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CHAPTER I

INTRODUCTION

When polymers are exposed to high shear, major deformations of the

chains may be expected. The extent of deformation is a function of chain

length, intermolecular interaction, shear field, temperature, and the

nature and concentration of solvent. For the undiluted polymer, melt

viscosities have received much attention due to its importance in pro-

cessing. On the other hand, solution viscosity is a necessary tool on

understanding of molecular rheology. The viscosity normally approaches

a constant value, n
Q

, at low shear rates. When shear rate is increased,

the viscosity decreases from n
Q

and becomes a decreasing function of

shear rate. In most cases, an approximate power law dependence of vis-

cosity at high shear rates is attained. This reversible behavior is

also true for concentrated polymer solutions. Graessley^ has developed

a theory, called "chain entanglement concept", based on Rouse's bead-and-

spring model for polymer rheology. This theory fits most data well on

melt and concentrated solutions^. However, at very high shear or in

(3 39 40)
low concentrations, observed viscosity v

' ' ' shows a distinct devia-

tion from the predicted value from entanglement. This study utilizes

the unique capabilities of the High Shear Viscometer and the use of

series of high molecular weight polymers in low concentrations.

It is also likely that when elastic energy stored by shear input

exceeds the bond energy, degradation as a result of mechanical bond

1
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rupture will take place. A review on the subject of mechanochemistry

by Casale, Porter and Johnson^ indicates that numerous variables

associated with degradation processes and conditions have made the

comparison of results difficult. In this study, the material is

subjected to a homogeneous, simple shear field with a negligible

temperature variation during the shear. A permanent viscosity loss,

further confirmed by molecular weight decrease, is also observed and

related to the shear stress at which polymer degradation is at

steady state.



II. A. Polymers

CHAPTER II

EXPERIMENTS

The polymers under investigation are solutions of atactic poly-

styrene and polyisobutene, both in decalin. Polystyrene samples are

supplied by Pressure Chemical Co., Pittsburgh, PA. and Duke Scientific

Corporation, Palo Alto, CA. Polyisobutene samples are the Vistanex

Series manufactured by Exxon (Enjay) Chemical Co., New York, N.Y.

Data on both polymers as measured by calibrated Gel Permeation Chrom-

atograph (GPC) are shown in Table I. Purified decalin solvent is ob-

tained from Fisher Scientific Co., Fairlawn, N.J. It has cis to

trans ratio of 45 to 55 from density measurement^
4^

. Standard oils

used to calibrate the High Shear Viscometer are specified in Table II.

Samples are prepared at room temperature to a chosen concentration

by dissolving weighed polymer into aliquot amount of solvent in glass

bottles. The bottles are only allowed to turn over twice a day and

are not agitated to avoid any possible mechanical degradation due to

use of ultra-high molecular weights. It takes seven to thirty days

for the mixtures to become homogeneous solutions. Subsequent GPC

analysis shows the materials were not degraded during the sample prep-

aration process. A comparison of columns titled "Sample" and

"Solution" in Tables III and IV shows that the variation is less than

no/

3
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II. B. High Shear Viscometer

This instrument is basically a concentric cylinder rotational couette

viscometer. It was first designed by Barber (5)
and was then modified

and used extensively by Porter^. The High Shear Viscometer used

in this study is the second design of this instrument^

.

The possible sources of error encountered in couette flow are

minimized by the equipment design features. The test fluid is sus-

pended by surface tension in a thin gap between cylinders. The exten-

sion of the inner rotating spindle above and below the ends of the outer

cylinder eliminates end effects. The thin gap virtually guarantees a

homogeneous shear field and laminar flow in the test film.

The spindles are mounted to the drive with the choice of the

drive shaft of the smallest diameter, 1/8 inch, and suitable collets

and chucks. This arrangement allows the drive shaft to be selected

for maximum flexibility relative to the expected torque so that the

spindle and ring can act as a self-centering bearing.

The inherent viscous heating problem is minimized by the thin

film as well as by control of the temperature in both cylinders

through the use of a common thermostatic fluid^. A sample calcul-

(8)
ation for this study by use of the modified equation

AT = !&- (1)a
max 8 k

T
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shows an increase of only a fraction of a degree in the worst case,

where h = l.lxlO'
3
cm, y = 5xl0

5
sec"

1

, n = 1 poise, and k = 1.6xl0
4

3 o
g-cm/sec K for polystyrene in decalin solutions. The thermal con-

ductivity of polyisobutene is not available in the literature. However,

one would expect that it is of the same order of magnitude as poly-

styrene. All tests are carried out at ambient temperature (25°C).

The observed temperature rise is 0.6°C. in the concentrated system

under prolonged shearing. Thus, the viscous dissipation can be con-

sidered unimportant .

Two spindles of gap clearance of 1.126xl0"
3

cm, spindle #1A,

-4
and 3.318x10 cm, spindle #3, are used. The corresponding equation

for this geometry for shear rate is given as^

y = 0.1229^ (2)

where N is the rotational speed of the spindle in r.p.m.; h is the gap

clearance in cm; 0.1229 is the instrument constant; and -y, the shear

rate, has the unit of sec"^. The shear stress measured at outer

cylinder is given as

a = 631.2 T
y
k (3)

where t
v

is the torque measured at 10" position on the torque arm in

volts which is a result of amplification of transducer response; k is

the transducer constant in g/volts; and again 631.2 is the instrument

2

constant; a, the shear stress, expressed in dimensions of dyne/cm .
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The apparent viscosity, n, of the test film is simply the ratio of shear

stress to shear rate.

a
*

=

f (4)

Gap calibration of spindle #1A and 3 is achieved by running stand-

ard oils over the rotational speed range. Gap width can be calculated

by combining eq. (2), (3) and (4) if viscosity, torque, and speed are

known. An average value is then taken and standard deviations are 5.5%

and 3.8% observed for spindle #1A and #3, respectively. Using these

average h values to calculate shear rates as eq. (2), a replot of

log a vs. log y for the tested Newtonian fluids is shown in Figure I.

Displacement of lines in the figure is due to the differing viscosities

of the test fluids. Data of two spindles agree well in the shear rate

range at two temperatures, 25° and 31 °C.
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I I.C. Rheometrics Mechanical Spectrometer

The RMS-7200 Mechanical Spectrometer used is made by Rheometrics,

Inc., N.J. A pair of coaxial rotational cone and stationary plate is

used for measuring viscosi ty
(10)

. Shear rate is obtained by dividing

rotational speed over cone angle as,

Y " B (5)

where y is shear rate in sec"
1

, u is the rotational speed of the cone

in rad/sec, and 6 is the cone angle in radian. Shear stress is con-

verted from the measured torque at the plate as,

a 980.7 t —-— (6)
2-rr R3

o
where a is the shear stress in dyn/cm , R is the platen radius in cm,

and x is the measured torque in g-cm. Apparent viscosity for the gap

is again given by eq. (4) as ratio of shear stress over shear rate.

The assembly comprising the smallest cone, 0.01 rad (0.57°), and

a platen of 50 mm diameter is used for all samples except that some of

the concentrated solutions are measured on 100 mm platen for improved

sensitivity at low shear. The equivalent data at the two radii indi-

cate a good reliability. The edge effects are considered unimportant

due to the use of small gap angle'"' . Data are discarded when inertia

and elastic effects, as material "squeeze-out", is observed.
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II.D. Gel Permeation Chromatograph

A Waters Associates Model 200 Gel Permeation Chromatograph equipped

with an automatic injection system is used for molecular weight deter-

minations. The unit is equipped with columns of styragel beads of

nominal pore size of 10
7

, 3xl0
5

, 3xl0
4

, and 3xl0
3

X. The elution sol-

vent is tetrahydrofuran and the flow rate is kept constant at 1.0 ml/min,

Other conditions are temperature at 25°C. and sample concentration at

0.5 mg/ml or lower.

Polystyrene standards of narrow distribution (from Pressure Chemi-

cal Co. and Duke Scientific Co.) are employed for calibration. The

(-[?)
universal calibration method of Grubisic, Rempp and Benoit v

' indicates

that the separation process is based on hydrodynamic volume, ~[n]M»

for polymer coils flowing through the column.

At constant temperature and solvent, the relationship as

[n] M
Q

= [n]
b

M
b

is hold for linear amorphous polymers a and b. Mark-

Houwink Equations for polystyrene and polyisobutene in tetrahydrofuran

at 25°C. are
(13 ' 14)

MPS/THF* 2.489x10"^ (7)

and

Thus, a calibration curve of log M
w

vs. V^p (peak elution volume in ml)

for polyisobutene is obtained from polystyrene standards.
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It is realized that the calibration curve of polystyrene standards

shows a distinct higher slope for molecular weight higher than 2

million. Thus, the calibration curve is approximated by two linear

step functions.

log Nl = - 0.0555 Ve + 12.7, 5xl0
3
< M < 2xl0

6
(9)w w —

log M = - 0.1223 Ve + 20.48, 2xl0
6
< M < exclusion limit (10)

It is understood that the separation processes in the column should be

continuous towards the exclusion limit. Eqs. (9) and (10) are approxi-

mations of this curve.

The manipulation for weight and number average molecular weight

(15)
and the ratio is employed according to the Waters' Manual^ ' by using

calibration curve of eqs. (9) and (10). In practice, a computer pro-

gram is used to resolve the data.
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II. E. Experimental Procedures

I I.E.I. Flow Curve Development

Some typical flow curves are shown in Figure 2 and 3. Low and

intermediate shear rate data are obtained from the Mechanical Spectrometer.

High shear data are collected from the High Shear Viscometer. All runs

are at 25°C. Data from Spectrometer and Viscometer agree well and fall

on a smooth curve. See Figure 2 and 3.

The homogeneous solution is placed in the gap between cone and

plate according to the Rheometrics Manual Measurements are then

started at the lowest shear rate with measurable torque. Torque readings

are taken when they reached the steady state. Since high molecular

weight polymers are used, the possibility of shear degradation is con-

sidered throughout. Shearing is performed stepwise from lowest to high

shear rates with a frequent recheck at low shear. An arbitrary lower

limiting value of shear rate is chosen for each run, so that a repro-

ducible viscosity is always obtained to ensure no degradation products

from previous runs at higher shear. In this manner, a flow curve is

constructed progressively back and forth towards the highest possible

shear. Flow instability in the cone and plate geometry has limited runs

at higher shear before degradation can occur.

3 -1

Low viscosity materials are tested up to 10 sec at smallest

cone angle due to the instrument stress limit. However, high visco-

elastic materials tend to build up its elasticity at lower shear. For
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example, polyisobutene L-140 at 10% concentration can only be sheared

as high as 2.5 sec
-1

. Data from Mechanical Spectrometer are shown in

filled symbols in Figure 2 and 3. Not all data of polystyrene solu-

tions are shown in order to avoid congestion. Some typical flow curves

of these solutions represent the curve shape as well as the viscosity

and shear rate range for the combination use of the Spectrometer and

the Viscometer.

High Shear Viscometer is designed for shear rate above 10
3

sec"
1

and for the features mentioned earlier. Flow curve development is then

continued in this instrument provided that degradation is not observed.

Operation of High Shear Viscometer is given in detail in Manrique's

(8)
thesis

. Sample is pumped carefully into the gap, with spindle in

place, through a syringe and the sample line. To make sure the gap is

completely filled with sample, a pressure is applied to the syringe

with a clamp. The spindle is then turned slowly by hand to help

evenly distribute the test material into the gap by applied pressure.

This procedure is continued until the sample appears on top of the ring

gap. This is used as the first indication of a full gap. The clamp

pressure is then removed. The spindle is connected to the drive and

the assembly is ready for measurement. The normal force, though very

small in thin gap, tends to push the sample up and down in the gap.

A continuous feed of sample from sample line by vacuum effect will

further reduce the possibility of incompletely filled gap. The
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reproducible high and constant torque readings are used as a second

measure of a full gap.

Primary criterion of shear degradation is permanent viscosity

loss measured at low shear rate. This phenomenon is observed for high

molecular weight samples of both polystyrene and polyi sobutene at

higher shear. Whenever a permanent viscosity loss is detected, prolonged

shearing is carried out at that high shear rate until the torque

dropped to a steady state value. The temperature rise was noted along

this path. In some cases, this procedure took 20-30 minutes to reach

steady state. The rapid drop in torque at the early stage and the

subsequent levelling-off is a result of mechanical degradation.

Thermal and oxidative modes of degradation are neither expected nor

observed.

II. E. 2. Shear Degradation Measurements

All viscosity data obtained from the Mechanical Spectrometer are

reversible as no permanent viscosity loss is noted. However, shear

degradation as a result of permanent viscosity loss is found in the

High Shear Viscometer. When this occurs, the spindle is taken from

the barrel after the steady state torque is reached. The spindle is

air dried in a ventilating hood and washed thoroughly with tetrahydro-

furan. After proper filtration, the THF solution is collected and

ready for GPC injection. Additional and equivalent THF solutions

are also prepared from (a) the sample taken before reaching the gap,
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"line-end sample", (b) the sample in the syringe before going into the

line, "syringe sample", and (c) the sample prepared in the bottle,

"solution sample". Control samples taken directly from supplier's jars

are also prepared. All concentrations for GPC analysis are kept at

0.5 mg/ml in THF except those of the "spindle sample" which is much

lower. These are, of course, the important samples.

The GPC instrument is operated at least 24 hours prior to test-

ing to assure a constant temperature and flow rate. Flow rate is

checked frequently and found to be 1.00 ml/min + 2%. Detector sen-

sitivity was set at 16x for spindle samples and 4x for the rest. For

the highest sensitivity, Ibx, runs, 36 hours of warm-up is required

to achieve a stable base line. The instrument is protected from any

small external vibration, e.g. heavy foot-steps or slamming of the

door. The molecular weight and its distribution thus measured are

recorded in Tables III and IV.



CHAPTER III

RESULTS AND DATA REDUCTION

III. A. Shear Degradation Results

III.A.1. General Comments

Both polystyrene and polyisobutene are found to degrade under high

shear in laminar flow. No degradation is observed in data from the

Mechanical Spectrometer because of the lower level of shear rates and

stresses. In the High Shear Viscometer, care has been taken to evalu-

ate and exclude degradation caused by pumping the polymer solutions

into the gap between the cylinders. Essentially, the pumping is a

capillary extrusion through the inlet tubing. The shear stress at

wall can be made low by slow injection rates. However, there are

several junctions along the injection line which connect tubes of

different diameters. These junctions can cause entrance effects

which may also lead to shear degradation^^. Two extra samples are

thus collected for each run. They are the syringe sample and the

line-end sample. Results on these samples are included in Tables 3

and 4. As judged by both experimental values obtained, and direct

comparison of chroma tograms , shear degradation does not occur during

injection pumping of sample into High Shear Viscometer.

Among the undegraded polymers, the average M and M
w
/M

n
obtained

from GPC are listed in column 6 of Tables 3 and 4 for both polymers.

14



15

Standard deviation is shown as + percentage after the mean value for

polystyrene A and B and polyisobutene L-140 and L-100. Single data is

used for polystyrene C and D and polyisobutene LM-MH. A good consis-

tency is shown by the standard deviation from the GPC measurement and

calculation.

The manufacturer's specification of polystyrenes are

Polystyrene A: Mw = 7. 1x1

0

6
, M /M =1.1

w w n

M
w

= 2x1 °
6

' V M
n
s}

' 2

M
w

= 6.7xl0
5

, M
w
/M

n
= 1.15

Ml, = 2.3xl0
5

, M /M = 1.06
w w n

Polystyrene B

Polystyrene C

Polystyrene D

Polyisobutene polymers are expected to be near the most probable dis-

tribution due to the polymerization process.

When comparing experimental M
w

to the manufacturer's specifica-

tion, polystyrenes A, B, and D are 3, 15, and 6% higher, respectively;

while polystyrene C is 17% lower. The experimental M /M values are
w n

almost as much as twice higher for polystyrenes A and B than the

suppliers' data; while polystyrenes C and D are 36 and 15% higher.

These variations are attributed to the assumption that column resolu-

tion is approximated by step linear functions towards the high molecu-

lar weights. The M
w

values for polystyrenes B, C, and D are correlated

well on the lower linear GPC calibration curve, i.e. eq. (9) in

Chapter II. A more precise and complicated GPC manipulation method

which takes into account the sigmoidal calibration curve and peak

broadening correction will improve the results.
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Slagowski (24)
reported polystyrene of molecular weights higher

than about 10
7

g/mole would be degraded under normal GPC elution con-

ditions. In this work, polystyrenes A and B have high molecular

weight tails in the order of 10
7

, estimated by the corresponding

eluent volume in the chromatogram by using the higher linear calibra-

tion curve, eq. (10) in Chapter II, to this region. A simplified

calculation of highest shear stress at wall for connecting tubings

between GPC columns is 480 dyn/cm
2

. This is assumed below the criti-

cal stress for laminar shear degradation (cf. Figure 4). The possible

turbulant flow in the pumping head, junctions of tubings, and the

filter is suspected for the cause of degradation. If this is true

then that will be the limit of use of GPC characterization. A high

resolution GPC for high molecular weight polymers ranging from 10
6

to 10
7

using columns packed with small gel particles has been reported^
25 )

Although the difficulties of running high molecular weights in

GPC has been explored, and remaining yet to be resolved, the main

purpose of this study is to check the shear degradation accompanying

high shear viscometry. That is, the changes in M and M /M are
w w n

monitored carefully and further determine the regions of shear for

which the materials are mechanically stable or unstable. By direct

comparison of the M differences before and after shear, the sizable

viscosity and M
w

loss is attributable to shear degradation.
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III. A. 2 Polystyrene in Decalin Solutions

Shear degradation has been observed under high shear conditions

in the High Shear Viscometer for polystyrene A, B, and C at high con-

centrations. (Table 3) Polystyrene D is mechanically stable over the

full stress range. A double logarithmic plot of final value of M
w

for the degraded polymer vs. shear stress at steady state is given for

several concentrations in Figure 4. The molecular weights correspond

to the maximum steady state degradation at each shear stress. The

final molecular weights of sample D measured at different stresses

lie below the straight lines distinguishing the mechanically stable

and unstable region. The data suggest that one may develop a curve

delineating the boundary of mechanical stability which can become a

useful empirical correlation in applications involving shear fields.

III. A. 3 Polyisobutene in Decalin Solutions

In a fashion similar to that for polystyrene solutions in decalin,

degradation of this system is found only in the High Shear Viscometer

and only for the two highest molecular weight samples, L-140 and L-100.

Sample LM-MH is found to be stable over the full measurable shear stress

range. See Table 4. Data points are insufficient to do a thorough

analysis as in Figure 4. Porter and Johnson^
19

^ have shown similar

plots for polyisobutene in cetane. They use polymers of M
y

= 1.4x10

and 8xl0
5

, concentrations of 4 ~ 1 0% , and the same type of viscometer.
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Their final molecular weights are determined internally by viscosity-

molecular weight relationship.

10% Solutions of L-140 and L-100 are too viscous to pump through

syringe and sample line in the Viscometer. Only 5 and 2% solutions

are tested and then are found degraded. Flow curve development for

these two concentrations are terminated so that the reported viscos-

ities are reversible.

III.B. Flow Curve Superposition

1 1 I.B.I General Comments

Several parameters have to be evaluated before data superposition

can be attempted. Zero shear viscosity, n
Q

, and the experimental

relaxation time, t
q

, are the most important two. For n
Q

the values

are obtained experimentally except in some cases by extrapolation with

the aid of Graessley's master curve^ 0
^ for the proper M /M . The

w n

data are listed in Tables 5 and 6. For x there are three conventional
o

ways of estimation. One can choose x
Q

as the reciprocal of the shear

rate at which n has dropped to some fixed fraction of n
Q

. Such a

method is employed here and the fraction is chosen arbitrarily at 0.8.

Alternative methods may take t
q

as the reciprocal of the shear rate at

intersection of extrapolation of two linear Newtonian and power-law

portions or may assign t
q

by superposition of the experimental data

on a theoretical master curve of n/n
Q

vs. yt
q

. These methods require
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a power law region to afford a meaningful interpretation. Our

experimental flow curves, Figure 2 and 3, comprise a family of sig-

moidal curves. Therefore, the first method takes the advantages of

consistency.

III.B.2. Polystyrene in Decalin Solutions

Flow curves for each molecular weight are first normalized as

log n/n
Q

vs. log y. Using x
Q

as reciprocal value of y at n/n
Q

= 0.8,

the curves are reduced again to log n/n
Q

vs. log yt
q
/2. The n

Q
and

x
Q

values are listed in Table 5. Reduced flow curves for solutions A,

B, C and D are shown in Figure 5 to 8. The dotted curve represents

the Graessley's master curve, with appropriate distribution, shifted

to fit the experimental data. Superposition is good at low yt
Q
/2.

However as yt
0
/2 increases, deviation from Graessley's curve becomes

more evident. The agreement of experimental data for 13% solutions

of polystyrene A and B with entanglement theory is reasonably good

over the measurable shear rate range. Slopes of the power law region

for these two samples are identical to melt monodisperse polystyrene

(0.82)
(21)

.

Figure 11 is a plot of log n rt
vs. log C M. C Mw is used for con-

0 w w

(22 44)
venience to evaluate the influence of the molecular entanglements v

'

The data points in Figure 11 are near the critical region for formation

of entanglements. A slope of 4.5 is obtained for solutions of high
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C M values in Figure 11. The curve for solutions of low C M values
w

can be approximated by a slope of 1.3 in the plot of log n vs. loq C M
0 3

w'

Figure 13 shows plot of log Tq vs. log C. Straight lines can be

fit easily for samples B and C. Samples A and D do not afford linear

relationships. Further correlation of t d/t to C M is shown in Fiqure 14.
K 0 W

III.B.3. Polyisobutene in Decalin Solutions

The flow curves are reduced in the same manner as the polystyrene

solutions. Plots of log n/n
Q

vs. log y t
q
/2 for L-140 and L-100 are

shown in Figure 9 and 10. Data of n
Q

and t
q

are given in Table 6.

Dotted lines in each reduced plot represent Graessley's master curve

with individual M /M as measured in GPC. Good agreement at low reduced
w n

shear rate is again achieved; nevertheless, a deviation from the master

curve is observed at low concentrations and at high shear rates. 5%

Solution of L-100 is the only case which approaches power-law behavior

giving a slope of 0.65.

Plots of log n vs. log C M and log x vs. log C are shown in
0 wo

Figure 12 and 15, respectively. In Figure 15, data for solutions of

L-100 show good linear correlation in the concentration range, 2-10%,

in contrast to that for solutions of L-140.

Solutions of LM-MH are not shown because they lie below the crit-

ical entanglement region. The experimental relaxation time has no sig-

nificance in this case.

Plot of i n/x vs. C M for L-140 and L-100 is shown in Figure 16.



CHAPTER IV

DISCUSSION

IV. A. Shear Degradation

IV. A. 1 . General Comments

Homolytic rupture of main chain carbon bonds is generally found in

mechanochemistry (4
) and especially for the two polymers under study here.

As macro radicals are the reactive species formed by stress, they can

undergo chain transfer, recombination, and disproportionate depending

on the reactivity of radicals and the environment. The probability of

recombination is reduced because the macroradical s are separated beyond

reaction distance by the same forces which produce rupture. By using

radical acceptors in polystyrene, Baramboim'
27

) concluded no appre-

ciable effect on the rate or extent of degradation. It is, thus,

speculated that disproportionate is the major mode of radical termin-

ation which forms linear products. The other polymer, polyisobutene,

is considered to be of high chemical purity, non-polar, and structurally

linear, amorphous, and regular. It is also not prone to chemical

cross! inking.

Mechanical mechanisms such as random or selective scissions have

been proposed. Bueche^^ concluded the mid-chain rupture due to the

highly concentrated stress in that chain region. An alternative random

(29)
scission is commonly found in oxidative degradation. Scott' has

21
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evaluated different criteria for random degradation of linear polymers.

He gives a correlation that predicts the relative decrease in weight

and number average molecular weight.

In this study, degradation is found for entangled systems. It is

believed that degradation occurs through the extending force on a net-

work of enmeshed polymer chains. Since the entanglement points can be

treated as randomly distributed in the system, breakage at the mid-

point between entanglements is expected to be random^.

Temperature and solvent are constant factors in this study.

Decalin is reported as e-solvent for polystyrene at 19.3°C. with trans

to cis ratio of 77 to 23^ 30 ^. Observations for polystyrene solutions

show an initiation of turbidity loss at a temperature of 18°C; total

clarity occurs at 20 C. and above. The temperature of the experiment,

25°C. , is near the e-condition. A contracted coil conformation is

assumed. Turbidity is not observed for polyisobutene in decalin solu-

tions so low as 15°C. Investigation of the e-condition for this pair

is not available in the literature.

IV. A. 2 Molecular Weight and its Distribution

A decrease of molecular weight is a general feature of shear

degradation. In rare cases crosslinking and branching reactions can

predominate and lead to a molecular weight increase. The decrease in

molecular weight is usually rapid at first, then with the reaction
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becoming slower until an apparent limiting molecular weight is reached.

The existence of the final molecular weights have been correlated with

shear stress under fixed conditions by Bueche^
28

^.

In this study, polystyrene D shows a maximum of 3% variation in

terms of M
w
's which are measured before and after severe shearing.

(See Table 3.) It is thus concluded that this molecular weight is mech-

anically stable over the experimental stress range. (See Figure 4.)

The other polystyrenes suffer progressively more degradation at higher

molecular weights. It is shown that the initial molecular weight does

not govern the final molecular weight.

For polyisobutene solutions, sizable loss of M is found for
w

L-140 and L-100. LM-MH has been concluded to have no degradation when

examining the molecular weight change. (See Table 4.) The final molec-

ular weight is also independent of initial molecular weight. Correla-

tion of this final molecular weight and the steady state shear stress

(19)
is reported for polyisobutene in cetane at 4~ 1 0%

v
. A linear relation-

ship is obtained at each concentration. In this study, only 2 and 5%

polyisobutene solutions are studied. To obtain a similar plot, one

needs more data.

When comparing M /M in Table 3 between values for undegraded and

degraded polymers, sample D can be concluded of not changing. Sample

C data does not change much perhaps since shear stress is near the

critical value as indicated in Figure 4. Samples A and B are difficult
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to compare due to their high magnitudes and experimental errors. The

changes of M
w
/M

n
in Table 4 are not appreciable since polyi sobutene has

an initially broad distribution. A non-selective degradation is

possible for the above entangled systems. A definite conclusion would

require further studies such as electron spin resonance.

IV. A. 3 Concentration Effects

The influence of polymer concentration on the extent of shear

degradation in solution is not sufficiently clear from available lit-

erature. In general, shear thinning and shear degradation can be

considered as competitive processes which depend on temperature and

the chain relaxation time. In an entangled system, chain breakage

occurs perhaps near mid-way between two consecutive entanglement points

before they can slip. Therefore, in concentrated solutions where en-

tanglement is important, degradation of 2, 10, and 13% as shown in

Figure 4 is positively dependent on concentration. The anomalies of 5%

solutions may be due to experimental error. In general, the envelope

defined by Figure 4 is fairly narrow over the concentration range.

Normalization of concentration dependence is attempted by plotting stress

axis as log a/c, log a/c
2

, log oc and finally a plot of log M
w

vs. log

o/oc indicates a good linear correlation; however, no immediate physi-

cal explanation can be drawn from this.
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IV. A. 4 Shear Stability Curve

Correlations between final molecular weight for shear degraded

polymer and the steady state shear stress have been proposed in differ-

ent forms by Bueche (28)
and Harrington and Zimm (32)

. Experimentally,

semi-longarithmic plot of M
w

and o is used by Porter, Cantow and

( 33)Johnson double logarithmic plot by Abdel-Alim and Hamielec (34)
.

( 31

)

Ram and Kadim following the development of Harrington and Zimm, ob-

tain a single parameter representing the minimum force required for de-

grading a polymer sample to its final state.

The shear stability curve in this study is plotted double log-

arithmically. The envelope of shear stability curves, in Figure 4,

divides the mechanically stable and unstable region. High shear data

for polystyrene D lie in the stable region so that both viscosity and

molecular weight losses are not measurable. The intersection of initial

molecular weight and shear stability curve is the critical stress locat-

ing the onset of shear degradation as a function of temperature, con-

centration, solvent and the particular shear mode in use. In this study,

the shear stress recorded in the Mechanical Spectrometer is below the

appropriate critical value and so within the stable region. It is also

clear from the plot that initial molecular weight has effects only on

the critical stress and rate of reaction. Final molecular weight is

independent of its initial value in mechanical degradation.
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IV. B. Flow Behavior

Graessley's molecular entanglement theory^
1

) has been used to

evaluate experimental flow curves for the solutions of polystyrene and

of polyisobutene in decalin. As treated in Graessley's theory^
20

) the

shape of flow curve is a function of molecular weight distribution,

especially in the transition region from Newtonian to power-law portion.

The theory does not treat the limiting high shear region. The master

curves obtained are chosen with proper distribution of the polymers

tested here. Good agreement in this transition region suggests the

theory has been useful. However, the deviation from the theory beyond

the transition makes power-law exponent predictions more inaccurate.

It is also noticed for solution viscosity that n
Q

should be re-

placed by n
Q

- n • Since the solvent viscosity of decalin is much

lower than the zero shear viscosity of all solutions, except those of

LM-MH. Use of n
Q

instead of n - n
$

is within experimental error.

LM-MH solutions are not tested for superposition.

IV. B.I Zero Shear Viscosity

Berry and Fox'
35

^ have obtained a collective plot of log n
Q

vs.

loq M for various linear polymers including polystyrene and polyiso-
w

butene. They show straight lines of slope 1.0 and 3.4 with the inter-

section called critical molecular weight, M
c

- The change of slope is

continuous rather than an abrupt break over a decade of molecular weight.
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The data and the graph are not affected by variations in the molecular

weight distribution. When M
w
>M

c>
entanglements of polymer chains

exist and determine the 3.4 power dependence. A review for polystyrene

melt reported this power value from 3.1 "4 according to different in-

(43)
vestigators v When M

w
<M

c>
viscosity is a linear function of molec-

ular weight in disentangled systems. The equivalent M for solution

state is expected to vary inversely with the concentration. It is pro-

posed that the product of C M
w

reflects the characteristic entanglement

compositions in solution state^
44

^. Other workers^
1 ' 22

^ have also used

C M
w

to correlate r\ . Polystyrene and polyisobutene solutions in this

study are plotted in log n vs. log C M in Figure 11 and 12. In Fiq-
o w 3

ure 11, high C M
w

solutions are fitted with a least-square 4.5 slope.

A distinct lower slope, 1.3, is drawn across for lower C M solutions.
w

It is clear that the concentrations and molecular weights chosen here

are near the transition region. The extrapolated break point, 68,000,

is compared to 50,500 for polystyrene solutions in n-butyl benzene at

30°C.(
22

). The melt state data is 35,000^ . In Figure 12 for poly-

isobutene solutions in decalin, slopes of 4.5 and 1.1 give the break

point at 62,000. Porter and Johnson^
36

^ reported 17,000 on absolute

molecular weight scale for polyisobutene in cetane at 135°C. The high

slope at high C M
w

axis is attributed to the concentration dependence

of 4-5th. power at high molecular weights^
23

). Ferry has suggested

forms of C M
0-68

or C
1,47

M for n
Q

function^
23

)
. These cannot be con-

firmed for low molecular weight polymers used in this study.
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IV. B. 2 Experimental Relaxation Time

Relaxation processes are a characteristic of chain molecules.

They depend on chain length, chain geometry, medium, temperature, and

stress field. The longest relaxation time is usually employed to

represent the processes rather than the full spectrum. Rouse derives

the relaxation time, t
r

, based on bead-spring model with free drain-

ing condition. Graessley evaluates in his theory the maximum Rouse

relaxation time with dependence on molecular weight at sufficiently

low shear rates. It is presumed that each chain possesses a discrete

set of relaxation times like that of an isolated Rouse chain. All are

fixed fractions of the largest relaxation time.

At sufficient low macroscopic shear on an entangled system, random

thermal motion as characterized by Rouse relaxation time can establish

new couplings with incoming chain molecules as previous molecules

leave. Thus, the topological state of the system remains the same as

that at rest. This is the equilibrium situation envisioned in the New-

tonian flow region.

For higher macroscopic shear rates, the time that potential coup-

lings remain within the pervaded volume of a molecule will decrease.

The time to form an entanglement as governed by the longest relaxation

time is now shorter than the time of passing each potential coupling

molecule as that governed by external shear rate. Accordingly the steady-

state entanglement density of the system is expected to be a decreasing

function of the shear rate.
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In this study, the time constant at 80% drop from Newtonian be-

havior is selected to characterize the relaxation behavior. Its magni-

tude controls the time for formation of molecular chain entanglements

between any molecules in the system and other molecules passing through

its sphere of influence. Since the experimental relaxation time is near

the Newtonian region, its value is of the order of the Rouse relaxation

time, and hence it is determined both by the size of the chain and by

the parameters of the medium.

Plots of log x
Q

vs. log C at constant molecular weight for polysty-

rene and polyisobutene solutions are shown in Figure 13 and 15, respec-

tively. Polystyrene B and C are fitted with a linear relationship over

the test range of 2-13%. Polystyrene A and D are less accurately fit

to linear functions as indicated by the correlation coefficient. For

polyisobutene, a good linear relationship is obtained for L-100 over the

test range of 2*10%. Existed data of L-140 provides a less accurate

linear correlation. LM-MH is not shown because the experimental relax-

ation time loses its meaning for disentangled solutions.

To check t
q

against t
r

, plots of t
r
/t

q
vs. C M are obtained for

polystyrene and polyisobutene in Figure 14 and 16. In Figure 14 a ten-

tative linear function is obtained across polystyrenes A and B. Figure

15 shows the best straight line for L-140 and L-100. Theoretically,

one expects a linear relationship between t d/t for strongly entangled
K 0

sys terns . Experimental data with large error has been reported^^.
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The scatter of data here is mainly because the test solutions are

near the entanglement transition region. x
R

has inherent error orig-

inated from n
Q .

t
q

has an experimental error inherent in its defini-

tion. Therefore, a combination of all errors shows up in both plots.

Acquisition of more data points would be desirable to reduce the error.

IV. B. 3 Reduced Flow Curves

Reduced flow curves for both polymers are shown in Figure 5~10

with Graessley's master curve drawn in dash line. The basis for

Graessley's theory is the supposition that intermolecular chain en-

tanglements control the magnitude of the viscosity and that the de-

crease in viscosity with increasing shear rate is caused by shear in-

duced changes in the network of entanglements. Traditionally flow

curves are developed on melts and concentrated solutions with shear

3 -1
rate seldom higher than 10 sec due to the instrument stress limi-

tation. In this study, most of the solutions are not strongly en-

tangled as explained previously. The important contribution from

high shear capability of high shear viscometer reveals clearly the

flow curve approaches a limiting high shear value.

The lower the concentration or the higher the shear rate, the

deviation from Graessley's entanglement master curve is more evident.

Take polystyrene A as an example (Figure 5). Data for a 5% solution

agree very well with the Graessley's master curve. The power-law
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exponent is identical to that for monodisperse polystyrene melts^
21

^.

Data for the 2% solution agree well only at reduced shear rates n 12
» o

'

smaller than a, while data for a 1% solution can only agree at reduced

shear rates less than 2. This phenomenon is true for other molecular

weights. Deviation from the entanglement curve begins earlier at lower

concentrations as high shear limits are more readily approached. The

changes in entanglement density at low concentrations due to the shear

interaction cannot be significant because it is initially low. Flow

curve of 1% solution of polystyrene A does level off at higher shear

rates and the second Newtonian viscosity, n , is approached. Yet n is

difficult to obtain experimentally since shear degradation and second-

ary flow vortices will become important before n can be reached^
38

^.
oo

This deviatory phenomenon is also evident for polyisobutene solutions.

(Figure 9 and 10.) Higher concentrations of L-140 and L-100 are not

shown since these materials are too viscous to put into the thin gap.

( 28)
Kirschke and Mewes v

' offer a trial -and-error method to find n •

00

(41 )

Talbot v
' tries the asymptotic approach to predict by using numeri-

cal analysis of a defined error function. These two methods are not

attempted here owing to the lack of a profound theoretical justification

Ito and Shishito^
3,39 ' 40

) study the flow curves of polydimethyl sil-

oxane melts and its solutions in petamer siloxane, as well as commer-

cial and narrow distribution polystyrene in diethyl phthalate. The

data are obtained from their specially designed capillary rheometer
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which has shear range of 10" 2
~10

6
sec"

1

. Reversible viscosity is

claimed for all measurements prior to the onset of melt fracture. They

observed the deviation from Graessley's master curve in all cases.

After introducing a shear-independent frictional viscosity, n frict. =

n_n
ent.'

int0 Graessley' s theory, one can superpose the flow curves by

plotting log nMt/ntnt> %

Q

vs. log fy/2. where t/ = 6 \-nfrUt )

2
M
w
/tt CRT. This method is not attempted here since was obtained

by trial and error method to fit Graessley's master curve. The fric-

tional viscosity here cannot be clearly defined. Their choice of sol-

vent of chemical structure comparable to the test polymer signifies

the evaluation of friction. The friction action in this study is much

more complex to afford valid treatment, because of the polymer and

solvent interactions.

An alternative approach, perhaps allowing superposition, is to plot

log (n-n
oo
)/(n

0
-n

oo
) vs. log yt

q
'/2, where t

q
' is related to the form of

(n
0 -n00

) MW/CRT. This interpretation examines the fractional change of

viscosity between its two Newtonian limits. The here can be estim-

ated graphically from log n
Q

vs. log C M
w

plot. A theoretical implica-

tion is that the lower Newtonian region, AE,

C 1,

05
r.

B

(

(

'

1

log CMW
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is continued and extended to the upper Newtonian region, EX, by com-

pensation of shear action. The slope of upper Newtonian curve is ex-

pected to have the same slope of the lower Newtonian region.

Trials using this method for this study have not been success-

ful since the data of both polymer solutions here are insufficiently

definitive to extrapolate to high values of C M
w

axis; because the

solution ranges are near the entanglement transition and so errors

are large (Figure 11 and 12). Both higher and lower C M solutions
w

are desirable for this approach.

It has been shown that all the three LM-MH solutions lie below

the critical entanglement region. The two polystyrene solutions of

lowest C M
w

values, 2% of D and 5% of C, are expected to behave so as

judged from Figure 11. However, weak non-Newtonian behavior has been

observed for the five above solutions. Although the effect is small,

this phenomenon may be a consequence of viscous heating seen at high

shear rates. Other workers^
40

) treated this problem as a result of

excluded volume effect.

(42)
Williams^ in his review article has discussed the contributions

to viscosity besides entanglement effect. They are the hydrodynamic

interaction, internal viscosity, spring coefficient, and solvent power.

These relative contributions to the apparent viscosity become definitely

important at higher shear rates, especially in the upper Newtonian

region. Greater understanding of these subjects in molecular rheology

is necessary to interpret the experimental deviation from the entangle-

ment theory.
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V.l Notation

oymDO

i

Explanation Unit

c concentration g/ml

a shear stress 2
dyn/cm

a steady state shear stress dyn/cm
•

Y shear rate sec"

n apparent viscosity poise

n
o

zero shear viscosity ii n

solvent viscosity

n. high shear limiting viscosity n n

[n] intrinsic viscosity dl/g

HSV High Shear Viscometer .

RMS Rheometrics Mechanical Spectrometer

GPC Gel Permeation Chromatograph(y)

T torque g-cm

T
v

torque measured in volt as in HSV volt

T
o

experimental relaxation time sec.

T
R

Rouse relaxation time 6 n -n )M /tt CRTv
o s

; w
sec.

h gap width between cylinders in HSV cm

N spindle rotational speed in HSV rpm

cone rotational speed in RMS rad/sec.

6 cone angle rad.

T temperature °K

k
T

thermal conductivity g-cm/sec
3

°K
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SfflS2l Explanation

k

R

V
e GpC elution volume

M
w weight average molecular weight

Unit

transducer constant in HSV g/volt

platen radius
cm

ml

g/mole

VM
n

molecular weight distribution _
M
c critical molecular weight for a/mnlp

entanglements
y

M
w,i initial molecular weight g/mole

M
w,f final molecular weight of the polymer q /mo l ewhich is shear degraded to a steady state



V.2 Tables

TABLE 1

Test Polymers and Solvents

Polymer \ m m
-vf—

n

Polystyrene A 7.32 X 10
6

2.39

2.27 X 10
5

2.63

" c 5.56 X 10
5

1.57

2.44 X 10
5

1.22

Polyisobutene L-140 3.29 X 10
6

3.93

" L-100 2.65 X 10
6

4.17

11 LM-MH 7.83 X 10
4

4.32

Manufacturer

Duke Scientific Co.

Pressure Chemical Co.

Exxon (Enjay) Chemical Co

values obtained from calibrated GPC analysis

Solvent

Decalin (Purified)

Tetrahydrofu ran

(Certified)

Specification

cis/trans = 45:55

b.p. * 65.8-66. 0°C.

Manufacturer

Fisher Scientific Co.
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Fluid

TABLE 2

High Shear Viscometer Calibration Fluid

Specification

Ethylene Glycol

Cannon #S-20

Fluid 100

Reagent Grade,
19 cp. at 25°C.

30.32 cp. at 25.0°C

98.0 cp. at 25°C.

Manufacturer

Eastman Kodak Co.*
1 )

Cannon Instrument Co. {2)

Brookfield Engin-
eering Lab. (3)

(1 ) Rochester, New York

(2) State College, PA

(3) Stoughton, MA
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TABLE 3

Sample

7. 32x1

0

6

2.39

eg/mi

0.0504

0.0201

Molecular Weight and Molecular Weight Distribution of

Polystyrene, a Function of High Shear History in Decalin
Undeqraded

Solution Syringe

7.25x10'

2.37

7.59x10'

2.25

7.41x10

2.47

7.23x10

2.31

Line-end

7.34xl0
6

2.39

7. 30x1

0

6

2.34

(avq

7.34x10'

+1.7%

2.36

+3.0%

Spindle

1 .24x10*

2.74

1. 06x10'

2.30

Stress at
Steady State,
dyn/cm^

l.OxlO
4

3.02x10

B 2.27x10

2.63

0.102

0.0501

2.31x10'

2.37

2. 35x1

0

1

2.61

2.28x10'

2.31

2.34x10'

2.43

2.26x10'

2.39

2.35x10'

2.57

2.31x10

+1.8%

2.48

+5.2%

8.66x10'

2.34

6.24xl0
!

2.72

2.7x10

2.59x10

5.56x10'

1.57

0.132

0.102

4.33x10"

1.71

5.22xl0
!

1 .69

4.80x10

4.43x10

D 2.44x10'

1.22

0.133

0.103

0.0505

2.43x10'

1.25

2.42xl0
!

1.26

2.37xl0
!

1.35

6.81x10

6.52x10

4.05x10

In the bracket, the upper value is M
w

and the lower value is M
w
/M

n
; as both ob

tained from calibrated GPC analysis.
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TABLE 4

Sample

L-140
3.31x10

3.93

L-100
2.70x10

4.01

Molecular Weight and Molecular Weight Distribution of

Polyisobutene, a Function of High Shear History in Decalin

LM-MH
7.83x10

4.32

c^g/ml

0.0508

0.0506

0.102

Solution Syrinqe Line-end
Undeqraded

Spindle

3.19xl0
6

3.35xl0
6

3.31xl0
6

3.29xl0
6

2.15xl0
5

3.78 4.03 3.97 +2.1% 3.74

3.93

±2.7%

1.79xl0
6

3.79

2. 65x1

0

6

3.84

2. 58x1

0

6

4.67

2.65xl0
6

4.17
2.65xl0

6

+1 .9%

2.29xl0
6

4.40

1.26xl0
6

5.41

4.17

+8.5%

1.06x10
6

3.91

8.00xl0
4

4.41

Stress at

Steady State,
dyn/cm^~

2.10xl0
4

2.65x10

1.33x10

2.00x10

2.60x10

4.66x10

In the bracket, the upper value is M and the lower value is M /M ; as both ob'

tained from calibrated GPC analysis.



TABLE 5

Flow Parameters of Polystyrene in Decalin

M c, g/ml C M n
0

. Poise
1 \ w

A
.0504 3.69xl0

5
1 .00x1

0

3
4.0 8.91X10"

1

32xl0
6 .0201 1.47xl0

5
5.80 4.65 5. 18xl0"

2

.0101 7. 39x1
0^

1.00 1.15xlO"
2

B
.132 3. 00x1

0

5
4. 80x1

0

3
4.88 4.15X10"

1

27xl0
6 .102 2.32xl0

5
1 .30x1

0

3
2.00 3.55X10"

1

.0501 1.14xl0
5

3.50X10"
1

2.08X10*
1

1.76xlO"
2

.0200 4.54xl0
4

8.80xl0"
2

9.09xl0"
3

C
.132 7. 33x1

0

4
3.35X10

1

7.25xlO"
3

4.78xl(f
2

56x1

0

5 .102 5.67xl0
4

1.15X10
1

2.86xl0"
3

5. 38x1 (f
2

.0504 2. 80x1

0

4
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TABLE 6

Flow Parameters of Polyisobutene in Decalin

c, g/ml n , poise
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Figure 4. Shear Stability Curve for

Polystyrene Solutions

POLYSTYRENE in DECALIN
25 °C

initial molecular weight

final molecular weight
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Figure 11 Zero Shear Viscosity (log n )

versus Product of Concentration and
Molecular Weight (CM

w
in g/ml -8/mole)

for Polystyrene Solutions
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Figure 12. Zero Shear Viscosity (log n
Q

) versus

Product of Concentration and Molecular Weight

(CM
w

in g/tnl -g/mole) for Polyisobutene Solutions

c M w



Figure 13. Experimenta-l Relaxation Time (log x ) versus

Concentration (log C) for Polystyrene Solutions
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Figure 15. Experimental Relaxation Time (log T ) versus

Concentration (log C) for Polyi sobutene Solutions

!0~ 3 IO"
2

10

c ( g/m !

)



58

o
-*->

fO
s_

<u co
o c

o
o

ro (_) +->

4->

4_
<U o o
E oo

i- a a)
<U c
o -o cu
X o 4J
LU u

Q-
o o

4- CO

o •r-— >>
c
o o
*r—
4->

cu a
E c o

4-
h- Li.

^—

v

c ro
o

CO O
ro

rO
X +->

ro O _C
CT>

cu •i~

c£ <U
QJ

OJ E
CO
13 1

—

fO

o
C£ C

o a
4- *r— 0)

O -M
rO o

o
fO

-a
03 CU c
cr: cr: fO

CO

0)



59

V.4. References

1. W.W. Graessley, "Advances in Polymer Science", Vol. 16, Springer-Verlag,

New York, 1974.

2. Y. Ito and S. Shishito, J. Polym. Sci. f Polym. Phys. Ed., U, 2283 (1973).

3. Y. Ito and S. Shishito, J. Polym. Sci . , Polym. Phys. Ed., 1£, 617 (1974).

4. A. Casale, R.S. Porter and J.F. Johnson, Rubber Chem. Tech., 44(2) , 534

(1971).

5. E.M. Barber, J.R. Muenger and F.J. Villforth, Jr., Anal. Chem., 27, 425

(1955).

6. R.S. Porter, R.F. Klaver and J.F. Johnson, Rev. Sci. Instruments, 36,

1846 (1965).

7. L.A. Manrique, Jr., and R.S. Porter, Rheo. Acta, U, 926 (1975).

8. L.A. Manrique, Jr., M.S. Thesis, 1972, University of Massachusetts.

9. R.B. Bird, R.C. Armstrong and 0. Hassager, "Dynamics of Polymeric Liquids",

Vol . 1, John Wiley, 1977.

10. Revised Manual of RMS-7200 Mechanical Spectrometer, Rheometrics, Inc.,

N.J., 1977.

11. K. Walters, "Rheometry" , Halsted Press, New York, 1973.

12. Z. Grubisic, P. Rempp and H. Benoit, J. Polym. Sci., B(5) , 753 (1967).

13. Robert Jenkins, unpublished results.

14. K.B. Abbas and R.S. Porter, J. Appl . Polym. Sci., 20, 1289 (1976).

15. Manual of Model 200 Gel Permeation Chromatography, Waters Associates,

Inc., Mass., 1974.

16. J.D. Culter, K.G. Mayhan, G.K. Patterson, A. A. Sarmasti and J.L. Zakin,

J. Appl. Polym. Sci., 16., 3381 (1972).



60

21

22

17. K. Arisawa and R.S. Porter, J. Appl . Polym. Sci., 14, 879 (1970).

18. K.B. Abbas, T. Kirschner and R.S. Porter, accepted, Europ. Polym. J.

19. R.S. Porter and J.F. Johnson, J. Appl. Phys., 35, 3149 (1964).

20. W.W. Graessley, J. Chem. Phys., 47, 1942 (1967).

R.A. Stratton, J. Colloid Interf. Sci., 22, 517 (1966).

W.W. Graessley, R.l. Hazelton and L.R. Lindeman, Trans. Soc. Rheo., 11(3) ,

267 (1967).

23. M.F. Johnson, W.W. Evans, I. Jordan and J.D. Ferry, J. Colloid Sci., 7_,

498 (1952).

24. E.L. Slagowski, L.J. Fetters and D. Hclntyre, Macromolecules, 7, 394 (1974).

25. Y. Kato, T. Kametani and T. Hashimoto, J. Polym. Sci., Polym. Phys. Ed.,

14, 2105 (1976).

26. A. Casale and R.S. Porter, "Polymer Stress Reactions", Academic Press,

New York, 1978.

27. N.K. Baramboin, Polym. Sci., U.S.S.R. (Eng.), 4, 41 (1973).

28. F. Bueche, J. Appl. Polym. Sci., 4, 101 (1960).

29. K.W. Scott, J. Polym. Sci., C(46) , 321 (1974).

30. J. Brandrupt and E.H. Immergut, Ed.), "Polymer Handbook", Wiley-Interscience,

1975.

31. A. Ram and A. Kadim, J. Appl. Polym. Sci., 14., 2145 (1970).

32. R.E. Harrington and B.H. Zimm, J. Phys. Chem., 69, 161 (1965).

33. R.S. Porter, M.J.R. Cantow and J.F. Johnson, J. Polym. Sci., C(6) , 1 (1967).

34. A.H. Abdel-Alim and A.E. Hamielec, J. Appl. Polym. Sci., T7, 3769 (1973).

35. G.C. Berry and T.G. Fox, "Advances in Polymer Science", Vol. 5, Springer-

Verlag, New York, 1968, p. 267.



61

36. R.S. Porter and J.F. Johnson, J. Polym. Sci., 50, 379 (1961).

37. R.N. Shroff and M. Shida, J. Polym. Sci., A(2)-8 , 1917 (1970).

38. K. Kirschke and H. Mewes. "Proc. 5th. Int'l. Cong. Rheology", S. Onogi

(Ed.), Vol. 1, University of Maryland Press, 1969, pp. 517-528.

Y. Ito and S. Shishito, J. Polym. Sci., Polym. Phys. Ed., 13, 35 (1975).

Y. Ito and S. Shishito, J. Polym. Sci., Polym. Phys. Ed., 16, 725 (1978).

A.F. Talbot, Rheo. Acta, 13, 305 (1974).

M.C. Williams, A.I.Ch.E.J., 21_, 1 (1975).

A. Casale, R.S. Porter and J.F. Johnson, Rev. Macro. Chem., 6, 387 (1971)

44. R.S. Porter and J.F. Johnson, Chem. Rev., 66, 1 (1966).

45. W.W. Graessley and L. Segal, Macromolecules, 2, 49 (1969).

46. W.W. Graessley and L. Segal, A.I.Ch.E.J., 16, 261 (1970).

47. W.F. Seyer and R.D. Walker, J. Am. Chem. Soc, 60, 2125 (1938).

39.

40.

41.

42.

43.




	High shear viscometry of high polymer solutions.
	

	High shear viscometry of high polymer solutions

