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High Reynolds Number Oscillations of 
a Circular Cylinder 
This paper concerns the numerical simulation of the flow around an oscillating circular 
cylinder, which moves with constant velocity in a quiescent Newtonian fluid with constant 
properties. For each time step of the simulation a number of discrete Lamb vortices is 
placed close to the body surface; the intensity of each of these is determined such as to 
satisfy the no-slip boundary condition. The aerodynamic loads acting on the surface of 
cylinder are computed using the integral formulation derived from the pressure Poisson 
equation. The influence of the frequency and amplitude oscillation on the aerodynamic 
loads and on the Strouhal number is presented and discussed. 
Keywords: heaving cylinder, aerodynamic loads, vortex shedding frequency, vortex 
method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1The analysis of the flow around an oscillating body in a 

quiescent fluid is of great technological importance and raises a 
vivid interest among the researches. 

In fact, the structural elements and the equipments of an 
offshore platform used for oil exploitation oscillate due to the ocean 
wave action; the onshore structures such as towers, chimney stacks, 
bridge decks, etc. are subject to the wind action which induces to 
oscillatory motions, and the heat exchanger tubes vibrate as a result 
of the vortex shedding, etc. 

The analysis and the comprehension of the complex phenomena 
that are present in the flow around an oscillating bluff body 
fascinate and have been challenging researchers for many decades. 
The oscillatory motion of small amplitude mainly modifies the near 
field flow changing its characteristics such as the flow regime inside 
the boundary layer, the pressure field, to mention the most important 
ones. On the other hand, the large amplitude oscillatory motion 
interacts with the far field wake with important consequences. 
Furthermore, the frequency and amplitude of the body oscillation 
define the frequency of vortex shedding which dictates the lift and 
drag coefficients behavior.  Wake dynamics, unsteady phenomena 
associated with bluff body flows, the mechanisms that led to the  
formation and release of the vortex structures in the wake are a few 
of many aspects that deserve attention. For these reasons the 
literature is plenty of materials on the subject; these are the results 
of experimental and analytical works and more recently of 
numerical simulations; comprehensive reviews can be found in 
Sarpkaya (1979), Bearman (1984), Blevins (1990) and Williamson 
and Govardhan (2004). The experimental work of Williamson and 
Roshko (1988) deals with the synchronization regions and identifies 
many modes and vortex wake patterns with detailed explanations 
and descriptions; due to the difficulties in the experimental 
visualizations the Reynolds number was kept below 600.  Dalton 
and Chantranuvatana (1980) present the average pressure 
distribution measured on the surface of oscillating cylinders and 

                                                           
Paper accepted March, 2008. Technical Editor: Francisco Ricardo Cunha. 

thus explaining some features of the near field flow. Blackburn and 
Henderson (1999) in their numerical simulations concentrated their 
attention to the flow at Re = 500 and the amplitude ratio 0.25 in 
order to study the effect of variations in frequency ratio on the 
entrainment phenomena produced by forced cross-flow oscillation 
within the primary synchronization regime. The work of Meneghini 
and Bearman (1995) deals with the numerical simulations of the 
flow past over an oscillating cylinder; they used a hybrid vortex 
method in their simulations and kept the Reynolds number with a 
low value. 

To analyze the flow around an oscillating body one can hold the 
body fixed and let the whole mass of fluid oscillate or let the body 
oscillate in a calm fluid. This work utilizes the second approach to 
simulate numerically the fluid flow around a circular cylinder. 
Therefore, far away from the body the fluid is at rest except, 
perhaps, inside the viscous wake which is of importance when the 
body is bluff. For the present analysis two reference frames are 
used; the body fixed frame oscillates with respect to the inertial 
frame of reference. 

For large amplitude motions the body boundary conditions are 
satisfied on the actual body surface at all time. If the amplitude of 
oscillation is small, to the first approximation, the body boundary 
conditions can be satisfied on the mean position of the body surface 
thus saving precious computational efforts, see Silva (2004). 

A Lagrangian Vortex Method (VM) is used for the numerical 
simulations; fundamentals aspects of this method can be found in 
Leonard (1980), Sarpkaya (1989), Kamemoto (1994), Lewis (1999), 
Cottet and Koumoutsakos (2000), Stock (2007). The VM utilizes a 
cloud of free vortices to simulate the vorticity in the fluid region; 
each of these vortices is followed during the numerical simulation in 
a Lagrangian context, hence no spatial discretization is necessary as 
for example when working with the Eulerian methods.  

The presented results are restricted to the heaving circular 
cylinder that moves with constant velocity U. In the numerical 
simulation, the Reynolds number based on the uniform flow and the 
cylinder diameter was kept constant and equal to 105; even with 
such a high value, no attempt for turbulence modeling was made, 
see Alcântara Pereira et al. (2002). 
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In the flow simulation around a fixed cylinder the vortex 
shedding frequency (which is obtained using the lift coefficient plot) 
is constant and, for reference, it is assumed that the Strouhal number 
takes the value 0.20, with 10% uncertainty (Blevins, 1984).   

For low amplitude cylinder oscillations the body boundary 
conditions are transferred from the actual position to the mean 
cylinder position thus leading to a simplified version of the 
methodology; numerical results show that this approach is valid if 
the amplitude ratio is less than 0.4 (Moura, 2007). 

The full version of the methodology is used here to simulate the 
flow around a heaving circular cylinder. The numerical simulations 
show that there are three characteristic bands for the body 
oscillating frequency. Band I, for which fb → 0, the body oscillation 
has little influence and the vortex shedding frequency is almost 
independent of the body oscillating frequency. Band II represents a 
transition band in which the lock-in is partial and one can identify 
simulation periods in which lock-in is observed followed by 
simulation periods where this does not occur. Finally in the 
uppermost Band III the inertial components dominating the lock-in 
are always observed. The numerical findings show that the lock-in 
frequency depends on the amplitude of the body oscillation; in fact 
it decreases linearly with it in accordance to the low Reynolds 
number findings of Williamson and Roshko (1988). 

Results for a rotating cylinder are presented elsewhere (Mustto 
et al., 1998). 

The analysis of the near field flow illustrates the mechanism of 
vortex shedding when the body oscillates; this is not quite the same 
as the one found when the cylinder is fixed as the instantaneous 
pressure distributions on the cylinder surface and the instantaneous 
near field flow patterns show. 

Nomenclature 

 A = Body oscillation amplitude 

CLA = Mean lift coefficient amplitude 

DC  = Drag coefficient 

LC  = Lift coefficient 

PC  = Pressure coefficient 

 d = Circular cylinder diameter 
f = Vortex shedding frequency 

bf  = Body oscillation frequency 

p  = Pressure field 

Re = Reynolds number 
S  = Boundary domain 

bS
 = Body surface 

∞S  = Far away boundary 

St  = Strouhal number 
u  = Velocity field 

iu  = Incident flow velocity 

bu  = Velocity induced by the body 

vu  = Velocity induced by the vortex cloud 

Y  = Specific energy 

0y  = Instantaneous position iny  coordinate 

Greek Symbols 

ω  = Angular velocity 
ν  = Kinematic viscocity 
µ  =Absolute viscosity 

γ  = Vorticity distribution 

Γ  = Vortex strenght 
ω  = Vorticity field 
Ω  = Fluid domain 
τ  = Coordinate tangent to body surface 
n  = Coordinate normal to body surface 
∞  = Infinity 

Problem Definition 

The body surface is defined in the (ξ,η) coordinate system by a 
scalar function Fb(ξ,η) = 0, and for a circular cylinder  Fb is written 
as: 

 

0Rηξ)η,ξ(F 2
o

22
b =−+=  (1) 

 
Attention is restricted to a body motion with constant speed U, 

to which a heaving oscillatory motion defined by: 
 

)tfπ2cos(A)tωcos(Ay bo ==  (2) 
 

is superimposed, as shown in Fig. 1. The (x,y) is an inertial 
coordinate system. 

 
 

 

Figure 1. Definitions. 

 
 
It is assumed that the flow of the Newtonian fluid with constant 

properties is incompressible and takes place in Ω, which is defined 
by the surface S such that: 

 
S = Sb ∪ S∞  (3) 
 
The fluid flow is governed by the non-dimensional equations: 
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The Reynolds number is defined by a characteristic body length 

d = 2Ro and the incoming flow velocity U. The dimensionless time 
is defined as d/U. In addition, on Sc, the following boundary 
conditions are required: 
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where un and uτ are the normal and tangential fluid particle velocity 
components and vn and vτ the body surface velocity components. 
Far away from the body, i.e., on S∞, the perturbation caused by the 
body motion fades, such that: 

 

1→u . (7) 

Numerical Method 

In many situations it is more natural to look at the curl of the 
velocity field rather than the more usual pressure–velocity form. 
This leads to the vorticity form of the Navier-Stokes equations, the 
vorticity transport equation, which presents no pressure term; in two 
dimensions it reads: 
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where u(x,t) is the velocity at position x and time t and ω(x,t) is the 
vorticity defined by: 

 
uk ×∇=ω , (9) 

 
k being the unit vector perpendicular to the (x,y)-plane.  

 
According to the Biot-Savart integral, one can recover the 

velocity as: 
 

ω∗= Ku  (10) 
 

where (∗ ) indicates convolution and: 
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The spatially discretized vorticity field is represented by a cloud 

of point vortices, such that: 
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where γ is the vorticity distribution of the jth vortex of the cloud and 
Γj its strength. If γ is the Dirac delta function one recovers the 
potential vortex which has a singular velocity distribution. To 
overcome this unwanted behavior one may choose: 
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f ( ) being radially symmetric and of compact support, ro is the 
cutoff radius and defines the support of γ. We use the Lamb vortex 
which has a Gaussian distribution with zero mean and a standard 

deviation of tν2 , ν  is the kinematic viscosity coefficient: 
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The Vortex Method  

In the Vortex Method the continuous vorticity field is 
represented by a cloud of discrete vortex blobs, Eq. (12). With this 
approach one reduces the computing effort to the calculation of the 
motion of these particles in order to satisfy the vorticity transport 
equation; this is performed in a Lagrangian context. 

Operator Splitting (Chorin, 1973) 

To calculate the particles motion, the operator splitting 
technique is used. The time integration is divided into two fractional 
steps: pure diffusion and convection. 

Thus, during each time step, the linear diffusion equation: 
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and the non-linear convection equation: 
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are solved independently. 

Convection of Vorticity 

Once the vorticity field is modeled by a cloud of discrete 
vortices, the convection equation (16a) is written in Lagrangian 
form as: 
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where NV is the number of point vortices in the cloud and the 
velocity field u(x,t) can be split in three parts, Alcântara Pereira et 
al. (2003): 
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The contribution of the incident flow is represented by ui (x,t). 

For an uniform oncoming flow its components take the form: 
 

1ui1 =     and    0ui2 =  (18) 
 
The body contributes with ub(x,t), which can be obtained, for 

example, using the Boundary Element Method. The two 
components can be written as: 
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where ))t(ξξ(G jij −  is an appropriated defined kernel, see Katz 

and Plotkin (1991). In this paper, sources with constant density, σk, 
were distributed over NP flat panels representing the body surface. 
At this point it is worth to observe that the panels (the body surface) 
are oscillating with respect to the inertial frame of reference; 
therefore the body contribution in the inertial frame of reference is 
(Recicar et al., 2006): 
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Finally the velocity uv(x,t), due to the vortex interactions has its 

components written as: 
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where Γj is the j-vortex strength and cij (x – xj(t)) is the i component 
of the velocity induced, at point x,  by a unit strength vortex located 
at xj (t). We use Lamb vortex, therefore: 
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Euler expression represents the first order approximation to the 

solution of the Eq. (16b): 
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Diffusion of Vorticity 

The solution to the diffusion Eq. (15) in the Lagrangian context 
is obtained using the Random Walk Method (Lewis, 1999) which 
aims to simulate the Brownian motion of the particles. According to 
this method, the random walk diffusion displacement ηηηη(x,t), with a 
zero mean and a (2∆t/Re) variance, is added after the convective 
step. Hence the position of each vortex, at the instant (t + ∆t) is 
given by: 

 

iiii ηt∆t),(u(t)x∆t)(tx ++=+ x         i = 1,2 (22) 
 
The random displacement components are: 
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with P and Q being random numbers laying between zero and one. 

Aerodynamic Loads 

Once determined the vorticity field, the pressure calculation 
starts with the Bernoulli function, defined by Uhlman (1992) as 
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Kamemoto (1993) used the same function and starting from the 

Navier-Stokes equations was able to write a Poisson equation for the 
pressure. This equation was solved using a finite difference scheme. 
Here the same Poisson equation was derived and its solution was 
obtained through the following integral formulation (Shintani and 
Akamatsu, (1994): 
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where H = 1 in the fluid domain, H= 0.5 on the boundaries and G is 
a fundamental solution of the Laplace equation, Alcântara Pereira et 
al. (2004). 

The drag and lift coefficients can be expressed by (Ricci, 2002): 
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Simulations and Results 

The attention is restricted to the analysis of the flow around a 
circular cylinder which is moving steadily in an otherwise quiescent 
fluid; to this uniform flow a heaving motion is superimposed: 

 
)tfπ2cos(A)tωcos(Ay bo ==  (28) 

 
In the calculations the cylinder surface is represented by 100 flat 

panels on which sources of constant density are distributed; the time 
step is taken as ∆t=0.05. In each time step the nascent vortices were 
placed into the cloud through a displacement ε = 0σ = 0.0032d normal 

to the panels. The aerodynamic loads computations starts at t=10. 
In the numerical simulation the Reynolds number based on the 

uniform flow and the cylinder diameter were kept constant and 
equal to 105. 

Flow around a Fixed Circular Cylinder 

As an introduction to the analysis of the flow around a cylinder, 
some general results for a fixed cylinder are presented. 

Figure 2 shows the evolution of the lift and drag coefficients as 
the numerical simulations proceed. As expected, the lift coefficient 
oscillates around the mean value (zero) and with a frequency – f – 
which is the vortex shedding frequency; the drag coefficient curve 
oscillates with a frequency that is twice this value (2f). The mean 

amplitude of the lift coefficient curve is indicated by CLA . 

The Strouhal number is defined as: 
 

U

fd
St =

 (29) 
 
Mean values of the Strouhal number, lift and drag coefficient 

are presented in Table 1 and they show good agreement with data 
available in the literature. As mentioned in the introduction section 
it is assumed that the Strouhal number for a fixed cylinder takes the 
value 0.20 for future references.  

The analysis of the flow shows that the largest value of the lift 
coefficient is attained when a cluster of free vortices leaves the body 
surface (θ ∼100o) toward the viscous wake; this cluster rotates in the 
clockwise direction (Fig. 3a). The lowest value of this coefficient is 
observed when another cluster, now rotating in the anti-clockwise 
direction (Fig. 3b), leaves the body surface (θ ∼ 260o). 
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Figure 2. Lift and drag coefficients for fixed circular cylinder. 

 

Table 1. Mean lift and drag coefficient for fixed circular cylinder. 

Blevins (1984) --- 1,20 0,19 ---

Mustto et al . (1998) --- 1,22 0,22 ---

Alcântara Pereira et al . (2002) 0,04 1,21 0,22 ---

Silva (2004) -0,03 1,23 0,20 ---

Present Simulation 0,07 1,22 0,20 1,058

LC DC St CLA0,0A,10Re 5 =ω==

 
 
 

 
(a) t = 16.5 

 
(b) t = 19,4 

Figure 3. Near wake behavior for fixed circular cylinder. 

 

Figure 4 presents mean pressure values on the body surface. 
One can observe a good agreement with data available in the 
literature, except in a small neighborhood of θ ∼ 80o.  
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Figure 4. Mean pressure coefficient values for fixed circular cylinder. 

 
The instantaneous pressure distributions are presented in Fig. 5. 

Distribution A, B, C, D, E and F are related respectively to points A, 
B, C, D, E and F found in Fig. 2. 

 

 
Figure 5. Instantaneous pressure distribution on the surface of a fixed 
circular cylinder. 

 

Flow around a Cylinder Oscillating with Small Amplitude 

In heaving motion of small amplitude, (A/d) = O(ε), ε → 0, an 
important simplification is possible. In fact, discarding higher 
order terms in the Taylor expansion of the body boundary 
conditions, Eq. (6), one gets: 

 

θ
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nn vu =  
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ττ vu =  
 

where bS  is the mean position of the body surface with respect to 
the inertial frame of reference, as illustrated in Figure 6. The above 
expressions show that, to the first approximation, the body boundary 
conditions can be transferred from the actual to the mean body 
position. In order to take care of the motion induced by the 
oscillating movement, these modified boundary conditions possess 
an extra term that represents an additional source distribution on the 
body surface. As a consequence, the numerical simulation of the 
flow can proceed considering a steady body with modified body 
boundary conditions. 

This observation leads to a considerable reduction in the 
computational effort which is very important in the analysis of many 
practical situations where small amplitude vibrations occur.  

 
 

 
Figure 6. Small amplitude oscillations characteristics. 

 
 
The results of these simulations where reported elsewhere, Silva 

(2004) and Moura et al.(2006). Here we present only a few values 
for comparisons, Table 2. From these values one can assume that the 
transferring of the body boundary conditions produce reasonable 
results up to (A/d) = 0.3 ∼ 0.4. 

Flow around a Cylinder Oscillating with Large 
Amplitude   

For the analysis of the flow around a large amplitude heaving 
cylinder the body boundary conditions cannot be transferred from 
the actual position to the mean position.  

The numerical simulations show that the flow is influenced 
mainly by the body oscillation amplitude, A and the frequency fb.  
In fact one can identify three main bands of the body oscillation 
frequency.  

 
 

Table 2. Mean lift and drag coefficients using the simplified approach. 

Angular
Velocity

Amplitude

0,01 -0,051 1,233 0,196 0,008 0,027 1,215 0,206 0,008
0,05 0,069 1,195 0,198 0,008 0,008 1,247 0,198 0,008
0,1 0,071 1,184 0,207 0,008 -0,01 1,24 0,215 0,008
0,15 0,067 1,258 0,208 0,008 0,086 1,235 0,197 0,008
0,2 0,124 1,185 0,193 0,008 0,092 1,256 0,199 0,008
0,3 0,162 1,209 0,21 0,008 0,1313 1,2 0,209 0,008
0,5 0,269 1,151 0,211 0,008 0,165 1,203 0,21 0,008

0,05

Recicar (2007) Moura (2007)

)A(
StLC DC

)(ω
StLC DCbSt bSt

 
 
 

At low frequency body oscillations, Band I, the flow behaves 
much like if the body were fixed and the amplitude of the cylinder 
oscillation has negligible influence on the vortex shedding 
frequency f. The Strouhal number assumes values that are very close 
to 0.20, that is St = O (0.2) as fb → 0. 

In Band III the body oscillates at high frequencies, the body 
frequency of oscillation fb dominates the phenomena and the 
frequency of vortex shedding f is locked to it.  

Finally, in Band II, the frequency of body oscillations lies in 
between the two other bands. Band II is a transition Band and one 
can eventually observe the locking of the frequencies. 

Here the body Strouhal number is defined as 
 

U

df
St b

b =  (31) 

 
and the wavelength ratio, as defined by Williamson and Roshko 
(1988), is: 

 

bdf

U

d
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Figure 7 shows plots of the Strouhal number as a function of the 

body Strouhal number. The analysis of these figures shows that, in 
general, the high Reynolds number simulations agree quite well 
with the low Reynolds number vortex synchronization regions 
devised by Williamson and Roshko (1988), except that the 
synchronization begins at a lower value of Stb (or higher value of 
the wavelength ratio), which is quite reasonable due to the 
increasing importance of the inertial effects as the Reynolds number 
assumes higher values. 

Figure 8 utilizes the data from the previous figures to show the 
dependence of the lock on frequency on the amplitude of the body 
oscillations. 

In Table 3 the body frequency of oscillation is kept constant 
with a low value, which corresponds to Stb = 0.008, Band I. 

 
 

Table 3. Results for low frequency of oscillations. 

Angular
Frequency

Amplitude

0,01 -0,051 1,233 0,196 0,008 1,171

0,05 0,069 1,195 0,198 0,008 1,127

0,1 0,071 1,184 0,207 0,008 1,001

0,15 0,067 1,258 0,208 0,008 1,122

0,2 0,124 1,185 0,192 0,008 1,070

0,3 0,162 1,209 0,210 0,008 1,042

0,5 0,269 1,151 0,211 0,008 0,971

0,05

)ω( )A(
St CLALC DC bSt

 
 
 
One observes that the Strouhal number is quite insensitive to the 

amplitude of the body oscillation and the amplitude of the lift 
coefficient curve seems to behave in the same manner without a 
definite pattern, as shown in Figure 9.  
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Figure 7. Frequency of vortex shedding: in (a) A = 0,15, (b) A = 0,30 and (c) A = 0,50. 
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Figure 8. Lock on frequency. 
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Figure 9. Lift coefficient amplitude for low frequency. 

 
 
In Table 4 the body frequency of oscillation is kept constant 

with a high value which corresponds to Stb = 0.239. As the 
amplitude of oscillation increases the synchronization of the 
frequencies is clearly observed and the drag coefficient decreases. 
The amplitude of the lift curve now has a definite behavior, 
increasing linearly as shown in Fig. 10. 

 

Table 4. Results for high frequency of oscillations. 

Angular
Frequency

Amplitude

0,01 0,018 1,278 0,203 0,239 1,177

0,05 -0,009 1,095 0,240 0,239 1,094

0,1 0,054 0,886 0,240 0,239 1,211

0,15 0,023 0,631 0,240 0,239 1,234

0,2 0,008 0,347 0,239 0,239 1,467

0,3 0,044 0,172 0,238 0,239 1,805

0,5 0,102 -0,14 0,239 0,239 2,231
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Figure 10. Lift coefficient amplitude for high frequency. 

 
 
As done for a fixed cylinder, Figure 11 shows the lift and drag 

coefficient curves obtained as the numerical simulation proceeds; 
this figure refers to a condition where the synchronization of the 
frequencies is observed. 

When the cylinder is at its highest position, point A, the lift 
coefficient is close to its lowest value (highest negative value) 
which is consistent with the pressure distribution shown in Figure 
12; in this figure a positive pressure distribution, on the upper 
surface, can clearly be observed; as expected just the opposite occur 
when the cylinder is at its lowest position, point C.  

Points B and D represent intermediates positions of the cylinder 
and it is interesting to note that the highest pressures are observed in 
front and at the rear of the cylinder, almost canceling each other 
which, by its turn, results in almost zero drag as predicted by the 
drag coefficient curve shown in Figure 11. 
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Figure 11. Lift and drag coefficients: ωωωω = 1 and A = 0.3. 

 

 

Figure 12. Instantaneous pressure distribution: ωωωω = 1 and A = 0.3. 

Conclusions and Summary 

The flow around a circular cylinder is analyzed using a 
numerical Lagrangian simulation, the Vortex Method. All the 
simulations were carried out with a high value of the Reynolds 
number; no attempt to use a turbulence modeling was made.  

A general introduction to the method is presented and used for 
the simulation of the flow around a fixed cylinder, obtaining results 
which demonstrated good agreement with known values from the 
literature.  

A simplified version of the methodology, valid for low amplitude 
oscillations, was also used to find out that (A/d) < (0.4 ∼0.5) 
represents the limits of its applicability. This is an important result 
since it shows that the simplified version can be used in most of the 
situations where vibration problems occur (Moura, 2007). The 
understanding of several phenomena that occur due to the 
interaction between flowing fluid and heat exchangers and chimneys 
are typical examples. 

The full version was used systematically to analyze the flow 
around a heaving cylinder. The (St versus Stb) plots show that one 
can identify three bands with clear characteristics behavior. In band 
I (low value of Stb) the flow behaves in much the same way as if the 
cylinder were fixed; St assumes values very close to 0.2. Band II is a 
transition band. Finally in Band III (high value of Stb) inertial 
effects dominate and the shedding frequency is locked to the body 
oscillation frequency.  

In Band III it is remarkable to notice that:  
a) As the amplitude of body oscillation increases, the drag 

coefficient decreases systematically  
b) As the amplitude of body oscillation increases, the 

amplitude of the lift coefficient curve increases linearly. 
  Each band limit depends on body oscillation amplitude 

during numerical simulation. 
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