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Abstract Research into legged robotics is primarily moti-

vated by the prospects of building machines that are able to

navigate in challenging and complex environments that are

predominantly non-flat. In this context, control of contact

forces is fundamental to ensure stable contacts and equilib-

rium of the robot. In this paper we propose a planning/control

framework for quasi-static walking of quadrupedal robots,

implemented for a demanding application in which regula-

tion of ground reaction forces is crucial. Experimental re-

sults demonstrate that our 75-kg quadruped robot is able to

walk inside two high-slope (50◦) V-shaped walls; an achieve-

ment that to the authors’ best knowledge has never been pre-

sented before. The robot distributes its weight among the

stance legs so as to optimize user-defined criteria. We com-

pute joint torques that result in no foot slippage, fulfillment

of the unilateral constraints of the contact forces and min-

imization of the actuators effort. The presented study is an

experimental validation of the effectiveness and robustness

of QP-based force distributions methods for quasi-static lo-

comotion on challenging terrain.

Keywords Whole-body control · Locomotion 1

1 Introduction

Current research on legged robots is motivated by their po-

tential impact in real-world scenarios such as disaster recov-

ery scenes. Such environments require systems capable of

robustly negotiating uneven and sloped terrains. In recent

years the field has seen remarkable advances in the theoret-

ical tools, which have allowed legged robots to tackle chal-

lenging and possibly dynamic tasks in simulation [22, 20].

It is especially the introduction of Quadratic Programming

1 The final publication is available at http://www.springer.

com/-/0/AVUTNS2dnYabzt6nZg9m

(QP) solvers that strongly affected the field. The efficiency

of these solvers coupled with the computational power of

modern CPUs allow the resolution of small-medium size QP

inside fast control loop (i.e. 1-10 ms). However, to this date,

experimental results have been limited to few platforms and

tasks, still not matching the complexity of the real world.

Righetti et al. [30] experimented with walking up a slope of

26◦ with the Little Dog quadruped robot. On the quadruped

robot StarlETH [10] Hutter et al. [13] used a contact-force

optimization method to achieve static walking on a surface

with approximately 40◦ inclination. Regarding contact force

control in humanoid robots, research had mainly focused on

balancing experiments on flat ground [14, 26, 33] and walk-

ing on even terrains [24, 16]. It is only recently, mainly in

the context of the Darpa Robotics Challenge (DRC), that we

have seen humanoids walking on uneven terrains and climb-

ing stairs [7, 17, 15]. Even though these results are impres-

sive, the high number of falls during the DRC finals proved

the lack of robustness of these controllers.

This substantial gap between simulation and reality is

due to a number of different factors. The lack of high-fidelity

joint torque control is probably the first difficulty [13, 6, 2].

Moreover, the identification of inertial and geometric param-

eters of these high-DoF multi-body systems is usually cum-

bersome [23], and errors in the identified dynamical models

introduce unknown disturbances in the control actions. Fur-

thermore, the estimation of the system state is typically a

complex procedure that merges multiple sensor data in or-

der to exploit all the available information [1].

The main contribution of this work are the experimen-

tal results that showed a 75-kg torque-controlled quadruped

robot walking in between two high-slope (50◦) V-shaped

walls (Fig. 1). A video of the experiments is available at

youtu.be/qOvtbPryygs. To achieve them we had to tackle all

the above-mentioned issues, combining different ideas from

http://www.springer.com/-/0/AVUTNS2dnYabzt6nZg9m
http://www.springer.com/-/0/AVUTNS2dnYabzt6nZg9m
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Fig. 1: HyQ quadruped robot walking inside a 50◦-inclined

groove. Desired wrench (force, moments) at the CoM is de-

picted in white. Ground reaction forces are in brown friction

while cone constraints are indicated in shaded red. The wall

inclination is θ .

planning to control and applying them to such challenging

test case. To the best of our knowledge this is the first im-

plementation of such a task on a real robot. Such a scenario

is ideal for testing the capabilities of our controller, because

it allows large slope inclinations, and therefore it requires

greater rotations of the ground reaction forces (GRFs) com-

pared to walking on a flat or inclined surface. For instance,

a static walk on a single slope of 50◦ would not be possi-

ble with a friction coefficient of 1 or less. Nonetheless, our

QP force-optimization approach is applicable to any kind of

sloped terrains, similar to previous methods. Fig. 2 presents

the building blocks of our control framework. The motion

control block presented in Section 2 is a QP-based con-

troller. It is very similar to the one used to balance on flat

ground the DLR-Biped [26] and the one used to achieve

static walk and trot on flat ground with the quadruped Star-

lETH [10]. Differently from previous works [26, 10] we de-

rive our controller starting from the centroidal dynamics of

the robot. we explicitly state the simplifying assumptions

leading to the relationship between the contact forces and

the angular acceleration of the robot’s base. Moreover, we

extend the method to avoid joint-torque discontinuities when

breaking and making contacts. The motion generation block

presented in Section 3 computes desired trajectories for the

CoM, the base orientation and the swing foot to achieve a

static walking pattern. The latter adapts to the geometry of

the terrain to achieve a stable foothold and to ensure physi-

cal feasibility (e.g. not to violate the constraints of the stance

feet). Section 4 introduces our robotic platform and reports

the experimental results obtained, along with the values used

for all the parameters of the algorithm. Moreover, it empir-

ically demonstrates the necessity of controlling the contact

forces by showing the failures when trying to achieve this

task using control strategies that do not optimize the contact

forces. Section 5 discusses some practical issues that are of-

ten overlooked when working in simulation. Similarly to Ott

et al. [26] we show how to use the cost function of the QP

to reduce the joint torques and so avoid violating the torque

limits. We then present a simple procedure to identify the

position of the CoM of the robot (which was crucial for the

success of our experiments) and estimate the contact fric-

tion. Finally, Section 6 draws the conclusions and discusses

future work directions.

1.1 Contributions

We believe that the main contribution of this work lies in

the experimental results: the high slope of the terrain makes

the task extremely challenging, which is probably the reason

why previous works [30, 13] have focused on lower slopes.

On top of the experimental contribution, the paper presents

several other contributions, some of which have been funda-

mental for the success of the experiments:

– We present a strategy to avoid discontinuity in the con-

tact forces computed by the QP-based controller when

breaking or making a contact (see Section 3.2).

– We discuss a simple method to identify the position of

the CoM of the robot that only requires knowledge of the

contact forces and the position of the feet with respect to

the base of the robot (see Section 5.2).

2 Whole body controller with optimization of ground

reaction forces

This section describes the control architecture developed for

quadrupedal robot walking on inclined terrain. The controller

computes desired joint torques, that are tracked by the low-

level torque controllers [2]. Our objectives are to regulate

i) the position of the center of mass (CoM) and ii) the ori-

entation of the base of the robot. We do this by computing

Ground Reaction Forces (GRFs) at the stance feet that result

in the desired i) acceleration of the CoM and ii) angular ac-

celeration of the robot’s base. At the same time, we take into

account the constraints imposed by the friction cones.

2.1 Centroidal robot dynamics

The design of the controller is based on the following as-

sumptions. First, we assume that Coriolis and centrifugal

forces are negligible: this is reasonable because in our ex-

periments the robot moves slowly. Second, since most of

the robot’s mass is located in its base (i.e. 47 out of 75 kg),
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Fig. 2: Block diagram of our framework. The motion generation block (yellow) computes the input trajectories for CoM and

joints, while the motion control block (green) computes the reference torques for the low-level controller (grey). Light-red

blocks indicate user-defined input parameters. Each block is detailed in the sections indicated in parenthesis.

we approximate the CoM (xcom) and the average angular ve-

locity of the whole robot [25] with the CoM of the base

xcom−base
2 and the angular velocity of the base ωb. Third,

since our platform has nearly point-like feet, we assume that

it cannot generate moments at the contacts. Fourth, we as-

sume that the GRFs are the only external forces acting on the

system. Under these assumptions, we can express the linear

acceleration of the CoM ẍcom and the angular acceleration of

the base ω̇b as functions of the c GRFs (i.e. f1, . . . , fc ∈ R
3,

where c is the number of stance feet):

m(ẍcom +g) =
c

∑
i=1

fi (1)

IGω̇b ≃
c

∑
i=1

(pcom,i × fi), (2)

where m ∈ R is the total robot’s mass, g ∈ R
3 is the gravity

acceleration vector, IG ∈R
3×3 is the centroidal rotational in-

ertia [25], pcom,i ∈R
3 is a vector going from the CoM to the

position of the ith foot defined in an inertial world frame

W (see Fig. 3). These two equations are the base of our

control design because they describe how the GRFs affect

the acceleration of the CoM and the angular acceleration of

the robot’s base. We now design two proportional-derivative

control laws to compute the desired values of ẍcom and ω̇b.

Then, we will find the GRFs that allow us to achieve these

desired accelerations.

2.2 Control of CoM’s position and base’s orientation

We compute the desired acceleration of the CoM ẍd
com ∈ R

3

using a PD control law:

ẍd
com = Kpcom(x

d
com − xcom)+Kdcom(ẋ

d
com − ẋcom), (3)

2 In the following we keep using xcom even if in the implementation

we actually used xcom−base.

World

frame

Robot
trunk

Base frame

RF 

LF

RH

LH

HFE

KFE

HAA

Fig. 3: Summary of the nomenclature used in the paper. Leg

labels: left front(LF), right front(RF), left hind (LH) and

right hind(RH). The world frame W ; the base frame B (at-

tached to the geometric center of the robot body). Left sub-

scripts indicate the reference frame, for instance Bxcom is the

location of the CoM w.r.t. the base frame. In case of no left

subscript, quantities are expressed w.r.t. W .

where xd
com ∈R

3 is the desired position of the CoM, whereas

Kpcom ∈R
3×3 and Kdcom ∈R

3×3 are positive-define diagonal

matrices of proportional and derivative gains, respectively.

Similarly, we compute the desired angular acceleration of

the robot’s base ω̇d
b ∈ R

3 as:

ω̇d
b = Kpbasee(Rd

bR⊤
b )+Kdbase(ω

d
b −ωb), (4)

where Rb ∈ R
3×3 and Rd

b ∈ R
3×3 are rotation matrices rep-

resenting the actual and desired orientation of the base w.r.t.

the world reference frame, respectively, e(.) : R3×3 → R
3 is

a mapping from a rotation matrix to the associated rotation

vector, ωb ∈ R
3 is the angular velocity of the base, whereas

Kpbase ∈ R
3×3 and Kdbase ∈ R

3×3 are positive-define diag-

onal matrices of proportional and derivative gains, respec-

tively.
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2.3 Computation of the desired GRFs

Given a desired value of the acceleration of the CoM and the

angular acceleration of the robot’s base, we want to compute

the desired GRFs f . We rewrite (1) and (2) in matrix form

as:

[
I . . . I

[pcom,1×] . . . [pcom,c×]

]

︸ ︷︷ ︸

A





f1

. . .

fc





︸ ︷︷ ︸

f

=

[
m(ẍd

com +g)

Igω̇d
b

]

︸ ︷︷ ︸

b

, (5)

where we replaced the actual accelerations with the desired

accelerations. This system has 6 equations and k = 3c un-

knowns; since in our experiments 3 ≤ c ≤ 4, typically the

system has infinite solutions. We exploit this redundancy

to satisfy the inequality constraints imposed by the friction

cones. At every control loop we solve the following quadratic

program:

f d =argmin
f∈Rk

(A f −b)⊤S(A f −b)+α f⊤W f

s. t. d <C f < d̄,

(6)

where S ∈ R
6×6 and W ∈ R

k×k are positive-definite weight

matrices, α ∈ R weighs the secondary objective, C ∈ R
p×k

is the inequality constraint matrix, d, d̄ ∈R
p the lower/upper

bound respectively, with p being the number of inequality

constraints. These ensure that i) the GRFs lie inside the fric-

tion cones and ii) the normal components of the GRFs stay

within some user-defined values.

We approximate friction cones with square pyramids to

express them with linear constraints. We then define C,d and

d̄ as:

C =






C0 . . . 0
...

. . .
...

0 . . . Cc




 d =






d0
...

dc




 d̄ =






d̄0

...

d̄c




 , (7)

with:

Ci =









(−µini + t1i
)⊤

(−µini + t2i
)⊤

(µini + t2i
)⊤

(µini + t1i
)⊤

n⊤i









di =









−∞

−∞

0

0

fmini









d̄i =









0

0

∞

∞

fmaxi









, (8)

where ni ∈ R
3 is the direction normal to the surface, t1i

,

t2i
∈R

3 are the tangential directions, µi ∈R is the coefficient

of friction, and fmini
, fmaxi

∈ R are the minimum and max-

imum allowed values for the ithnormal force, respectively;

all these values are relative to the ithcontact. In this work we

suppose to know the direction normal to the surface. In the

future we could integrate vision or haptic perception to es-

timate the contact surface online. In the cost function of (6)

the term f⊤W f regularizes the solution by trading-off the

tracking of ẍcom and ω̇b with small-magnitude GRFs. We can

use the weight matrix W to penalize certain force directions

(e.g. to penalize tangential forces). Actually, in our experi-

ments we found more useful to penalize high joint torques

rather than high GRFs (see Section 5.3).

Remark 1 According to our robotic-platform specificities,

the presented controller is sufficient to control the whole

system. The robot has 18 DoFs (12 joints plus 6 DoFs of

the floating base), but as long as it stands on four feet it is

subject to 12 rigid-contact constraints. This leaves only 6

unconstrained DoFs, which are exactly the number of DoFs

controlled by the presented method. When the robot stands

on three feet it has instead 9 unconstrained DoFs: in this

phase the 3 additional DoFs are compensated by the control

of the position of the swinging foot. However, for systems

with more DoFs (e.g. humanoid robots) it is necessary to

control the remaining redundancy.

Remark 2 Although this paper focuses on quadruped lo-

comotion, the presented method can accommodate for any

number of contact points. For instance we could use virtual

models [27] to generate virtual forces at the end-effectors

to achieve motion-force tasks. In case of physical interac-

tion, we have to incorporate the effect of the additional con-

tact forces on the centroidal dynamics (i.e. on the vector b

in (6)). This would enable to include manipulation tasks to

physically interact with the environment.

Remark 3 The weights of the two conflicting terms in the

objective function of (6) must be carefully tuned through the

parameter α . A too strong regularization causes big tracking

errors, thus negatively affecting the robot equilibrium.

Remark 4 Problem (6) always has a solution. Nonetheless,

if the desired accelerations require GRFs that violate the in-

equality constraints, the controller does “the best that it can”

in the least-squares sense. Therefore, it is crucial to plan tra-

jectories that are coherent with friction constraints.

2.4 Mapping of GRFs to joint torques

We compute the desired joint torques τd ∈ R
n (where n is

the number of joints) by superimposing two control actions.

First, mapping the desired GRFs f d into joint space we get

the feedforward torques τ f f :

τ f f =−SJ⊤c f d , (9)

where Jc ∈ R
k×n+6 is the stacked Jacobian of the contact

points and S =
[
In×n 0n×6

]
is a selection matrix that selects

the actuated DoFs. This same mapping was used by Ott et

al. [26] and it is valid only for quasi-static motion.

The second part consists of a proportional-derivative (PD)

joint-position controller with low gains, which on average

contributed only to ≈ 18% of τd . This second term is mo-

tivated by safety reasons—hydraulic actuators can generate
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fast and powerful movements—and it is also used to move

the swing leg. During the swing motion we increase the PD

gains of the swing leg joints to improve tracking capabil-

ities. Overall, we compute the desired torques τd that we

command to the underlying joint-torque controllers [2] as:

τd = τff +PD(qd , q̇d ,cst), (10)

where qd ∈ R
n, q̇d ∈ R

n are the desired joint positions and

velocities, respectively, and cst ∈R
4 is the vector of boolean

variables representing the stance condition of the legs.

3 Static-Walking Algorithm for Quadrupeds

Our static-walking algorithm is a sequential repetition of the

following phases: move CoM, unload leg, swing leg, load

leg. Each phase is a state of the state machine depicted in

Fig. 4. The gait sequence that we used in our climbing exper-

iments is an input parameter of the walking algorithm and it

is described in the Appendix. We assume that the robot starts

with all four legs in contact with the terrain. A boolean flag

cst represents the contact state; changes in the contact state

are triggered either by the walking algorithm or by the sen-

sor feedback, depending on the walking phase.

In the move-CoM phase the robot moves its CoM such

that its vertical projection intersects the support triangle formed

by the three future stance legs (i.e. those that are not about

to swing, see Section 3.1). This ensures static equilibrium

when breaking the contact. A timer regulates the duration

tmcom of the move-CoM phase. Then the unload phase starts,

which consists in gradually reducing to zero the load on the

swing leg (Section 3.2). When the time tload has elapsed, the

swing phase begins with the computation of the desired foot

placement for the swing foot (Section 3.3). The foot swings

first away from the surface, to achieve step clearance, and

then towards it (see Fig. 5). If during the pre-touchdown

motion the foot reaches the ground earlier than predicted

the swing phase terminates. Otherwise the leg keeps mov-

ing (searching motion, see Section 3.3) until the foot makes

contact. Finally, during the load phase, the number of stance

legs is reset to four and the last swing leg is gradually loaded,

redistributing the weight equally on all four legs. At the

same time the robot’s height is corrected (see Section 3.4).

After the load phase the next swing leg is taken from the gait

sequence and the cycle repeats. The input parameters for the

static-walking algorithm (Fig. 2) are: the surface normal ni

for each contact point, the gait sequence GaitS, the step-

length offset stepLoff , the step height stepH, and the time

duration of each phase (tmcom, tload , tsw) (see Tab. 1).

3.1 CoM’s Trajectory Generation

We estimate the CoM position xcom w.r.t. an inertial frame

W through leg odometry [21]. To do this we use joint-angle

measurements and the model of the robot kinematics; under

the assumption that the stance feet do not move (i.e. no slip),

and given that there are always at least three stance feet,

the position/orientation of the robot can always be uniquely

determined. Since during the load and unload phases a foot

may slightly slip, we did not use it for the odometry during

these phases.

In the move CoM phase the desired CoM trajectory is

generated as a 5th-order minimum-jerk spline. The trajec-

tory starts from the current CoM position (xd
com(0)) and it

ends at the target CoM xd
com(tmcom). The target CoM is com-

puted so that Pxyxd
com(tmcom) lies inside a conservative polyg-

onal approximation of the next support region T , computed

using a polytope projection method [3]. Pxy ∈R
3×3 is a pro-

jector into a plane perpendicular to gravity (see Fig. 5). Since

the steps are adapted to the terrain geometry during the walk-

ing, the support triangle can change its inclination w.r.t. grav-

ity, because the feet may not be exactly at the same height.

Therefore, to ensure static equilibrium, we consider a pro-

jection of the triangle PxyT . The position of Pxyxd
com(tmcom)

inside PxyT can be tuned by changing the parameter d, which

is the distance from the midpoint of the largest edge of the

triangle. The smaller d, the smaller the static-equilibrium

margin, but the bigger the walking velocity, because the am-

plitude of backward motions is reduced [4].

While we generate the desired trajectory of the CoM, we

also need to compute the desired trajectories for the joint-

level PD controllers of the stance legs. These joint trajecto-

ries must of course prevent the PD controllers from “fight-

ing” against the whole-body controller. Since the legs of the

robot have only 3 DoFs, we can analytically compute the

joint trajectories from the foot trajectories. The trajectories

of the feet can in turn be computed from the desired CoM

and base orientation. In the following the left subscript indi-

cates the frame in which vectors are represented. Assuming

that the stance feet do not move w.r.t. the inertial frame W

(i.e. w ṗi = 0,∀i ∈ StanceFeet), we compute the velocity of

the ith foot w.r.t. the base frame B (i.e. b ṗi) as a function of

the CoM’s velocity wẋcom and the base angular velocity wωb:

b ṗi = R(wẋcom −
[
RT

b pi

]

× wωb), (11)

where R ∈ R
3×3 is the rotation matrix from W to B. Using

ωd
b (t) and ẋd

com(t) generated by the spliner (in world coordi-

nates), we can then compute b pd
i by integrating b ṗd

i . Finally,

we compute the desired joint angles for each stance leg to

use as references for the joint PD controllers.
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Unload leg iTimeoutMove CoM

Swing leg i
Load  leg i

Timeout

Timeout

Start

Fig. 4: Logic diagram of the state machine used in the static walking algorithm. Rectangles represent states, arrows represent

transitions, and rounded boxes represent actions associated to transitions.

Hip shoulder

Fig. 5: HyQ robot walking inside a 50◦-inclined groove. The

CoM is depicted in black and white. The wall inclination is

θ . The red dot represents the projection Pxyxd
com(tmcom) of the

desired CoM position xd
com(tmcom) on the polygonal approx-

imation of the next support region T , projected on a plane

orthogonal to gravity (light blue). The desired trajectory of

the swing leg lies on a plane normal to the ground surface,

and it depends on the step height (stepH) and length (stepL).

3.2 Leg Loading/Unloading

The loading/unloading phases are fundamental to prevent

discontinuities in the joint torques any time that the number

of stance legs changes. We achieve the loading/unloading by

splining the upper bound fmax,i on the normal force of the leg

i, from the current value to 10m/0, where m is the mass of

the robot. In particular, we update the d̄ vector (inequality

constraints) at each time step during these phases.

3.3 Swing Leg

At the beginning of the swing phase we compute the step

length stepLi as a fixed offset stepLoff in the forward di-

rection w.r.t. the hip shoulder. Computing the footstep lo-

cations w.r.t. to the shoulder—rather than w.r.t. the actual

foot position—ensures no drift in the distance between the

feet. Then the swing leg trajectory pd
i (t) is generated on a

plane normal to the ground surface, as a function of the user-

defined step height stepH and step length stepL (see Fig. 5).

The first part of the swing motion is a spline through a via

point to achieve step clearance; the second part consists of

a surface-approaching motion (pre-touchdown) towards the

desired foot placement. During the downward motion, if the

contact is made before the planned foothold is reached, the

leg stops. Conversely, if the step ends before making con-

tact, the foot keeps moving at constant velocity along the

ground normal direction (searching motion) until it either

makes contact or reaches the workspace limits. The lowest

singular value of the foot Jacobian matrix is monitored to

stop the leg motion before getting close to a singularity (e.g.

leg completely extended).

3.4 Height Correction

Whenever the swing foot makes contact before/after expec-

ted the foot-shoulder distance gets smaller/larger, and this

affects the height of the robot. Thus, to prevent the robot

from gradually “squatting”/“rising” during the walk, we cor-

rect the leg’s length. During the load phase, while chan-

ging the limit of the normal force, we also move the desired

foot position—and the relative desired joint positions—of

∆ pi(Z):

∆ pi =−
[

hd − e⊤3 Bxcom − (−e⊤3 pi(tsw)
]

, (12)

where hd ∈ R is the desired robot height computed at the

CoM (see Tab. 1), Bxcom is the position of the CoM in the

frame B (identified as explained in Section 5.2) and e⊤3 ∈ R
1×3

is a vector selecting the z component.
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4 Experiments

Before carrying out experiments on the real robot we exten-

sively tested the framework in simulation with the SL soft-

ware package [31]. (see attached video). However, for the

sake of brevity, we report only the results obtained on the

real robot.

4.1 HyQ Platform

The experimental platform used in this work is a quadruped

robot [32] (Fig. 5). The robot weighs 75 kg, it is 1m×0.5×

1m (L×W ×H) dimensions and it is equipped with 12 ac-

tuated DoFs i.e. 3 DoFs for each leg. The hip abduction-

adduction (HAA) joints (see Fig. 3) connect the legs to the

robot’s torso, creating the lateral leg’s motion, while the hip

and knee flexion/extension (HFE and KFE, respectively)

create the motion in the sagittal plane. Linear hydraulic cylin-

ders actuate the hip and knee flexion/extension (HFE and

KFE, respectively), while the HAA are rotary hydraulic ac-

tuators. Load-cells, located at the end of the piston rods,

measure the force of the hydraulic cylinders. By kinematic

transformations, considering the lever arm between the pis-

ton attachment and the joint axis, the joints’ torques are

computed. Similarly, a custom torque sensor, embedded in

the HAA joint, provides direct measurements of the torque.

An off-board pump brings the pressurized oil to the system

through tethered hoses. An inertial measurement unit (IMU)

provides measurements of orientation and angular velocity

of the robot’s base. Since most of the torque at the joints

is due to the GRFs, we estimate the force at the ith foot as:

fi ≃−J−⊤
i τlegi

, where Ji ∈R
3×3 is the ith leg’s Jacobian and

τlegi
∈R

3 are the torques of the ith leg’s joints. All the joints

of the robot are torque controlled with a high-performance

low-level controller [2]. To verify the contact status of the

feet we use a threshold on the normal component of the

GRFs. We computed all the kinematic transformations us-

ing efficient automatically-generated C++ code [9].

4.2 Groove

A good template to test the capability of our framework is

the “horizontal groove” (see Fig.5). In this experiment the

robot must actively push against the wall of the chimney to

keep the GRFs inside the friction cones, so preventing slips

and consequent falls. For practical reasons we built a hor-

izontal chimney (groove) instead of a vertical one, which

has been equivalently good for the proof of the concept.

The robot has successfully walked through the entire length

(2.5m) of the groove, with a wall inclination of θ = 50◦. A

video of the experiments is available at youtu.be/qOvtbPryygs.

Before starting the controller the robot is already inside the

groove, with all four feet in contact with the walls. We re-

peated the experiments six times in a row using the same

parameters of the algorithm, and the robot succeeded five

times. A video of the six experimental trials is enclosed,

showing the failure in trial 2. The failure seems due the fact

that when the robot lifted the right-front foot its CoM verti-

cal projection was not inside the support triangle. This may

happen because we are neglecting the weight of the legs in

the computation of the CoM. The data reported in the fol-

lowing are relative to one of the five successful experiments,

in which the robot exhibited similar performances.

4.2.1 Implementation Details

The control of the base’s orientation aims to maintain the

robot’s base horizontal during the walk. Table 1 reports the

values of the parameters used in the experiments. To be con-

servative we used a friction coefficient (µ = 0.5) lower than

the one that we estimated (µ = 1) (see Section 5.1). This is

important to improve the robustness w.r.t. the friction coeffi-

cient and terrain topology (i.e. inclination). Indeed, by using

a conservative friction coefficient in the optimization prob-

lem, uncertainties in the estimation of the terrain’s normal

direction are well tolerated. For example, in our experimen-

tal trials this ensured a tolerance to slope estimation errors

of up to 18◦.

The identification of the CoM position (see Section 5.2)

was crucial for the success of the experiments. Despite hav-

ing only 2.7cm of error (in the xy plane) w.r.t. the CoM com-

puted from the CAD model, this was enough to make the

robot fall after half a cycle.

The control loop for the low-level torque controller ran

at 1 kHz, whereas the whole-body controller ran at 133 Hz.

We solved the optimization problem (6) in real-time using

the open-source software OOQP [11]. On the onboard pen-

tium PC104 1GHz computer, running under a real-time Li-

nux operating system, the resolution of (6) with 3c = 12

variables (c = 4 contact points) and 5c = 20 inequality con-

straints took on average 6.34 ms. Higher control rates could

be achieved by using faster QP solvers such as qpOases [8]

of EigQuadProg [12], but this did not seem necessary for our

application. Using a faster QP solver is however an inter-

esting future direction because it would free computational

resources that we could allocate to planning and estimation.

4.2.2 Results

Fig. 6 and 7 present the tracking of the CoM’s position and

the base’s orientation, respectively. Fig. 8 plots the tracking

of the contact forces of the left-front foot. The feedback ra-

tio
∫
|τPD|dt/

∫
|τ|dt is a good metric to determine how ac-

curate our kinematic/dynamic model (e.g. body inertia and
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Table 1: Parameters of the controller

Parameter Symbol Value

Wall inclination θ [rad] 0.87

Friction coefficient µ [1] 0.5

CoM proportional gain Kpcom [N/m] diag(103,103,500)

CoM derivative gain Kdcom [sN/m] diag(200,200,0)

Attitude proportional gain Kpbase [Nm/rad] diag(103,103,103)

Attitude derivative gain Kdbase [sNm/rad] diag(200,200,200)

Joint impedance control
Ksw [Nm/rad] 300

stiffness during swing

Joint impedance control
Dsw [sNm/rad] 6

damping during swing

Step length offset w.r.t. hip stepLo f f [m] 0.11

Step height stepH [m] 0.1

Static stability margin d [m] 0.09

Weights for CoM wrench
S

diag( 5, 5, 10,

components 10, 10, 10)

Weights for torque
Wτ diag(5, 50, 2)10−3

minimization (see 5.3)

Second objective weight α 0.01

Gait sequence GaitS RH,RF ,LH,LF

Phase durations tmb, tlu, tsw [s] 4, 2.5, 2

Desired robot height hd [m] 0.6

0
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C
o
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X
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0
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C
o
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]
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C
o
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Z
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]

Fig. 6: Experimental results. Tracking of the center of mass

during the walking.

estimation of the CoM) of the robot is. In particular the feed-

back ratio represents the contribution of the PD controller

relative to the total commanded torque. The feedback ratio

computed for the experimental data of Fig. 8 is 18%, which

shows a very small intervention of the PD feedback action

during the test. Fig. 9 shows the distribution of the GRFs on

all the legs for the same groove experiments. The GRFs are

always inside the friction-pyramid boundaries. Note that the

unilateral constraints on the contact forces implicitly restrict

the CoP inside the convex hull of the contact points.
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Fig. 7: Experimental results. Tracking of the base’s orienta-

tion during the walking.
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Fig. 8: Cartesian components of the contact forces in the

left-front leg. Red plots are the desired forces generated by

the optimizer, while blue plots are the actual contact forces

(estimated from joint torques). The difference is due to the

action of the PD controller, whose overall influence is on

average lower than 18%.

4.2.3 Torque limits

During the walk the robot reached configurations in which

the torques needed at the HFE joints exceeds their limits.

Indeed for the sagittal joints the available torque depends

on the joints’ positions because the lever arm of the piston

varies (nonlinearly) with the joint angle [32]. We therefore

tuned the matrix Wτ to penalize torques at the HFE joints.

We also tried to repeat the experiment with a steeper wall

inclination θ = 60◦, both in simulation and on the robot. The

experiment failed because both HFE and HAA reached their

torque limits and the problem could not be solved by tuning

Wτ (see Section 5.3). Conversely in simulation, where the

torque limitations were absent, the test succeeded.
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Fig. 9: Distribution of the contact forces at the four feet.

The plots show the forces along the ground normal direc-

tion as a function of the norm of the tangential forces. The

green lines represent the estimated boundaries of the fric-

tion cones, which correspond to a friction coefficient µ = 1,

while the red line represent the conservative friction coeffi-

cient of µ = 0.5 set in the controller.

4.2.4 Comparison with other approaches

. We implemented three other algorithms to compare them

with our approach on the same experimental conditions:

1. a high-gain joint PD position controller (with K = 500

Nm/rad and D = 6Nms/rad);

2. our controller, but without considering the terrain incli-

nation (i.e. θ = 0◦);

3. a low-gain PD controller (K = 150Nm/rad and D =

3Nms/rad) superimposed to a floating-base gravity com-

pensation [29].

We computed the floating-base gravity compensation as:

τ f f = (NcST )♯Ncg, (13)

where Nc = I − J
♯
cJc is the null-space projector of the con-

tact Jacobian Jc ∈ R
k×(n+6), which is a stack of the stance

feet’s Jacobians Jci
=
[
JBi

Jqi

]
, (.)♯ is the Moore-Penrose

pseudoinverse, and g ∈ R
n+6 are the generalized forces due

to gravity. With all these controllers the robot has lost the

traction with the surface when moving the body, demon-

strating the importance, for this kind of task, of controlling

the GRFs. The first controller does not have an optimiza-

tion stage and so the feet quickly start to slip. The second

controller directs the GRFs on the vertical axis (Z), so once

the GRFs leave their friction cones the robot slips and falls.

The last controller compensates for gravity using a Moore-

Penrose pseudoinverse, which generates a minimum-norm

torque vector. This generally corresponds to GRFs pointing

through the hip-joint axis. Even though the GRFs could pos-

sibly lie inside the friction cones, the lack of an explicit op-

timization results in the robot slipping and falling when the

robot’s base starts moving.

5 Practical Issues

Here we present a number of steps taken to ensure the ro-

bustness of the robot’s behavior in a real-world environment.

5.1 Friction Cone Estimation

Before performing the walking experiments we estimated

the friction coefficient µ at the contact between the rubber

coating of the robot’s feet and the wall surface. We laid one

of the groove walls flat on the ground, with the robot stand-

ing statically on top of it. Then we made the robot exert hor-

izontal GRFs, increasing up to the point at which one of the

feet slipped. Finally, we chose µ =
√

f 2
x + f 2

y / fz), where

fx, fy and fz are respectively the two tangential components

and the normal component of the contact force at the foot,

right before slipping.

5.2 Identification of the CoM with Static Poses

In order to improve the estimation of the center of mass of

the robot we identified its location. Since most of the mass

of the robot is located in the base, we assumed that the CoM

does not depend on the configuration of the legs – as we

did in the controller design. This allows us to consider just

a lower dimensional model of the robot (e.g. the rigid body

of the base). When the robot is still (i.e. q̇ = q̈ = 0) the net

moment at the CoM is zero:

Γcom =
3

∑
i=0

( fi × pcom,i) =
3

∑
i=0

fi × (pi − xcom) = 0, (14)

where fi ∈R
3 is the GRF at the ith foot and pcom,i ∈R

3 is the

distance from the CoM to the ith foot. The only unknown in

this equation is the CoM position xcom. By collecting force

and position measurements over T seconds while the robot

was in a set of manually designed static poses, we could

write the overconstrained system of equations:






[∑3
i=0 fi(0)]×

...

[∑3
i=0 fi(T )]×






︸ ︷︷ ︸

A

xcom =






∑
3
i=0( fi(0)× pi(0))

...

∑
3
i=0( fi(T )× pi(T ))






︸ ︷︷ ︸

b

(15)

We designed the static poses to obtain a sufficiently rich re-

gression matrix A. We then estimated the CoM’s position
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as x̂com = (A⊤A)−1A⊤b. The estimated CoM lied at about

2.7cm (in the xy plane) from the CoM computed from the

CAD model. Moreover, by performing a recursive least-squa-

res estimation with forgetting factor, we measured how much

the CoM’s estimation varied through all the static poses due

to the influence of the mass of the legs. The variations were

of ≈ 1cm; this suggested that approximating the robot’s CoM

with the base’s CoM was acceptable for our quasi-static move-

ments. Such an error could be relavant for humanoids but

can be tolerated for a quadruped robots (since they have sup-

port areas bigger than humanoids in relation to body size).

The advantage of this approach over more general methods

[? ] is that it requires very little data to perform the identifi-

cation. Indeed, identifying the CoM of each link of the robot

is typically a time-consuming process. Some of the legs pa-

rameters (when the robot is standing on the ground) are par-

tially observable [? ]. This requires many carefully designed

trajectories for the robot body (e.g. to ensure persistent exci-

tation condition [? ], [? ]). Conversely, to identify the robot

CoM we just need to set few poses with a non-zero roll and

pitch orientation to have the CoM always observable.

5.3 Torque Minimization

The joint torque limits proved to be a crucial issue dur-

ing our experiments. The respect of the joint-torque lim-

its can be achieved in (6) through either the cost function

or the inequality constraints. Even though this allows con-

straint violations, we used the first method because the sec-

ond one was computationally too expensive. The regulariza-

tion term f⊤W f can be defined in order to penalize joint

torques rather than GRFs. This can be achieved by know-

ing the relationship between feet forces and torques: τ =

−SJ⊤c f . Therefore to minimize τ⊤Wτ τ , with Wτ ∈ R
3c×3c

being a diagonal positive-definite matrix, we set

W = JcS⊤Wτ SJ⊤c

This results in implicitly minimizing the torques of the stance-

legs’ joints.

5.4 Robustness to Friction Coefficient

Looking at Fig. 9 it can be noted that GRFs are always close

to the cone boundaries. This is expected because, due to the

quasi-static motions, gravitational components (mainly ver-

tical) dominates in the body wrench, and using a regulariza-

tion that minimizes the norm of the torques or of the forces

leads to solutions that are close to the cone boundaries (for

the actual task). To improve robustness it would be prefer-

able to have a solution where forces are close to the cones’

normals. This is equivalent to penalizing the norms of the

feet’s forces in frames that are aligned with the contacts’

normals. To achieve this we could set the following block-

diagonal weight matrix [30]:

W =






T0Wn0
T T

0 . . . 0
...

. . .
...

0 . . . TcWncT T
c




 , (16)

where Ti =
[
t1i

t2i
ni

]
is a rotation matrix whose columns

are the coordinate axis of a frame aligned with the con-

tact surface i. The weight matrix for each stance leg i is

Wni
= diag(Kt1 ,Kt2 ,1), where Kt1 and Kt2 are the weights

used to penalize the tangential forces in the t1i
and t2i

direc-

tions. Despite this regularization would be preferable for the

robustness of the controller, due to the torques’ limitations

we used the regularization described in Section 5.3 in the

real experiments.

6 Conclusions and future work

We presented a self-contained planning/control framework

for quadrupedal quasi-static walking on high-sloped terrain,

reporting experimental results on a torque-controlled qua-

druped robot. By direct control of the GRFs we could avoid

slippage despite the high terrain inclination (i.e. 50◦). Sim-

ilar theoretical control architectures have been presented in

recent years [18, 19, 10, 22], but to the best of our knowl-

edge, the few demonstrations on torque-controlled platforms

have been limited to humanoid balancing [14, 33, 26] and

quadruped locomotion on terrains with low slope (≤ 40◦)

[30, 13]. The presented experiments show that the recent

trend of force-based control frameworks can be used to per-

form locomotion on high-slope terrain. We believe that this

capability is essential for the deployment of robots in ad-

verse environments, such as mountains or disaster-recovery

scenarios.

In the controller we assumed that the CoM does not de-

pend on the configuration of the legs, though their mass is

far from negligible. Despite this simplifying assumption, the

use of a lower-dimensional model was sufficient to perform

the task. Furthermore, we have shown that a simple proce-

dure is adequate to estimate the few inertial parameters used

in our simplified model.

In the near future we plan to relax the simplifying as-

sumptions undertaken in this work (quasi-staticity, lower-

dimensional model) and develop a whole-body control frame-

work with optimization of GRFs, joint torques and joint lim-

its. This framework will be suitable to perform more dy-

namic tasks. Indeed, relaxing the quasi-static assumption

(i.e. computing the whole-body dynamics) would allow for

more aggressive movements, hence faster locomotion. We
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Fig. 10: (top) Top view of two different support triangles

T1 and T2. Relative to T1 we report also the three con-

tact forces f1, f2, f3, the distance between the contact points

p12, p13, p23 and the friction cone of f3. (bottom) Gait se-

quence for the groove walk experiments.

want to speed up the controller in order to solve the opti-

mization in real-time, despite the increased computational

burden (due to more inequalities and variables).

We plan to perform more challenging tasks like locomo-

tion on different groove shapes (e.g. diverging walls, irreg-

ular slopes, turns), on ice and slippery slopes (low friction)

and on a moving platform (keep balance).

The framework will also be extended to our Centaur

robot (a quadruped base with two arms on top) in order to

perform whole-body manipulation tasks. In this scenario the

legs can provide assistance to pull or push an object. Fur-

thermore, a body-posture optimization will be implemented

with the purpose to increase stability and be more effective

to exert a force in a desired direction, while minimizing the

torques at the legs’s joints. This is a strategy, to reduce the

overall energy expenditure, which is very common for hu-

mans.

More advanced techniques for the estimation of the base’s

position/orientation [1] could improve the performances of

the controller. Finally, we plan to incorporate more informa-

tion on the geometry of the environment, possibly combin-

ing vision and active haptic exploration (e.g. touching three

points on the terrain and fitting a plane).

A Intuitive justification of foot placement

This section explains our choices regarding foot positioning for qua-

drupedal walking on v-shaped terrain. We show that, when the robot

stands on three feet, having an acute support triangle is convenient

for maintaining the robot in equilibrium. We know that the robot is in

equilibrium when the net external force and moment (about any point)

acting on it are zero. We define a reference frame O1 located at foot

1 (see Fig. 10), with the axis z1 aligned with gravity and the axis x1

pointing towards foot 2 (which we assume to be approximately aligned

with foot 1). At the equilibrium, the net moment m ∈ R
3 about z1 has

to be zero, that is:

Pzm = (Pxy p12)× (Pxy f2)+(Pxy p13)× (Pxy f3) = 0, (17)

where Pxy ∈R
3×3 projects onto the x1y1 plane, Pz ∈R

3×3 projects onto

the z1 axis, f2( f3) ∈ R
3 is the GRF at the foot 2 (3), and p12, p13 ∈ R

3

are the lever arms from foot 1 to foot 2 and 3, respectively. The first

term of (17) always generates a positive moment about z1 because of

the unilaterality constraints, i.e. f2y > 0. To have equilibrium then we

need f3 (i.e. the second term) to generate a negative moment about z1.

In other words (Pxy f3) must lie in the right halfspace delimited by the

line passing through feet 1 and 3. Similarly, computing the net moment

about z2 (i.e. the z axis of the frame O2), we can infer that to have

equilibrium (Pxy f3) must lie in the left halfspace delimited by the line

passing through feet 2 and 3. This implies that (Pxy f3) must lie—not

only inside the friction cone, but also—inside the support cone, that is

the cone originating in O3 and delimitated by two sides of the support

triangle (green cone in Fig. 10). We can then state that having an acute

support triangle leaves more freedom in the choice of f3 because it

results in a bigger area of intersection between the friction cone and

the support cone. If p3 gets too close to p1 or p2, a part of the friction

cone of f3 stops intersecting the support cone, leaving less freedom for

the choice of f3 (e.g. red support triangle in Fig. 10).

Taking advantage of these insights we planned contact configura-

tions that generate acute support triangles. A gait sequence that satisfies

this requirement is RH, RF , LH, LF , in which we set an initial offset

positions for the feet along the x direction (see Fig.10 (bottom)).
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