT	   0 -0.35 0.26 -0.18 0.1 

PM*YM	   0 0 0 0 0 

PM*RM	   0 -0.23 0.80 0 1.43 

PM*AF	   0 0 0 0 0 

PM*BelP	   0 0 0 0 -0.5 

PM*BelT	   0.22 0 0 0 0 

YM*RM	   0 0 0 0 0 

YM*AF	   0 0 0 0 -0.13 

YM*BelP	   0 0 0 0.24 0 

YM*BelT	   0 0 0 -1.59 0 

RM*AF	   0 0 1.61 0 0 

RM*BelP	   0 0 0.24 0 0 

RM*BelT	   0 0 0 0 0 

AF*BelP	   0 0 -0.06 0 -0.98 

AF*BelT	   -0.33 -0.06 0.46 0 2.81 

BelP*BelT	   0 0 0.44 0 -1.42 

 

 After constructing the models, each was assessed by back-computing the residuals (difference between applied 

theoretical load and computed load by passing the responses through the RCM) and investigating the residual plots 

for each response.  The traditional method for computing balance accuracy is to computed the residuals, and 

construct a two-sigma bound on each response based on those residuals.  Figure 18 below shows the residuals plots 

for each measurement component (computed residual as % of full-scale vs. applied load).  The horizontal dotted 

lines within each plot represent the +/- one-sigma accuracy envelope, and the red regions for rNF, rRM, and rAF 

indicate applied loadings that have a magnitude greater than 105% of the full-scale load capacity for that load 

component. 

 

  It is apparent from the residual plots that many loadings on the rNF and rAF components contain relatively high 

residual values, indicating a possible error in the theoretically applied loads during the load series.  It should be 

noted here that the residual plots in Figure 18 contain applied load factor settings that have not been corrected for 

any fixture deflections while under load.  Recall that the fixture was designed to incorporate an AMS near the region 

of load application, which was to be used to compute the deflections at the load point during each series – to this 

point the computations in the data reduction/analysis code have not been completed to correct for this.  Future 

calibrations will have this analysis module completed, and any future calibrations will implement this correction.  It 

is also worth noting again that all pressurized loadings the effect of the pressurization on the bellows resulted in a an 

increased temperature of the bellows, which did not always settle back out to the original level at the end of each 

load series.  As a result of this, the end points within each load series contained an induced error due the fact that 

this non-returning temperature shift caused small offsets in the return electrical outputs within each series.  The fact 

that the start/end un-loaded measurements within each series have an offset results in a small magnitude of induced 

error.  During data reduction the first zero in each series was used as the reference for the tare computations, future 

calibrations might involve either ignoring the final zero in each load series or averaging the start/end un-loaded 

zeros. 
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The accuracies depicted in Figure 19 are quoted as one-sigma values.  The final two-sigma values for each 

component are computed and shown in Table 13.  The accuracy for rAF is slightly higher than is typically expected 

for most traditional balance calibrations/applications, but in the case of this calibration the results in the next section 

will show drastic improvement when using this pressure tare calibration matrix as opposed to using the balance only 

calibration which was generated based on loadings of the balance outside of the SMSS. 

 

 
 

 
 

 
 

 
 

 
 

Figure 19. Load vs. Applied Load Back-Computed Residuals 
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Table 13 also included the quoted two-sigma accuracy values for each component when using the calibration 

matrix/models to estimate the independent confirmation points performed during teach WP data set, and the 

confirmation points completed at the intermediate temperature setting of approximately 45-50°F.  Using these 

confirmation points as independent validations of the resulting calibration models, the final residuals are computed 

and the two-sigma values tabulated bellows closely match those values computed from the model design point.  This 

signifies the calibration models are capable of being used to predict loadings based on input responses (bridge 

outputs) that are different from any set of responses obtained from the model design points.  This is a method 

commonly employed at NASA Langley for verifying the prediction capability of the final calibration.   

 

Table 13: Accuracy of NTF-117S Balance Responses (Model & Confirmation) 

 

  rNF rPM rYM rRM rAF 

2-Sigma, % Full-Scale, 

Model Design Points 
0.284 0.160 0.195 0.162 0.567 

2-sigma, % Full-Scale, 

Confirmation Points 
0.228 0.135 0.205 0.164 0.509 

 

L. Pressure Tare Correction Implementation at the NTF 

 As discussed in the previous section, it is required to iteratively compute the DRM in order to be able to estimate 

loads based on measured responses
25

.  The general form of the balance response calibration equation is: 

 

                                                                                 𝑅 = 𝐶!𝐹 + 𝐶!𝐹                           (8) 

 

where C1 is the squared matrix from the RCM that contains the linear 1
st
 order terms, 𝐹 is a matrix of the component 

loadings applied during the calibration, C2 is the interaction matrix portion of the RCM containing all non-linear 

terms, and 𝐹 is a matrix composed of all non-linear combinations of the component loads.  In order to use this 

equation to estimate the loads from the bridge outputs, this equation is typically solved in an iterative fashion as 

follows: 

 

                                                                          𝐹 = 𝐶!
!!
𝑅 − 𝐶!

!!
𝐶!𝐹        (9) 

 

The addition of the pressure tare and temperature tare calibration terms computed from the calibration described 

above, equation (12) is modified to include an additional set of terms to capture these pressure/temperature tare 

terms.  These additional terms involving only the pressure/temperature coefficient terms are combined in the C3 

matrix: 

 

                                                                         𝑅 = 𝐶!𝐹 + 𝐶!𝐹 + 𝐶!𝐺 (10) 

 

where 𝐺 is a matrix of pressure/temperature factor settings.  The updated equation for estimating the loads then 

becomes: 

 

                                                                𝐹 = 𝐶!
!!
𝑅 − 𝐶!

!!
𝐶!𝐹 − 𝐶!

!!
𝐶!𝐺 (11) 

 

As seen from above, since the 𝑅 and 𝐺 matrices contain both responses and applied settings that do not require 

correction as the are explicitly known, they require no iteration.  These terms can be grouped together: 

 

                                                                𝐹 = 𝐶!
!!

𝑅 − 𝐶!𝐺 − 𝐶!
!!
𝐶!𝐹 (12) 

 

Using equation (16) it is clear that the first group can be directly computed, while the second group containing 

𝐶!
!!
𝐶!𝐹 needs to be iteratively solved.  Combining the 𝐶!

!! and 𝐶!
!!
𝐶! into a single matrix construction results in 

the DRM that has been referred to.  This DRM constructed during the data calibration analysis, and then delivered to 

the wind-tunnel facility for use during testing in order to be able to directly compute measured forces/moments 

imparted on the balance by measuring the bridge voltage responses. 
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 Traditionally at NASA Langley a standard 2
nd

-order quadratic calibration matrix has always been constructed 

and used by all facilities during testing.  This new pressure tare calibration capability at the NTF required 

implementing a capability within the data reduction software for implementing the DRM format as described in the 

AIAA Balance Calibration Recommended Practice Document
25

.   An effort was undertaken at the facility to modify 

the data reduction software to read in a non-standard calibration matrix formatted to match AIAA format.  This 

required a significant level of effort from personnel at the facility to write new code, integrate this code into the data 

reduction methodology at the facility, and completely validate/verify proper computations throughout.  After 

integrating the capability to allow for reducing data with calibration models of greater size (including 

pressure/temperature tare effects), the newly developed DRM from the NTF-117S pressure tare calibration was used 

at the facility for wind-tunnel test data correction. 

 

 Recent testing at the NTF used the NTF-117S semi-span balance, and the high-pressure bellows configuration 

for evaluating new AFC techniques.  Figure 20 reveals data from check-out tests of the SMSS/balance after 

assembling the SMSS into the tunnel test section, with the test model mounted to the mechanism.  Figure 20a plots 

out the computed loads for both the rNF and rAF bridges, where the balance is in an unloaded state and the bellows 

is pressurized incrementally from 0 to 1100 psia (dotted red lines represent the two-sigma accuracy band computed 

from the recent pressure tare calibration, blue dotted lines represent the two-sigma accuracy from the balance only 

calibration).  The opened circle curve reveals the computed balance loadings using the previously generate balance 

only calibration (no terms included for pressure correction).  It is obvious that the balance only calibration makes no 

attempt to correct for the applied bellow pressures, as the computed balance AF/NF loads deviate outside of the 

balance accuracy quotes when bellows pressure exceeds 200 psia.  The close circle curve reveals the computed 

balance loadings using the newly generated pressure tare calibration.  The computed AF/NF loads are clearly being 

corrected for the applied bellows pressure, and slightly deviate outside of the newly computed two-sigma accuracies. 

 

 
                                                      a)                                                                                               b)  

Figure 20.  Residual Analysis from Tunnel Test Data, a) Unloaded Pressure Only AF & NF Residuals, b) AF 

Model/Balance Loading Residuals 
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 Figure 20 reveals the computed residuals from a single series of –AF loadings completed on the balance/model 

assembly in the tunnel test section, where –AF loadings were completed while the bellows was constantly 

pressurized at both 500 and 1000 psia.  The applied loads are in the upper section of Figure 20b, and the residuals 

are shown in the bottom section of 20b (dotted red lines represent the two-sigma accuracy band computed from the 

recent pressure tare calibration, blue dotted lines represent the two-sigma accuracy from the balance only 

calibration).  The opened circles/boxes represent the computed residuals for both loading series at 500 & 1000 psi, 

respectively, processing the balance responses with the balance only calibration.  Using the balance only calibration, 

the computed residuals fall outside of the two-sigma values from this calibration (blue dotted lines).  The closed 

circles/boxes represent the computed residuals for both loading series at 500 & 1000 psi, respectively, processing 

the balance responses with the pressure tare calibration data.  When using the pressure tare calibration matrix, it is 

clear that the computed residuals significantly decreased when compared to using a matrix that makes no attempt to 

correct for the bellows pressures, and the residuals fall within the accuracy bounds (red dotted lines) generated from 

the recent calibration.   These loadings were computed in the test section by applying –AF loadings over a pulley 

system, therefore it is likely that the load application/method system contributes to the magnitude of the residuals. 

 

 The results presented below include a small sample set of replicated high-Reynolds number test runs performed 

during testing, and these results will simply compare the effect of the calibration results through a progression to 

reveal the impact of the newly completed pressure tare calibration on the results to date.  The initial repeat residual 

analysis was performed by processing the test data with the original balance calibration matrix, which was created 

from the balance only calibration outside of the SMSS (no bellows), therefore this calibration matrix does not 

include any pressure/temperature tare corrections. The results from this analysis are shown in Figure 21a below, 

revealing the drag coefficient residuals for these repeat runs fall within a two-sigma range of approximately +/- 93 

counts.  It would be expected to have constant variance in the computed drag coefficient residuals, but from this plot 

is clear the residuals are non-constant with the higher alpha settings exhibiting higher residuals (near linear trend for 

each set of runs using similar wind-off zero (WOZ) references). 

 

 The test replicate runs were then processed with the DRM described in the previous section (termed the V6 

matrix by the facility).  The results from this analysis are shown in Figure 21b below, revealing the drag coefficient 

residuals for these repeat runs fall within a two-sigma range of approximately +/- 30 counts.   

 

  
                                          (a)                                              (b)                                               (c) 

 

Figure 21.  Cd Residuals, a) original balance calibration, b) new pressure tare calibration, c) new pressure 

tare calibration with applied momentum tare correction 

 

 During the test it was decided to run a set of set of active blowing pitch polars in order to be able to generate an 

approximate axial force momentum thrust correction.  During the residual analysis, it was noticed that using a set of 
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pressurized WOZ’s to reduce the data yielded decreased and more constant residual values.  The final results shown 

above in Figure 21c were processed with the final pressure tare DRM, applied axial moment thrust corrections, and 

a complete set of pressurized WOZ points.  When applying all of these corrections/parameters, the resulting 

residuals for these six repeat runs fall within a two-sigma range of approximately +/- 15 counts.   

 

While in theory, the use of a pressurized or unpressurized WOZ should be accounted for by suitably translating 

for initial load (and pressure/temp terms), in practice the use of pressurized WOZ’s was found to be preferable.  At 

this time, the advantage of using pressurized WOZs is attributed to an observation made during calibration that after 

unpressurizing the bellows, a large amount of time (~15-20 mins) was required even after bellows temperature 

neared equilibrium for the balance electrical zeros to stabilize.   

 

 Lastly, a preliminary analyses of the axial momentum tare corrections was performed.  Sets of back-to-back 

replicated runs were selected, and the residuals without the correction are shown in 22a below.  These residuals 

reveal a bias offset between the residual curves, resulting in an approximate two-sigma bound of +/- 27 counts.  

After applying the axial thrust correction, the back-to-back residuals reduce down to approximately +/- 5 counts, as 

seen in Figure 22b.  Based on this correction, it is also clear from the residual plots that this correction may be over 

correcting the test data, but shows significant improvement by combining the static pressure tare calibration with a 

simplified axial thrust momentum tare correction.  It is postulated that with further refinement, and the capability for 

performing a more thorough momentum tare calibration, it is possible for further increasing test data quality by 

improving the measurement capability. 

 

 
                                                                     a)                                                b) 

Figure 22. Back-to-Back Tunnel Runs, a) Without Thrust Correction, b) With Thrust Correction 

M. Future Work 

As discussed in the previous sections, significant progress has been made at the NASA NTF to establish the 

capability for characterizing externally mounted semi-spans under the influence of pressure tare effects from high-

pressure air bellows.  The preliminary data revealed in the previous sections shows a factor of 6-7 reduction in the 

computed drag coefficients, for a specified set of replicated test runs distributed throughout the test matrix, by 

calibrating the semi-span balance as a complete system within the SMSS.  While significant progress has been made 

to this point, several key pieces of work in the next several months will be completed in order to further improve 

data quality at the facility.  This work includes: 

 

1. A new high-pressure adapter coupling (bellows replacement) has been designed/fabricated for use 

during next calibration/test 

2. Balance heater control recirculation system (BCRS) has been redesigned 
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3. New calibration load schedule being developed to assess potential higher order calibration terms 

4. Upgraded data processing code to correct for fixture deflections 

5. Potentially developing capability for performing momentum tares (loaded and un-loaded) at NTF 

 

The new high-pressure adapter coupling has been designed as a ‘stiff’ coupling that replaces the previous 

convoluted pressure bellows arrangement.  The previous bellows used for testing and calibration worked 

reasonably well, but as described there were some repeatability/hysteresis effects observed during use that led to 

the design of the new coupling.  While the new pressure adapter coupling does not contain any convolutes/spring 

elements to reduce the total stiffness contribution observed by the balance, the new coupling was designed to 

reduce this stiffness (as much as possible while remaining structurally capable under pressure loads), and the 

research team believes that the increased system stiffness (and potential for reduced balance output measurement 

sensitivity) will not impact use during testing.  It is believed that while the overall system stiffness will slightly 

increase, the new pressure adapter coupling should result in better data repeatability and overall performance 

stability.  Figure 20 shows a comparison between the previous convoluted bellows and the new pressure adapter 

coupling.  The new coupling is in the process of being instrumented with a suite of temperature sensors to better 

capture the temperature state of the coupling during calibration testing, and is also being modified to incorporate 

primary/back-up pressure ports in both the high mass-flow and low mass-flow legs of the coupling to better 

measure the actual total pressure during use.  These upgrades will be completed prior to the upcoming 

calibration in Summer 2012. 

 

 

      
 

Figure 20. Convoluted Bellows (left) and High-Pressure Air Adapter Coupling (right) 

 

 During the facility/SMSS upgrade to integrate the high-pressure air system for use during AFC testing, the 

internal balance heater control recirculation system (BCRS) was disassembled.  The BCRS was used during 

previously semi-span testing to elevate and hold the balance temperature stable to approximately 100°F +/- 2°F 

during wind tunnel testing.  The BCRS is being redesigned to allow for closed-loop recirculating blower air through 

the internal cavity of semi-span balances within the SMSS, to allow for precisely controlling the temperature of the 

balance within a +/- 2°F range during both calibration and tunnel testing.  It was observed during the initial pressure 

tare calibration that the balance had a small gradient across that was on the order of 2-3°F (from metric to the non-

metric flange ends), and that the termparure of the balance fluctuated on the order of +/- 5°F due to the cold air from 

the vortex cooler system conducting through the SMSS back to the balance.  While the calibration data did not 

reveal any significant issues from these thermal impacts, it is desired to more accurately control the balance 

temperature, and to simulate during calibration how the balance will be used during testing – which will result in a 

more accurate and representative calibration. 

 

 Results from initial calibration effort reveals potential for some higher-order terms (three-factor interactions, 

cubic terms) for several responses.  The experimental design for the initial calibration was designed to support a 

quadratic calibration model, but due to the additional of additional calibration loadings (start/end points within 

series) there were additional degrees of freedom (dof) used to test for higher-order term significance.  The results 

from this analysis are not shown here, but the next calibration (with the pressure adapter coupling) will involve an 
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initial assessment to determine whether this higher-order behavior is significant, and whether or not the calibration 

design needs to be further updated to capture this system behavior.  

V. Conclusion 

It is typical that most balance calibrations are performed where only the effects of the applied loads are 

considered to impact the output of the balances strain gaged measurement bridges.  In some instances it is found that 

other factors influence the overall behavior of the system, in our case the introduction of the bellows into the system 

impacted the behavior of the balance due to applied bellows pressures and operating temperatures.  Recent work at 

NASA Langley Research Center has been conducted in the area of developing methodologies for calibrating force 

measurement systems in the presence of these additional factors. 

 

As discussed, it was found during the work at the NTF that the influence of the high-pressure bellows introduced 

into the semi-span measurement system impacted the performance behavior of the system.  After considerable 

amount of preliminary research/testing, it was decided to pursue the design and development of both calibration 

hardware and methodology for characterizing the facilities external semi-span balances while considering bellows 

pressure and temperature effects.  It has been shown that the calibration results from the calibration detailed in this 

report show a significant increase in the data quality resulting from wind-tunnel tests implementing this new 

calibration matrix.   

 

While the detail presented here are applies directly to a specific type of force measurement system (external 

semi-span balance), these techniques can be applied to any type of force measurement system calibration.  The 

principles described can easily be modified to expand into other applications, with modifications to take into 

consideration available hardware and any restrictions.  
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