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High sensitivity biological sample measurement has been achieved by using a 10° tilted fiber Bragg grating sensing probe. Human 
acute leukemia cells with different intracellular densities were clearly discriminated by identifying their slight refraction index (RI) 
perturbations in the range from 1.3342 to 1.3344, combining with a temperature self-calibration property. We studied the rela-
tionship between the intracellular density of cells (S50 and S60) and their RIs, the experimental results provide a potential way to 
verify the hypothesis for “density alteration in non-physiological cells (DANCE)”. 
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The tilted fiber Bragg gratings (TFBGs) [1,2], due to the 
induction of a tilted angle between the UV laser beam and 
the fiber axis (otherwise similar to the normal straight fiber 
grating), provides an effective way which couples the input 
light from the forward-propagating core mode to backward- 
propagating cladding modes [3–6]. Because of these clad-
ding excitations, TFBG shows good sensitivity to surround-
ing refraction index (SRI) change [7–11]. With the increase 
of tilt angle, the envelope of the cladding-mode resonance 
shifts towards shorter wavelength, which shows a much 
improved RI sensitivity as these cladding modes propagate 
close to the interface between the cladding mode and the 
outside media. The dominant cladding modes of TFBG 
cover the very important region near 1.3 which can be used 
to measure the water and water-like solutions. Therefore, 
TFBGs provide a good choice for biochemical sensing. At 
the same time, all the wavelength resonances of a TFBG 
have the same temperature dependence (they shift by ~10 

pm/°C), so we could only consider the relative wavelength 
shifts and the temperature cross sensitivity over RI meas-
urement can be definitely eliminated [12]. 

In this paper, the discrimination of a group of biological 
samples, named S50 and S60 (corresponding to cells with 
different intracellular densities), which were separated from 
human acute leukemia cell line (K562) [13–18] by using 
discontinuous sucrose gradient centrifugation (DSGC) [19,20], 
has been achieved through a high sensitivity RI measure-
ment by using a 10° TFBG sensing probe. By comparing the 
slight RI difference between S50 and S60 (ranging from 
1.3343 to1.3344), we studied the relationship between the 
intracellular density of cells and their RI, which provide a 
potential way to verify the hypothesis for “density alteration 
in non-physiological cells (DANCE)” [21,22]. 

1  Theory of mode coupling in tilted fiber grating 

TFBGs are fabricated by using phase mask method from a 
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permanent refractive index change by induced a tilted angle 
between the UV laser beam and the fiber axis. In order to 
obtain the desired tilt angle, we rotated the phase mask 
around the axis of the writing beam. As shown in Figure 1, 
TFBGs provide an effective way to couple the input light 
from the forward-propagating core mode to backward-prop-     
agating cladding modes which can be detected in transmis-
sion spectra. 

Coupling input light to backward-propagating core mode 
only, the incident and reflected light of FBG are limited to 
propagate in the fiber core. The transmission resonances 
meeting Bragg condition can be expressed as  

 Bragg eff,core2 ,n    (1) 

where eff,coren  is the effective index of the core mode, and  

is the period of the interference pattern. As for TFBG, the  
can be considered as 

 
/ cos ,g     (2) 

where  is the tilt angle of the grating planes. By the same 
way, the Bragg reflection and cladding modes resonance 
wavelengths (Bragg and i) of TFBG are decided by a 
phase-matching condition and can be considered as 

 Bragg eff,core2 ,gn    (3) 

  eff,core eff,clad, ,i i gn n     (4) 

where eff,clad,in is the effective index of the cladding modes, in 

which i indicates the order of cladding modes. We consid-
ered the Bragg and cladding mode wavelength shifts 
(Bragg, i) which are caused by SRI (ns) changes. From 
eqs. (3) and (4), the wavelength shifts Bragg and i can be 
expressed as 
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(6) 

Due to 0,sn    and noting that eff,core 0sn n    

(the standard single mode telecommunication fibers), we ob-    
tain 

 Bragg 0,   (7) 
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We can conclude that the cladding mode resonances shift 
depend on the SRI perturbations, meanwhile, the depend-
ence is scaled by the dispersion of the cladding modes. 
When the SRI matches the effective index of one of the 
cladding modes, some cladding mode resonances gradually 
disappear as these mode couple to the outside. The envelope 
of the cladding modes shifts toward long-wavelength due to 
the SRI increases. Therefore, the RI measurement can be 
obtained by this way. Furthermore, the higher order clad-
ding modes are excited by the increasing of the tilt angle. 
The cladding mode resonances of the 10° TFBG cover the 
very important region near 1.33, so they can be used to 
measure the water and water-like biological solutions. 

2  Results and discussion 

2.1  Experimental setup 

The experimental setup for biochemical solutions measure-
ment based on a 10° TFBG is illustrated in Figure 2. Here, 
the sensing TFBG was lighted by a broadband source (BBS) 
and its transmission spectrum was monitored by an optical 
spectrum analyzer (OSA) with a resolution of 0.02 nm. 

2.2  RI responding characteristics 

As shown in Figure 3, a set of sucrose solutions with different  

 

Figure 1  The schematic diagram of TFBG biological sensor.  
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Figure 2  Experimental setup of biological sample measurement.  

 

Figure 3  Transmission spectra of 10o TFBG versus sucrose solutions.  

RI are measured. It presents the TFBG transmission spectra 
for several values of ns (RI measured by an Abbe refrac-
tometer) ranging from 1.3352 to 1.4200 in sucrose solutions. 
Just as we expect that the high order cladding modes shift 
notably but the lower order modes and the core mode are 
not affected. It is clear that the cut-off cladding mode reso-
nance depending on the penetration of the evanescent field 
of the cladding modes into the outside shifts toward 
long-wavelength for the increase of SRI. This cut-off clad-
ding mode can be used to measure media RI without ambi-
guity from neighboring resonances. As shown in Figure 4, 
we obtain the relative resonance position by detecting the 
cut-off as a function of ns. A linear response with RI sensitiv-
ity up to 557.79 nm/RIU has been experimentally achieved, 
which identifies its feasibility as a high sensitive fiber-optic 
refractometer for large range RI measurement. 

2.3  Intracellular density of cells measurement 

Figure 5 shows the transmission spectra of 10° TFBG under 
different cell sample suspensions (i.e. leukemia cell S50 and 
S60, both of them with the same concentrations of 2× 
105/mL), the buffer solution (saline RI ~1.33) and ethanol 
(RI~1.36) used for comparison. It highlights the fact that, 
when the surrounding RI increases (from saline ~1.33 to  

 

Figure 4  Linear response between the wavelength of TFBG cut-off res-
onance and SRI changes. 

ethanol ~1.36), the cladding mode resonances gradually 
disappear for the modes becoming leaky, and the cut-off 
wavelength (as marked by arrows) shifts towards longer 
wavelengths in easily distinguishable fashion. However, for 
the small RI changes associated with the biochemical solu-
tions S50 and S60, it is hard to discriminate them directly in 
transmission. On the other hand, if we calculate the spectral 
intensity difference of these cases versus saline as shown in  
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Figure 5  Transmission spectra of 10° TFBG versus different sample 
suspensions. 

 

Figure 6  Differential transmission of cell samples versus saline. 

Figure 6, the slight RI perturbations induce clearly measurable 
amplitude changes. This is because changes in the RI of the 
sample solutions shift the cladding mode resonances by 
small amounts but they have such large slopes that the dif-
ferential spectra then show significant amplitude changes. 
Figures 6 and 7 experimentally show that S60 has slightly 
higher RI than S50, which agrees with fact that S60 contains 
“young” leukemia cells with a higher intracellular density. 
An additional feature of the TFBG is temperature self-cali-     
bration where spectral shifts due to temperature changes can 
be eliminated by referencing all wavelengths to the core 
mode [1], which is unaffected by the surrounding RI and 
has the same temperature dependence with the other modes, 
as shown in Figure 7, thereby ensuring that the differential 
spectra are due solely to RI changes. 

3  Conclusions 

The feasibility of 10° TFBG based fiber sensing probe for  

 

Figure 7  Temperature-self-calibrated cell-sample discrimination via RI 
insensitive core mode reference. 

high-sensitive cell sample suspension measurement has been 
demonstrated. Human acute leukemia cells with different 
intracellular densities were clearly discriminated by identi-
fying their slight refraction index (RI) perturbations in the 
range from 1.3342 to 1.3344, combining with a temperature 
self-calibration property. The extremely high sensitivity for 
water-like solutions together with the temperature-self-cal-     
ibration ability makes it a good candidate for biological 
samples discrimination in a stable and label-free way. 
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