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This paper concerns the numerical simulation of the flow around an oscillating circular
cylinder, which moves with constant velocity in a quiescent Newtonian fluid with constant
properties. For each time step of the simulation a number of discrete Lamb vortices is
placed close to the body surface; the intensity of each of these is determined such as to
satisfy the no-slip boundary condition. The aerodynamic loads acting on the surface of
cylinder are computed using the integral formulation derived from the pressure Poisson
equation. The influence of the frequency and amplitude oscillation on the aerodynamic
loads and on the Strouhal number is presented and discussed.
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Introduction

The analysis of the flow around an oscillating boidy a
quiescent fluid is of great technological importarend raises a
vivid interest among the researches.

In fact, the structural elements and the equipmeaaftsan
offshore platform used for oil exploitation osciadue to the ocean
wave action; the onshore structures such as towBisiney stacks,
bridge decks, etc. are subject to the wind actidwickvinduces to
oscillatory motions, and the heat exchanger tulil@ste as a result
of the vortex shedding, etc.

The analysis and the comprehension of the comgien@mena
that are present in the flow around an oscillatiigff body
fascinate and have been challenging researchemdoy decades.
The oscillatory motion of small amplitude mainly diies the near
field flow changing its characteristics such asftbe regime inside
the boundary layer, the pressure field, to menti@most important
ones. On the other hand, the large amplitude aswmilf motion
interacts with the far field wake with important nsequences.
Furthermore, the frequency and amplitude of theybaostillation
define the frequency of vortex shedding which degahe lift and
drag coefficients behavior. Wake dynamics, unstgattenomena
associated with bluff body flows, the mechanismat tled to the
formation and release of the vortex structurehewake are a few
of many aspects that deserve attention. For thessons the
literature is plenty of materials on the subjebgdse are the results
of experimental and analytical works and more rdgernf
numerical simulations; comprehensive reviews canfdend in
Sarpkaya (1979), Bearman (1984), Blevins (1990) \Afiitlamson
and Govardhan (2004). The experimental work of Mfilson and
Roshko (1988) deals with the synchronization regjiand identifies
many modes and vortex wake patterns with detailgalaeations
and descriptions; due to the difficulties in thepesimental
visualizations the Reynolds number was kept bel®®. 6 Dalton

thus explaining some features of the near field/fIBlackburn and
Henderson (1999) in their numerical simulationscemnrated their
attention to the flow at Re = 500 and the amplituatieo 0.25 in
order to study the effect of variations in frequenatio on the
entrainment phenomena produced by forced cross-fiseillation
within the primary synchronization regime. The wafkMeneghini
and Bearman (1995) deals with the numerical sirmriatof the
flow past over an oscillating cylinder; they usechybrid vortex
method in their simulations and kept the Reynoldmioer with a
low value.

To analyze the flow around an oscillating body oar hold the
body fixed and let the whole mass of fluid oscédlat let the body
oscillate in a calm fluid. This work utilizes thecond approach to
simulate numerically the fluid flow around a ciraulcylinder.
Therefore, far away from the body the fluid is astr except,
perhaps, inside the viscous wake which is of imgpuré when the
body is bluff. For the present analysis two refeserirames are
used; the body fixed frame oscillates with respecthe inertial
frame of reference.

For large amplitude motions the body boundary cionk are
satisfied on the actual body surface at all tinigh¢ amplitude of
oscillation is small, to the first approximatiomet body boundary
conditions can be satisfied on the mean positioth@body surface
thus saving precious computational efforts, seeagR004).

A Lagrangian Vortex Method (VM) is used for the renal
simulations; fundamentals aspects of this methad ke found in
Leonard (1980), Sarpkaya (1989), Kamemoto (199dyvis (1999),
Cottet and Koumoutsakos (2000), Stock (2007). The 0filizes a
cloud of free vortices to simulate the vorticity time fluid region;
each of these vortices is followed during the nucaésimulation in
a Lagrangian context, hence no spatial discretind necessary as
for example when working with the Eulerian methods.

The presented results are restricted to the hearirmylar
cylinder that moves with constant velocity U. Inetimumerical
simulation, the Reynolds number based on the umiftow and the

and Chantranuvatana (1980) present the averagesupees cylinder diameter was kept constant and equal ) é@en with

distribution measured on the surface of oscillatoyjnders and
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such a high value, no attempt for turbulence madelvas made,
see Alcantara Pereighal. (2002).
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High Reynolds Number Oscillations of a Circular Cylinder

In the flow simulation around a fixed cylinder thertex
shedding frequency (which is obtained using thectifficient plot)
is constant and, for reference, it is assumedthi@gaStrouhal number
takes the value 0.20, with 10% uncertainty (Bleyvik234).

For low amplitude cylinder oscillations the body ubdary
conditions are transferred from the actual posittonthe mean
cylinder position thus leading to a simplified vers of the
methodology; numerical results show that this apphois valid if
the amplitude ratio is less than 0.4 (Moura, 2007).

The full version of the methodology is used hersitoulate the
flow around a heaving circular cylinder. The nuroarisimulations
show that there are three characteristic bands tfier body
oscillating frequency. Band I, for which £ 0, the body oscillation
has little influence and the vortex shedding fregyeis almost
independent of the body oscillating frequency. Bim&presents a
transition band in which the lock-in is partial aode can identify
simulation periods in which lock-in is observed Idated by
simulation periods where this does not occur. Rinah the
uppermost Band Il the inertial components domimgtihe lock-in
are always observed. The numerical findings shat tihe lock-in
frequency depends on the amplitude of the bodylaton; in fact
it decreases linearly with it in accordance to tbes Reynolds
number findings of Williamson and Roshko (1988).

Results for a rotating cylinder are presented disea (Mustto
etal., 1998).

The analysis of the near field flow illustrates thechanism of
vortex shedding when the body oscillates; thisasquite the same
as the one found when the cylinder is fixed asitisantaneous
pressure distributions on the cylinder surface #redinstantaneous
near field flow patterns show.

Nomenclature

A = Body oscillation amplitude
KCL = Mean lift coefficient amplitude
Cp = Drag coefficient

C_ = Lift coefficient

Cp = Pressure coefficient

d = Circular cylinder diameter
f = Vortex shedding frequency
fp, = Body oscillation frequency
p = Pressure field

Re = Reynolds number

S = Boundary domain

Sbo- Body surface

S, = Far away boundary

St = Strouhal number

U =velocity field

u; = Incident flow velocity

Up = Velocity induced by the body

u, = Velocity induced by the vortex cloud
Y = Specific energy

Yo = Instantaneous position yh coordinate
Greek Symbols

® = Angular velocity

v = Kinematic viscocity
1 =Absolute viscosity
Y

= Vorticity distribution
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I' =Vortex strenght

® = Vorticity field

Q = Fluid domain

t = Coordinate tangent to body surface
n = Coordinate normal to body surface
oo = Infinity

Problem Definition

The body surface is defined in thgn) coordinate system by a
scalar function K&,n) = 0, and for a circular cylinder , ks written

Fo(&m =&%+n%-R§ =0 )
Attention is restricted to a body motion with cargtspeed U,
to which a heaving oscillatory motion defined by:
Yo = A cost) = A cos@afpt) 2)
is superimposed, as shown in Fig. 1. The (x,y) ns irertial
coordinate system.

Qx.y)
x=§
y =n+Acos(ot)

y, =Acos(ot) I \ |
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Figure 1. Definitions.

It is assumed that the flow of the Newtonian fluith constant
properties is incompressible and takes plac@ ,invhich is defined
by the surface S such that:

s=s0S, @3)

The fluid flow is governed by the non-dimensiongliations:

ui _

, i=1,2
5Xi

(4)

Du; ——£+i 62ui

~ ox; Redxjox;’

i=j=172
Dt

®)

The Reynolds number is defined by a charactetisiity length
d = 2R, and the incoming flow velocity U. The dimensionl¢isse
is defined as d/U. In addition, on.,Sthe following boundary
conditions are required:

U, =V andu, =V, on $

)
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where yand y are the normal and tangential fluid particle véloc The Vortex Method
components and,vand y the body surface velocity components.

Far away from the body, i.e., on,3he perturbation caused by the
body motion fades, such that:

|U| - 1. (7)

Numerical Method

In many situations it is more natural to look a¢ tturl of the
velocity field rather than the more usual pressuetseity form.
This leads to the vorticity form of the Navier-Séskequations, the
vorticity transport equation, which presents ncspuge term; in two
dimensions it reads:

oo _ 1 0%

6(o+ Oo _ 1
ax; Reoxjoxj

E3

i=1,2 (8)

Uj
whereu(x,t) is the velocity at positior and time t ando(x,t) is the
vorticity defined by:

ok =0xu, 9)
k being the unit vector perpendicular to the (x,\gre.

According to the Biot-Savart integral, one can kegothe
velocity as:

u=K Do (10)
where ([) indicates convolution and:
MKU=IKR—XXMWJMX. (11)

The spatially discretized vorticity field is repeeged by a cloud
of point vortices, such that:

NV
o(x,t) = D Tjr(x=x;(1)
j=1

(12)

wherey is the vorticity distribution of the jth vortex tfie cloud and

I; its strength. Ify is the Dirac delta function one recovers the

potential vortex which has a singular velocity disition. To
overcome this unwanted behavior one may choose:

X
o)
f () being radially symmetric and of compact suppa, is the

cutoff radius and defines the supportyofNe use the Lamb vortex
which has a Gaussian distribution with zero meath arstandard

1
Y(X) :_nf
o

(13)

deviation ofy 2vt , v is the kinematic viscosity coefficient:
2
Y00 =y exg -2 (14)
nr 5
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In the Vortex Method the continuous vorticity fielgs
represented by a cloud of discrete vortex blobs,(E2). With this
approach one reduces the computing effort to thaulzion of the
motion of these particles in order to satisfy thogticity transport
equation; this is performed in a Lagrangian context

Operator Splitting (Chorin, 1973)

To calculate the particles motion, the operatorittepy
technique is used. The time integration is divided two fractional
steps: pure diffusion and convection.

Thus, during each time step, the linear diffusignation:

2
do_ 1 0% L i=12 (15)
ot  Reox;ox;
and the non-linear convection equation:
G_coz_ ia_co’ i=1,2 (16a)
ot Oxi

are solved independently.

Convection of Vorticity

Once the vorticity field is modeled by a cloud ofatete
vortices, the convection equation (16a) is writianLagrangian
form as:

de
—==uj(xt),

j=1,NV
dt

(16h)

where NV is the number of point vortices in theudoand the
velocity field u(x,t) can be split in three parts, Alcantara Pereira
al. (2003):

u(x,t) =ui(x,t) +ub(x,t) +uv(x,t) a7

The contribution of the incident flow is represehtey ui (x,t).
For an uniform oncoming flow its components take fibrm:
Uil =1 and Ui2 =0 (18)

The body contributes withib(x,t), which can be obtained, for

example, using the Boundary Element Method. The two
components can be written as:
NP
UBED = Y oG -Ej®), =12 and#] (19a)

=

where Gjj (§-&; (1)) is an appropriated defined kernel, see Katz

and Plotkin (1991). In this paper, sources withstant densitygy,
were distributed over NP flat panels representiregliody surface.
At this point it is worth to observe that the panghe body surface)
are oscillating with respect to the inertial fraroé reference;
therefore the body contribution in the inertialnfra of reference is
(Recicaret al., 2006):

u(.y.t) = u(&n,t) (19b)
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V(Xryrt) = V(érnrt) + yo(t)

HY] —ISlVDGi [@ndS= I L 0G; fuxw)d —Riej.sl(mei xo)@dS  (25)

Finally the velocityuv(x,t), due to the vortex interactions has itSynere H = 1 in the fluid domain. H= 0.5 on the bdaries and G is

components written as:

NV
uvj (x, t) :ercij (x —Xj(t))
j=1

(20a)

wherel; is the j-vortex strength ang  —x;(t)) is the i component
of the velocity induced, at poirt by a unit strength vortex located
at % (t). We use Lamb vortex, therefore:

2
. T. s

uf =Ll e —5,0257% (20b)
& i 50

Euler expression represents the first order appration to the
solution of the Eq. (16b):
Xj (t + At) = Xxj (t) + uj (x, ) At

i=1,2 (21)

Diffusion of Vorticity

The solution to the diffusion Eqg. (15) in the Laggan context
is obtained using the Random Walk Method (Lewis99)9which
aims to simulate the Brownian motion of the pagficlAccording to
this method, the random walk diffusion displacenmmgfx.t), with a

zero mean and a AZRe) variance, is added after the convective

step. Hence the position of each vortex, at théams(t +At) is
given by:

Xi(t+At) :xi(t)+ui(x,t)At+ni i=1,2 (22)
The random displacement components are:
(i) _ |4t (1
X4 Re In[ P] [coq2xQ)] (23a)
(i) _ [4at, (1)
Yy Ro In[ Pj[sm(ZnQ)] (23b)

with P and Q being random numbers laying betweem aed one.

Aerodynamic Loads

Once determined the vorticity field, the pressusdcuation
starts with the Bernoulli function, defined by Um(1992) as

2
Y:p+u7, u=y (24)

Kamemoto (1993) used the same function and staftomg the
Navier-Stokes equations was able to write a Poisspration for the
pressure. This equation was solved using a firifferdnce scheme.
Here the same Poisson equation was derived argblifision was
obtained through the following integral formulati¢8hintani and
Akamatsu, (1994):

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright O 2008

a fundamental solution of the Laplace equationAAtara Pereirat
al. (2004).
The drag and lift coefficients can be expresse@Rigci, 2002):

NP NP

Cp = —Zz(pj ~Poo )Asjsinej :—ZCPASjSinE)j (26)
ji=1 =
NP NP

CL :—ZZ(pj - Poo )ASjcosej =‘ZCPA5j0059j (27)
j=1 =

Simulations and Results

The attention is restricted to the analysis of fibes around a
circular cylinder which is moving steadily in arhetwise quiescent
fluid; to this uniform flow a heaving motion is sefimposed:

Yo = Acosft) = Acos@nfpt) (28)

In the calculations the cylinder surface is repnge by 100 flat
panels on which sources of constant density atehdited; the time
step is taken aAt=0.05. In each time step the nascent vortices were
placed into the cloud through a displacensent = 0.0032d normal

to the panels. The aerodynamic loads computatians st t=10.

In the numerical simulation the Reynolds numberetasn the
uniform flow and the cylinder diameter were kepihs@ant and
equal to 18

Flow around a Fixed Circular Cylinder

As an introduction to the analysis of the flow ardwa cylinder,
some general results for a fixed cylinder are priese

Figure 2 shows the evolution of the lift and dragfficients as
the numerical simulations proceed. As expected Jitheoefficient
oscillates around the mean value (zero) and wiltequency — f —
which is the vortex shedding frequency; the dragffadent curve
oscillates with a frequency that is twice this al{2f). The mean

amplitude of the lift coefficient curve is indicatbyAc| .
The Strouhal number is defined as:

(29)

Mean values of the Strouhal number, lift and dragfficient
are presented in Table 1 and they show good agreenith data
available in the literature. As mentioned in th#aduction section
it is assumed that the Strouhal number for a fixgdthder takes the
value 0.20 for future references.

The analysis of the flow shows that the largestiealf the lift
coefficient is attained when a cluster of free io&d leaves the body
surface § [110CP) toward the viscous wake; this cluster rotatetha
clockwise direction (Fig. 3a). The lowest valuetlis coefficient is
observed when another cluster, now rotating inahg-clockwise
direction (Fig. 3b), leaves the body surfag@&l260).

by ABCM October-December 2008, Vol. XXX, No. 4 / 307
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Figure 2. Lift and drag coefficients for fixed circular cylinder.

Table 1. Mean lift and drag coefficient for fixed circular cylinder.

40

Re=10°, A=0, =0 c, | c St | A
Blevins (1984) 1,20 0,19
Musttoet al . (1998) 1,22 0,22
Alcantara Pereirat al . (2002) 0,04| 1,21 0,22
Silva (2004) -0,03 1,23 0,24
Present Simulation 0,01 12 040 1,0

58

==

(5) t=19,4

Figure 3. Near wake behavior for fixed circular cylinder.
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Figure 4 presents mean pressure values on the fadgce.
One can observe a good agreement with data awil@blthe
literature, except in a small neighborhoo®adf 80°.

1.00+ T ‘ T ‘ T ‘ ‘ ]
» — — —& —— Present Simulation
L » -+ Experimental (Blevins, 1984)
" ————— Potential Theory i
N\— — Numerical (Mustto,1988)
0.00 —
-1.00 — ]
o
o - |
-2.00 —
-3.00 —
00 | | I
0.00 40.00 80.00 120.00 160.00 200.00
Theta

Figure 4. Mean pressure coefficient values for fixed circular cylinder.

The instantaneous pressure distributions are prebém Fig. 5.
Distribution A, B, C, D, E and F are related regjvety to points A,
B, C, D, E and F found in Fig. 2.

Pressure Coefficient

ﬁ;‘\;«\; AT
L

7

300 6

Theta Angle (°)

Figure 5. Instantaneous pressure distribution on the surface of a fixed
circular cylinder.

Flow around a Cylinder Oscillating with Small Amplitude

In heaving motion of small amplitude, (A/d) =&)(¢ - 0, an
important simplification is possible. In fact, désding higher
order terms in the Taylor expansion of the body rtary
conditions, Eq. (6), one gets:
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Up =Vp
on Sp (30)
U =V,

where Sp is the mean position of the body surface witlpeesto

the inertial frame of reference, as illustratedrigure 6. The above
expressions show that, to the first approximattba,body boundary
conditions can be transferred from the actual ® ithean body
position. In order to take care of the motion ineflicby the
oscillating movement, these modified boundary cbods possess
an extra term that represents an additional salistgbution on the
body surface. As a consequence, the numerical ationl of the
flow can proceed considering a steady body with iffemtl body
boundary conditions.

This observation leads to a considerable reduciionthe
computational effort which is very important in thealysis of many
practical situations where small amplitude vibras@ccur.

S,: actual body position

S, mean body position

Figure 6. Small amplitude oscillations characteristics.

The results of these simulations where reporteglgisre, Silva

(2004) and Mourat al.(2006). Here we present only a few values

At low frequency body oscillations, Band I, theviildbehaves
much like if the body were fixed and the amplituafethe cylinder
oscillation has negligible influence on the vorteshedding
frequency f. The Strouhal number assumes valu¢sthavery close
to 0.20, that is S O (0.2) asf - 0.

In Band Il the body oscillates at high frequencide body
frequency of oscillation ,f dominates the phenomena and the
frequency of vortex shedding fis locked to it.

Finally, in Band I, the frequency of body osciltats lies in
between the two other bands. Band Il is a transiBand and one
can eventually observe the locking of the frequesici

Here the body Strouhal number is defined as

(1)

and the wavelength ratio, as defined by Williamsord Roshko
(1988), is:

= (32

df

o>

U
b

Figure 7 shows plots of the Strouhal number asatfon of the
body Strouhal number. The analysis of these figstesvs that, in
general, the high Reynolds number simulations agpgiee well
with the low Reynolds number vortex synchronizatimgions
devised by Williamson and Roshko (1988), exceptt thze
synchronization begins at a lower value of @t higher value of
the wavelength ratio), which is quite reasonables do the
increasing importance of the inertial effects asReynolds number
assumes higher values.

Figure 8 utilizes the data from the previous figute show the
dependence of the lock on frequency on the amg@itfdthe body
oscillations.

In Table 3 the body frequency of oscillation is kepnstant

for comparisons, Table 2. From these values onessame that the With @ low value, which corresponds tq $t0.008, Band I.

transferring of the body boundary conditions pradueasonable
results up to (A/d) = 0.810.4.

Flow around a Cylinder Oscillating with Large
Amplitude

For the analysis of the flow around a large amgétineaving
cylinder the body boundary conditions cannot badferred from
the actual position to the mean position.

The numerical simulations show that the flow isluehced
mainly by the body oscillation amplitude, A and thequency §.
In fact one can identify three main bands of theyboscillation
frequency.

Table 2. Mean lift and drag coefficients using the simplified approach.

J. of the Braz. Soc. of Mech. Sci. & Eng.

Recicar (2007) Moura (2007)
Angular .
velocity | AmPitudel o | | g sy [ o e | s | s
() (A)
0,01 -0,05] 1,238 0,196 0,008 0,027 1,215 0,06 0]008
0,05 0,069 1,19% 0,198 0,01)8 0,008 1,247 0498 O
0,1 0,071] 1,184 0,207 0,0¢8 -0,01  1,p4 0,215 0,008
0,05 0,15 0,067] 1,258 0,208 0,008 0,086 1,235 0197 0|008
0,2 0,124] 1,18% 0,198 0,08 0,092 1,256 0,199 0]008
0,3 0,162] 1,209 0,21 0,048 0,1313 1|2 0,209 0,008
0,5 0,269 1,151 0,211 0,08 0,165 1,303 021 0J008

Copyright O 2008 by ABCM

Table 3. Results for low frequency of oscillations.

F/::(?Jﬁrc Amplitde [ == & | st | st, | Ag

(©) (A)
001 | -0051 1,238 0196 0,008 1,171
0,05 0,069] 1,19% 0,198 0,008 1,17
0,1 0,071] 1,184 0,20/ 0,008 1,0p1

0,05 0,15 0,067] 1,258 0,208 0,008 1,1p2
0,2 0,124 1,18!f 0,19 0,008 1,010
03 | 0162| 1209 021 0048 1.0k
05 | 0269 1,151 0211 0,008 0,971

One observes that the Strouhal number is quitegitsee to the
amplitude of the body oscillation and the amplituofethe lift

008 coefficient curve seems to behave in the same maniikout a

definite pattern, as shown in Figure 9.

October-December 2008, Vol. XXX, No. 4 / 309
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Figure 7. Frequency of vortex shedding: in (a) A =0,15, (b) A = 0,30 and (c) A =0,50.
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Lock on frequency

0.00
0.10

0.20

0.30

0.40

Amplitude

Figure 8. Lock on frequency.

0.50

0.60

A=0.05

0

I
0.2

A

0.6

Figure 9. Lift coefficient amplitude for low frequency.

In Table 4 the body frequency of oscillation is kepnstant
with a high value which corresponds to, St 0.239. As the
amplitude of oscillation increases the synchromiratof the
frequencies is clearly observed and the drag aeffi decreases.
The amplitude of the lift curve now has a defintbehavior,

increasing linearly as shown in Fig. 10.

Table 4. Results for high frequency of oscillations.

Angular )
Freil:)ency Amg:;ude c | c | st]st | Ag
0,01 0,018 1,278 0,203 0,289 1,477
0,05 -0,009 1,095 0,240 0,239 1,004
0,1 0,054| 0,88¢ 0,240 0,239 1,211
15 0,15 0,023| 0,631 0,240 0,239 1,234
0,2 0,008| 0,347 0,239 0,239 1,4p7
0,3 0,044| 0,172 0,238 0,239 1,8p5
0,5 0,102| -0,14 0,23p 0,239 2,2B1
ABCM
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Figure 10. Lift coefficient amplitude for high frequency.

As done for a fixed cylinder, Figure 11 shows tifieand drag
coefficient curves obtained as the numerical sitmtaproceeds;
this figure refers to a condition where the syndization of the
frequencies is observed.

When the cylinder is at its highest position, pofgtthe lift
coefficient is close to its lowest value (higheggative value)
which is consistent with the pressure distributgfrown in Figure
12; in this figure a positive pressure distributicon the upper
surface, can clearly be observed; as expectedhasipposite occur
when the cylinder is at its lowest position, pdht

Points B and D represent intermediates positiorth@tylinder
and it is interesting to note that the highest suiess are observed in
front and at the rear of the cylinder, almost céingeeach other
which, by its turn, results in almost zero dragpasdicted by the
drag coefficient curve shown in Figure 11.

4.00 I I

2.00

0.00

Aerodynamics Forces

-2.00

25.00
Time

Figure 11. Lift and drag coefficients: w=1and A =0.3.
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Pressure Coefficient

Figure 12. Instantaneous pressure distribution: w=1and A =0.3.

Conclusions and Summary

The flow around a circular cylinder is analyzed ngsia
numerical Lagrangian simulation, the Vortex Methodl the
simulations were carried out with a high value bé tReynolds
number; no attempt to use a turbulence modelingmaxde.

A general introduction to the method is presented ased for
the simulation of the flow around a fixed cylindehtaining results
which demonstrated good agreement with known vaftes the
literature.

A simplified version of the methodology, valid flaw amplitude
oscillations, was also used to find out that (Akl)(0.4 [D.5)
represents the limits of its applicability. Thisaa important result
since it shows that the simplified version can bediin most of the
situations where vibration problems occur (Mour®02). The
understanding of several phenomena that occur duethe
interaction between flowing fluid and heat exchasgad chimneys
are typical examples.

The full version was used systematically to analiize flow
around a heaving cylinder. The (&rsus St) plots show that one
can identify three bands with clear characteridbiekavior. In band

I (low value of Sf) the flow behaves in much the same way as if the

cylinder were fixed; St assumes values very clogg2. Band Il is a
transition band. Finally in Band 1l (high value &) inertial
effects dominate and the shedding frequency iselddb the body
oscillation frequency.

In Band Il it is remarkable to notice that:

a) As the amplitude of body oscillation increast® drag
coefficient decreases systematically
b) As the amplitude of body oscillation increasahge
amplitude of the lift coefficient curve increasesehrly.
Each band limit depends on body oscillation atagk
during numerical simulation.
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