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Abstract.
Background: In amyloid-positive individuals at risk for Alzheimer’s disease (AD), high soluble 42-amino acid amyloid-�
(A�42) levels are associated with normal cognition. It is unknown if this relationship applies longitudinally in a genetic cohort.
Objective: To test the hypothesis that high A�42 preserves normal cognition in amyloid-positive individuals with Alzheimer’s
disease (AD)-causing mutations (APP, PSEN1, or PSEN2) to a greater extent than lower levels of brain amyloid, cerebrospinal
fluid (CSF) phosphorylated tau (p-tau), or total tau (t-tau).
Methods: Cognitive progression was defined as any increase in Clinical Dementia Rating (CDR = 0, normal cognition; 0.5,
very mild dementia; 1, mild dementia) over 3 years. Amyloid-positivity was defined as a standard uptake value ratio (SUVR)
≥1.42 by Pittsburgh compound-B positron emission tomography (PiB-PET). We used modified Poisson regression models
to estimate relative risk (RR), adjusted for age at onset, sex, education, APOE4 status, and duration of follow-up. The results
were confirmed with multiple sensitivity analyses, including Cox regression.
Results: Of 232 mutation carriers, 108 were PiB-PET-positive at baseline, with 43 (39.8%) meeting criteria for progression
after 3.3 ± 2.0 years. Soluble A�42 levels were higher among CDR non-progressors than CDR progressors. Higher A�42

predicted a lower risk of progression (adjusted RR, 0.36; 95% confidence interval [CI], 0.19–0.67; p = 0.002) better than
lower SUVR (RR, 0.81; 95% CI, 0.68–0.96; p = 0.018). CSF A�42 levels predicting lower risk of progression increased with
higher SUVR levels.
Conclusion: High CSF A�42 levels predict normal cognition in amyloid-positive individuals with AD-causing genetic
mutations.
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INTRODUCTION

Key support for the toxic amyloid hypothesis
comes from the observation that mutations in any
of three genes (APP, PSEN1, and PSEN2) lead to
Alzheimer’s disease (AD) with complete penetrance
[1]. The genetic evidence causally implicates the fib-
rillogenic 42-amino acid amyloid-� peptide (A�42).
However, the disease pathogenesis may arise from
either of two ends of the protein aggregation pro-
cess: the increase in insoluble amyloid plaques or
the depletion of the soluble A�42 peptide, which
has important functions. While insoluble amyloid
plaques can be present in normal individuals, low sol-
uble levels of A�42 are an invariable feature of AD
[2–4].

The hypothesis of A� toxicity has traditionally
been supported by the notion that AD-causing muta-
tion carriers must have high levels of soluble A�42
relative to non-mutation populations. In fact, muta-
tion carriers have lower A�42 levels compared to
non-mutation populations [3]. The reduction in sol-
uble A�42 levels among mutation carriers begins
as many as 25 years before the onset of cognitive
symptoms [4]. Therefore, the toxicity in the process
of accelerated protein aggregation among mutation
carriers may conceivably be due to the depletion
in soluble A�42 to a greater extent than the corre-
sponding increase in amyloid [5]. This alternative
hypothesis offers an explanation for the failures in

translating amyloid reduction into cognitive improve-
ment [6], even among mutation carriers [7], and
for the paradoxes posed by the large proportion of
amyloid-positive individuals without dementia and
even of centenarians without history of cognitive
abnormalities, half of whom have autopsy-confirmed
AD pathology [8–10].

We recently observed that among amyloid positron
emission tomography (PET)-positive individuals,
higher levels of soluble A�42 were associated with
normal cognition and brain volumes in all tertiles of
brain amyloidosis, with an effect size greater than that
of increases in brain amyloid burden [11]. We here
tested the hypothesis that in amyloid PET-positive
individuals with AD-causing APP, PSEN1, or PSEN2
mutations, higher CSF A�42 levels reduce the risk of
cognitive progression to a greater extent than lower
levels of brain amyloidosis and lower levels of CSF
phosphorylated tau (p-tau) and total tau (t-tau).

METHODS

Overview

We conducted a retrospective longitudinal study
among mutation carriers participating in the Domi-
nantly Inherited Alzheimer Network (DIAN) cohort
study. The DIAN study longitudinally evaluates fam-
ilies with dominantly inherited AD and non-carrier
relatives of the probands. Details about the DIAN
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study design can be found in previous publications
[1, 12]. We included all mutation carriers with at
least two follow-up visits including baseline, with-
out applying any other inclusion/exclusion criteria.
All analyses were conducted in two cohorts: 1)
amyloid PET-positive cohort, the most critical as
these are individuals considered at greater risk for
developing dementia; and 2) overall cohort, which
included both amyloid PET-positive and amyloid
PET-negative subjects.

Clinical assessment

Each assessment comprised a detailed medical
history, neurological, and neuropsychological exam-
ination. Cognitive function was primarily quantified
using the Clinical Dementia Rating scale (CDR = 0,
indicates normal cognition; 0.5, very mild dementia;
1, mild dementia; 2, moderate dementia; and 3, severe
dementia) [13]. Our primary endpoint was CDR pro-
gression, defined as any increase in CDR over the
follow-up period. Secondary endpoints were pro-
gression to CDR ≥0.5 confirmed in two consecutive
visits as per DIAN guidelines to minimize misclassi-
fication, progression to CDR ≥1, Mini-Mental State
Examination (MMSE) score ≤24 at last visit (higher
means better cognition) [14], and a CDR sum of boxes
(CDR-SB) score ≥4.5 at last visit (lower means better
cognition) [15]. CDR-SB = 4.5 corresponds to mild
dementia [15].

CSF biomarkers

We evaluated CSF A�42, p-tau, and t-tau levels
(INNO-BIA AlzBio3 from Fujirebio, Malvern, PA).
In order to limit the variability due to measurement
error, we considered only data from the same assay, as
used in previous analyses [4]. While CSF A�40 was
not available from this particular assay, precluding us
from entering it into our analysis, it did not limit the
testing of our hypothesis since A�40 exhibits lower
fibrillogenicity and lesser depletion than A�42 [16],
and is therefore less relevant to the process of protein
aggregation than A�42.

Neuroimaging

Pittsburgh compound B PET (PiB-PET) was used
to quantify the burden of insoluble brain amyloid
plaques. To reduce partial volume effects, data were
processed using a regional spread function (RSF),
shown to enhance sensitivity [17]. We defined sub-

jects as amyloid PiB-PET-positive if their standard
uptake value ratio (SUVR) was ≥1.42 [18], validated
by using +5% higher SUVR threshold (≥1.49) as a
sensitivity analysis. At the last visit, we also used
RSF-processed fluorodeoxyglucose (FDG)-PET to
quantify the metabolism of the precuneus (average
of both hemispheres) and brain magnetic resonance
imaging (MRI) to quantify hippocampal volume
(average of both hemispheres) adjusted for intracra-
nial volume, using the DIAN protocol equation.

Aims and sample size calculation

Our primary aim was to test the hypothesis that
higher CSF A�42 at baseline reduces the risk of CDR
progression to a greater extent than lower SUVR,
lower p-tau, and lower t-tau levels among PiB-PET-
positive gene carriers. Secondarily, we tested whether
compared with lower baseline SUVR, p-tau, and t-
tau levels, higher baseline CSF A�42 predict lower
risk of progression to CDR ≥0.5 in at least two con-
secutive visits, progression to CDR ≥1 at any visit,
MMSE ≤24 at last visit, CDR-SB ≥4.5 at last visit,
and higher FDG-PET metabolism and hippocampi
volume at last visit. While these aims were focused
on the PiB-PET-positive cohort, we conducted similar
analyses on the full cohort, which included PiB-PET-
negative participants.

Sample size calculation
In a previous cross-sectional study of PiB-PET-

positive individuals, we found that higher CSF A�42
levels were associated with greater odds of normal
cognition than AD (adjusted odds ratio [OR], 6.26;
p < 0.001) or mild cognitive impairment (OR, 1.42;
p = 0.006) [11]. Using these results, a sample size
of 105 PiB-PET-positive mutation carriers was cal-
culated to yield >80% power to detect a significant
association (OR >1.85) between soluble A�42 lev-
els (assuming continuous normal distribution) and
the primary (CDR progression) and secondary end-
points (progression to CDR ≥0.5, progression to
CDR ≥1, MMSE ≤24, CDR-SB ≥4.5) using mul-
tiple logistic regression with a two-sided Wald test
after adjusting for other independent variables with a
coefficient of determination (R2) of 15% and baseline
probability of outcome of 50%. Such an estimated
sample was also sufficient to explore weak effect-
size associations (regression coefficient, 0.30–0.60)
between CSF A�42 levels and other secondary out-
comes (FDG-SUVR and hippocampal volume) with
more than 80% power at a 5% alpha using mul-
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tiple linear regression after adjusting for relevant
covariates. Sample size estimation and simulations
were carried out using PASS 2021 (Power Analy-
sis and Sample Size Software [2021]. NCSS, LLC.
Kaysville, UT, USA, ncss.com/software/pass).

Statistical analysis

Continuous standardized CSF and SUVR levels
were considered primary predictors in the analy-
ses for a direct comparison across effects of CSF
and SUVR levels. For the primary outcome of CDR
progression, we used a modified Poisson model
regression [19] to determine the associations of base-
line CSF A�42, CSF t-tau and p-tau, and SUVR
levels with CDR progression after adjusting for age
at onset (estimated mean age of symptom onset),
sex, education, APOE4, and duration of follow-up.
The age at onset was estimated for participants by
the site investigators. We also validated our results
by considering time to first CDR progression as an
outcome using Cox proportional hazards regression
analysis. A receiver operating characteristics curve
analysis was used to determine the CSF A�42 cut-
off along with its area under the curve, sensitivity,
and specificity in predicting CDR progression. The
binary secondary outcomes (progression to CDR
≥0.5, progression to CDR ≥1, MMSE ≤24, CDR-
SB ≥4.5) were analyzed using relative risk (RR)
regression [19], whereas the quantitative secondary
outcomes (FDG-PET and normalized hippocampi
volume) using multiple linear regression. Finally,
in addition to adjusting for CDR-SB and MMSE
at baseline, all the regression models were adjusted
for the above-described covariates and validated by
removing t-tau or p-tau to minimize the impact
of multicollinearity. Huber Sandwich estimator was
used to compute standard errors of the estimates in
all the Cox, relative risk, and linear regression mod-
els. As a sensitivity analysis, we conducted the same
analysis after removing subjects within 5% of the
threshold (SUVR ≥1.49). The results of the Cox
regression analysis were summarized with hazard
ratio (HR) and 95% confidence interval (CI), those
of relative risk regression with RR and 95% CI, and
those of linear regression with regression coefficient
(RC) and 95% CI. The effect sizes and p-values were
qualitatively compared among CSF and SUVR levels.
The fully-detailed statistical analysis, statistical anal-
ysis codes, and sample size estimation are provided
in the Supplementary Material.

Ethics approval

The study protocol for DIAN was approved by the
local ethical committees of all participating institu-
tions. The DIAN study was conducted in accordance
with the Declaration of Helsinki and written informed
consent was obtained from each participant.

RESULTS

Of 534 subjects participating in the DIAN study
(mean age, 38 ± 11.1 years), 232 mutation carriers
met eligibility criteria (mean age, 38.3 ± 11 years).
Among them, 191 had available PiB-PET data at
baseline (mean SUVR, 1.9 ± 1.0), of whom 108 were
PiB-PET-positive (mean SUVR, 2.5 ± 1.0) (Table 1).
These subjects were followed for a mean of 3.3 ± 2.0
years (range = 1, 9). Because of missing data on
some CSF and SUVR levels, multivariable analy-
ses were based on 93 PiB-PET-positive samples, 85
PiB-PET-positive samples (SUVR ≥1.49), and 162
overall samples which include PiB-PET-positive and
negative samples (Supplementary Figure 1). No dif-
ferences in the baseline characteristics except CDR at
baseline were observed between cohorts with missing
versus without missing data (Supplementary Table 1).

Primary endpoint

Amyloid PiB-PET-positive cohort
A total of 43 (39.8%) subjects met criteria for

CDR progression. In adjusted analyses, the risk
of progression was reduced to a greater extent by
higher CSF A�42 (RR, 0.36; 95% CI, 0.19–0.67;
p = 0.002) than lower SUVR (RR, 0.81; 95% CI,
0.68–0.96; p = 0.018) but not than lower t-tau or lower
p-tau (Fig. 1, top). These results were unchanged
after excluding 5% of the SUVR threshold. In addi-
tion, higher CSF A�42 levels were associated with
a reduced hazard of time to first CDR progres-
sion (HR, 0.37; 95% CI, 0.18–0.77; p = 0.008) to a
greater extent than lower SUVR (HR, 0.79; 95% CI,
0.62–1.02; p = 0.075) and lower p-tau (HR, 0.63; 95%
CI, 0.40–0.98; p = 0.041). These results were con-
firmed in the stratified Cox model (Supplementary
Table 2). CSF A�42 levels predicted progression to a
greater extent than SUVR, CSF t-tau, or CSF p-tau
levels in all analyses excluding p-tau or t-tau from the
models to address multicollinearity, after additionally
adjusting for baseline CDR and age, or after missing
imputations (Supplementary Tables 3 and 4).
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Table 1
Characteristics of study cohort

PiB-PET-positive cohort Overall cohort
(n = 108) (n = 232)

Age (y) 41.0 (10.4) 38.3 (11.0)
Sex (female) 55 (50.9%) 130 (56.0%)
Education (y) 13.8 (3.0) 14.3 (3.0)
APOE4 carriers 40 (37.0%) 72 (31.0%)
CSF A�42 (pg/ml) 264.6 (107.9)a 350.6 (186.8)a

SUVR (amyloid-PiB-PET) 2.5 (1.0)b 1.9 (1.0)b

t-tau (pg/ml) 144.5 (89.4)c1 111.2 (81.6)c1

p-tau (pg/ml) 81.7 (38.1)c2 61.9 (37.6)c2

CDR at baseline
0 55 (50.9%) 147 (63.4%)
0.5 33 (30.6%) 60 (25.9%)
1 17 (15.7%) 20 (8.6%)
2 2 (1.9%) 3 (1.3%)
3 1 (0.9%) 2 (0.9%)

CDR progression
No 65 (60.2%) 165 (71.1%)
Yes 43 (39.8%) 67 (28.9%)

CDR (two consecutive visits)
<0.5 53 (49.1%) 150 (64.7%)
≥0.5 55 (50.9%) 82 (35.3%)

CDR (any visit)
<1 74 (68.5%) 176 (75.9%)
≥1 34 (31.5%) 56 (24.1%)

CDR-SB at baseline 1.8 (2.8)d 1.2 (2.5)d

CDR-SB at last visit 3.7 (5.0)d 2.7 (4.7)d

≥4.5 74 (68.5%) 178 (76.7%)
<4.5 34 (31.5%) 54 (23.3%)

MMSE at baseline 26.4 (4.9)e1 27.1 (4.4)e1

MMSE at last visit 23.4 (7.7)e2 25.1 (7.2)e2

≤24 69 (63.9%) 174 (75.0%)
>24 39 (36.1%) 58 (25.0%)

FDG-PET at baseline (SUVR) 1.8 (0.3)f1 1.8 (0.2)f1

FDG-PET last visit (SUVR) 1.7 (0.3)f2 1.8 (0.3)f2

Average hippocampi baseline (mm3) 4022.4 (708.7)g1 4174.6 (626.0)g1

Average hippocampi last visit 3795.2 (767.6)g2 4039.4 (741.3)g2

Normalized hippocampi baseline (mm3) 4022.3 (709.6)g1 4174.3 (627.0)g1

Normalized hippocampi last visit (mm3) 3795.2 (767.6)g2 4039.4 (741.3)g2

n, number of subjects; APOE4, Apolipoprotein �4; CDR, clinical dementia rating; CDR-SB, CDR sum of boxes; CSF, cerebrospinal fluid;
A�42, 42-amino acid amyloid-beta peptide; t-tau, total tau; p-tau, phosphorylated-tau; PiB-PET, Pittsburgh compound B positron emission
tomography; SUVR, standardized uptake value ratio; MMSE, Mini-Mental State Examination; FDG, fluorodeoxyglucose; pg, picogram; ml,
milliliter; mm, millimeter. Data are expressed in mean ± standard deviation (SD) or frequency (%). aCSF A�42 data were available for 191
subjects and 93 PiB-PET-positive. bSUVR data were available for 191 subjects and 108 PiB-PET-positive. c1CSF t-tau data were available
for 194 subjects and 95 PiB-PET-positive. c2CSF p-tau data were available for 268 subjects and 122 PiB-PET-positive. dCDR-SB data were
available for 232 subjects and 108 PiB-PET-positive. e1MMSE baseline data were available for 231 subjects and 107 PiB-PET-positive.
e2MMSE last follow-up were available for 232 subjects and 108 PET-positive. f1FDG-PET data at baseline were available for 196 subjects
and 102 PET-positive. f2FDG-PET at last visit were available for 172 subjects and 92 PET-positive. g1MRI baseline data were available for
215 subjects and 108 PET-positive. g2MRI last visit were available for 200 subjects and 98 PET-positive.

Overall cohort
A total of 67 (28.9%) subjects met criteria for

CDR progression in the overall cohort. Higher CSF
A�42 levels predicted a reduced risk of progres-
sion (RR, 0.47; 95% CI, 0.29–0.76; p = 0.002) to a
greater extent than lower SUVR (RR, 0.80; 95% CI,
0.67–0.97; p = 0.021), but not than lower t-tau or p-
tau (Fig. 1, bottom). The results were unchanged after

additionally adjusting for baseline CDR and age in
all analyses with or without p-tau or t-tau or after
missing imputations (Supplementary Tables 3 and 4).
Moreover, higher CSF A�42 levels were associated
a reduced hazard of time to first CDR progression
(HR, 0.51; 95% CI, 0.31–0.86; p = 0.011) than lower
SUVR (HR, 0.79; 95% CI, 0.62–1.01; p = 0.062) and
lower p-tau (HR, 0.62; 95% CI, 0.40–0.97; p = 0.037).
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Fig. 1. Adjusted prediction of CDR progression with baseline CSF A�42, p-tau, t-tau, and amyloid (PiB)-PET SUVR levels. CSF, cere-
brospinal fluid; PiB-PET, Pittsburgh compound B positron emission tomography; SUVR, standardized uptake value ratio; CDR, Clinical
Dementia Rating; A�42, 42-amino acid amyloid-beta peptide; p-tau, phospho-Tau; t-tau, total-Tau; HR, hazard ratio; CI, confidence interval.
RR reflects effect size for the association with a one standard deviation higher in CSF A�42 levels and lower in SUVR, CSF t-tau and p-tau
levels. Analyses were adjusted for age at onset, sex, education, APOE4, and duration of follow up. Overall cohort includes PiB-PET-positive
and negative samples.

Fig. 2. Comparison of CSF A�42 levels between non-progressors and progressors. PiB-PET-positive cohort: non-CDR progressors
(297.73 ± 13.66) versus CDR progressors (218.73 ± 17.22); overall cohort: non-CDR progressors (380.83 ± 14.5) versus CDR progres-
sors (313.35 ± 26.46). Error bar represents the standard error of mean. CSF, cerebrospinal fluid; PiB-PET, Pittsburgh compound B positron
emission tomography; CDR, Clinical Dementia Rating; A�42, 42-amino acid amyloid-beta peptide. Overall cohort includes PiB-PET-positive
and negative samples.

These results were confirmed in the stratified Cox
model (Supplementary Table 2).

CSF Aβ42 and CDR progression

CSF A�42 levels were higher among CDR non-
progressors than CDR progressors (Fig. 2). CSF
A�42 <270 pg/ml predicted progression (area under
the curve, 80.5%; sensitivity, 72.2%; specificity,

74.5%) regardless of increasing SUVR levels. The
progression-free survival was longer with CSF A�42
≥270 pg/ml compared to CSF A�42 <270 pg/ml
over the follow-up period in both PiB-PET-positive
(p = 0.002) and overall cohorts (p < 0.001) (Supple-
mentary Figure 2). In adjusted analysis, higher CSF
A�42 levels reduced the risk of progression even at
very high PiB-PET SUVR levels. CSF A�42 levels
predicting lower risk of progression increased with
higher SUVR levels (Fig. 3).
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Fig. 3. Adjusted probability of CDR progression. A) scatter plot of CSF A�42 and PiB-PET SUVR levels; B) contour plot of CSF A�42
and PiB-PET SUVR levels. CSF, cerebrospinal fluid; A�42, 42-amino acid amyloid-beta peptide; PiB-PET, Pittsburgh compound B positron
emission tomography; CDR, Clinical Dementia Rating; p-tau, phospho-Tau; t-tau, total-Tau. All models were adjusted for age at onset, sex,
education, APOE4, p-tau, and t-tau levels. Overall cohort includes PiB-PET-positive and negative samples.

Secondary endpoints

Amyloid PiB-PET-positive cohort
Higher baseline CSF A�42 predicted a reduced

risk of progression to CDR ≥0.5 (RR, 0.55; 95%

CI, 0.36–0.83; p = 0.004) and to CDR ≥1 (RR,
0.27; 95% CI, 0.13–0.59; p = 0.001), and was asso-
ciated with CDR-SB ≥4.5 (RR, 0.36; 95% CI,
0.36–0.18–0.70; p = 0.003) and MMSE ≤24 (RR,
0.30; 95% CI, 0.17–0.54; p < 0.001) better than



340 A. Sturchio et al. / High A�42 Levels Predicts Normal Cognition

Table 2
Adjusted associations of baseline CSF and SUVR with secondary cognitive outcomes

PiB-PET-positive PiB-PET-positive Overall cohort
cohort cohort (SUVR ≥1.49)

RR∗ 95% CI p RR∗ 95% CI p RR∗ 95% CI p

Progression to CDR ≥0.5
CSF A�42 0.55 0.36 0.83 0.004 0.59 0.38 0.91 0.017 0.52 0.35 0.77 0.001
SUVR (PiB-PET) 0.75 0.63 0.90 0.002 0.78 0.65 0.93 0.006 0.70 0.59 0.84 <0.001
CSF t-tau 0.97 0.78 1.19 0.764 0.96 0.78 1.19 0.693 0.98 0.78 1.23 0.876
CSF p-tau 0.67 0.52 0.86 0.002 0.69 0.53 0.89 0.005 0.60 0.46 0.79 <0.001

Progression to CDR ≥1
CSF A�42 0.27 0.13 0.59 0.001 0.29 0.13 0.62 0.002 0.26 0.13 0.51 <0.001
SUVR (PiB-PET) 0.72 0.55 0.94 0.016 0.74 0.56 0.97 0.028 0.66 0.51 0.87 0.003
CSF t-tau 0.95 0.74 1.23 0.724 0.94 0.74 1.22 0.681 0.96 0.74 1.25 0.751
CSF p-tau 0.57 0.36 0.89 0.015 0.59 0.37 0.92 0.020 0.50 0.32 0.78 0.002

CDR-SB ≥4.5 at last visit#

CSF A�42 0.36 0.18 0.70 0.003 0.38 0.19 0.74 0.005 0.32 0.18 0.58 <0.001
SUVR (PiB-PET) 0.78 0.63 0.96 0.018 0.79 0.64 0.98 0.030 0.73 0.59 0.90 0.004
CSF t-tau 1.09 0.85 1.39 0.492 1.09 0.85 1.37 0.520 1.12 0.88 1.43 0.366
CSF p-tau 0.47 0.29 0.75 0.002 0.48 0.30 0.76 0.002 0.40 0.25 0.64 <0.001

MMSE ≤24 at last visit#

CSF A�42 0.30 0.17 0.54 <0.001 0.32 0.18 0.59 <0.001 0.26 0.15 0.45 <0.001
SUVR (PiB-PET) 0.81 0.64 1.03 0.094 0.83 0.66 1.06 0.135 0.75 0.59 0.96 0.022
CSF t-tau 0.98 0.69 1.39 0.931 0.97 0.70 1.35 0.872 1.02 0.72 1.45 0.921
CSF p-tau 0.61 0.40 0.94 0.026 0.64 0.42 0.97 0.036 0.52 0.34 0.81 0.003

∗Relative risk (RR) is with a one standard deviation higher in CSF A�42 levels and lower in CSF t-tau, CSF p-tau, and SUVR levels. CI,
confidence interval; CDR, clinical dementia rating; CSF, cerebrospinal fluid; A�42, 42-amino acid amyloid-beta peptide; t-tau, total tau;
p-tau, phospho-Tau; CDR-SB, CDR sum of boxes; PiB-PET, Pittsburgh compound B positron emission tomography; SUVR, standardized
uptake value ratio; MMSE, Mini-Mental State Examination; FDG, fluorodeoxyglucose. All CSF and SUVR values are standardized. Analysis
adjusted for mean mutation age of symptom onset, sex, education, APOE4 status, and duration of follow up. #Analyses were also adjusted
for baseline CDR-SB or MMSE; Overall cohort includes PiB-PET-positive and negative samples.

lower SUVR, lower t-tau, or lower p-tau levels
(Table 2). Higher CSF A�42 levels were also asso-
ciated with larger hippocampi volume and higher
FDG-PET uptake at baseline to a greater extent
than lower SUVR, lower p-tau or lower t-tau levels
(data not shown). These results were unchanged in
age-adjusted models with other covariates and after
removing t-tau and p-tau from the models (Supple-
mentary Tables 5 and 6). Higher baseline CSF A�42
levels were associated with larger hippocampal vol-
ume (RC, 319.91; 95% CI, 73.97–565.86; p = 0.012)
and higher FDG-PET uptake (RC, 0.14; 95% CI,
0.03–0.24; p = 0.011) to a greater extent than lower
PiB-PET SUVR levels (Supplementary Table 7). The
results were unchanged after excluding 5% of the
SUVR threshold and in age-adjusted models with
other covariates (Supplementary Table 7). The asso-
ciation between CSF A�42 levels and all secondary
endpoints remained significant after excluding t-tau
or p-tau (Supplementary Table 8).

Overall cohort
Higher baseline CSF A�42 predicted a reduced

risk of progression to CDR ≥0.5 (RR, 0.52; 95%
CI, 0.35, 0.77; p = 0.001) and to CDR ≥1 (RR, 0.26;

95% CI, 0.13, 0.51; p < 0.001), and was associated
with CDR-SB ≥4.5 (RR, 0.32; 95% CI, 0.18, 0.58;
p < 0.001) and MMSE ≤24 (RR, 0.26; 95% CI, 0.15,
0.45; p < 0.001) better than lower SUVR, lower t-
tau, or lower p-tau levels (Table 2). Similar results
were observed in age-adjusted models with other
covariates (Supplementary Table 5) and models with
and without p-tau or t-tau (Supplementary Table 6).
Larger hippocampal volume was inversely associated
with SUVR levels (RC, –204.70; 95% CI, –341.07,
–68.33; p = 0.004) and p-tau levels (RC, –219.06;
95% CI, –405.74, –32.37; p = 0.022) but not with
CSF A�42 levels (Supplementary Table 7). Higher
SUVR was associated with lower FDG-PET uptake
(RC, –0.07; 95% CI, –0.13, –0.01; p = 0.022) but not
with CSF A�42 (Supplementary Tables 7 and 8).

DISCUSSION

This longitudinal analysis of a genetic cohort
showed that in amyloid PiB-PET-positive individu-
als with autosomal dominant AD-causing mutations
higher levels of CSF A�42 were associated with
reduced risk of progression to cognitive impairment,
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as well as larger hippocampal volume and higher
brain metabolism in the precuneus. Conversely, cog-
nitive deterioration was strongly predicted by lower
levels of soluble A�42 but not by increases in SUVR,
t-tau, or p-tau. These data are in agreement with
those of a cross-sectional analysis of a sporadic
AD cohort (in participants of the Alzheimer’s Dis-
ease Neuroimaging Inventory cohort study), in which
higher CSF A�42 levels were associated with nor-
mal cognition regardless of (and despite increasing)
SUVR levels among PiB-PET-positive individuals
[11], making a reduction in CSF A�42 levels a bet-
ter marker of progression than higher levels of CSF
t-tau, p-tau, or amyloid PiB-PET SUVR.

A threshold of compensation can tentatively be
drawn from these data, with further studies needed to
validating it. We found that levels of CSF A�42 above
270 pg/ml predicted a reduced risk of CDR progres-
sion across any levels of PiB-PET SUVR. The better
prediction of disease conversion by the reduction of
CSF A�42 levels than by the increase in brain amy-
loidosis is in line with its observed decline as early
as 25 years before the onset of cognitive impairment
in genetic AD [4]. There is also support for a greater
pathophysiologic importance of the loss of soluble
A�42 over the accrual of insoluble PiB-PET amyloid
from knockout animal models of the A�42 precur-
sor, A�PP, which yields neurodegeneration without
brain amyloidosis [20], and in AD patients treated
with BACE-1 inhibitors, which reduced CSF A�42
levels and worsened cognitive symptoms regardless
of changes in brain amyloid [21]. In vitro studies
have shown that PSEN mutations reduce the lev-
els of A�42 and A�40 [22], even if some mutations
increase the A�42/40 ratio [23, 24]. Clinically, how-
ever, mutation carriers, including Down syndrome
patients with APP duplications, have lower CSF lev-
els of A�42 and A�42/40 ratio at the symptomatic
stage compared to cognitively unimpaired individ-
uals [3]. Supporting the importance of the soluble
protein fraction, individuals with dementia associated
with the rare APP E693del (Osaka) mutation exhibit
low CSF A�42 despite no PiB-PET-amyloid positiv-
ity [25]. Importantly, the inverse correlation between
the progressive loss of soluble A�42 along with the
increase in insoluble A� is imperfect. In fact, we pre-
viously showed that soluble A�42 levels can still be
high even in individuals with the highest amyloid-
SUVR PiB-PET tertile, a relationship associated with
normal cognition [11].

Amyloids represent the end product of an
irreversible phase transition process of proteins,

changing from a soluble to an insoluble state via
a physicochemical process termed nucleation [26].
Nucleation is the rate-limiting step of the first stable
amyloid cluster (nucleus), after which the phase tran-
sition proceeds spontaneously until all the available
soluble substrate is consumed. While nucleation is
not favorable under normal conditions, it becomes
favorable at higher concentrations, such as those
attained via gene duplication, or when the protein
is rendered unstable due to structural mutations [27].
The net outcome is decreased availability of soluble
A�42. This explains why their depletion is universal
across all reported familial AD mutations, includ-
ing APP duplications [3, 28]. Whereas an increase in
amyloid plaque burden in the brain exhibits an incon-
sistent relationship with cognitive impairment, the
depletion of soluble A�42 is universally associated
with dementia in all familial and sporadic forms
of AD, further suggesting it is pathophysiologi-
cally more relevant [1, 3, 4, 29]. This is supported
by an extensive body of literature demonstrating
the role of physiological (picomolar) concentra-
tions of A�42 in memory and synaptic plasticity
via alpha-7 nicotinic acetylcholine receptor (�7-
nAChR) signaling (Supplementary Table 9). Very
recently, synthetic A�42 monomers have been shown
to improve impaired memory in conditional double
knockout mice without plaque deposition and in the
APP/PS1/Tau triple transgenic mice with A�42 depo-
sition, effects that were mediated by the �7-nAChR
[30]. These results not only indicate the importance
of the loss of A�42 function as a pathogenic mecha-
nism both in the presence and absence of plaques, but
also suggest that A�42 replacement has therapeutic
potential.

Major strengths of this analysis are its longitudi-
nal design and the relatively large number of subjects
with disease-causing mutations. The findings are sup-
ported by the use of several complementary analytic
methods on cognitive assessments and neuroimag-
ing data and confirmed by sensitivity analyses. Major
limitations include the inability to adjust for the esti-
mated year to symptom onset (highly correlated with
CSF and SUVR levels and did not serve as a con-
founder), and the lack of data on CSF A�40 (and
therefore of A�42/A�40 ratio; see below) and on
oligomeric species. On the last point, subjects with
normal cognition despite high PiB-PET plaque bur-
den had high, not low CSF A�42 [11], opposite to the
direction predicted by the hypothesis of oligomeric
toxicity. Oligomers are very transient and the major-
ity of them dissociate back to monomers rather than
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progress to aggregates [31]. Importantly, the reduc-
tion of soluble A�42 levels during the disease course
reduces the substrate for the oligomers, further ques-
tioning any sustainable toxicity from them.

A note related to the issue of ratio versus abso-
lute values is worth making. Early studies argued
that absolute levels of A�42 decrease but the
A�42/A�40 ratio increases due to the lower decrease
of A�40 relative the more aggregation-prone A�42
[32, 33]. However, recent studies have found that
the A�42/A�40 ratio decreases in AD [3, 34]. Patho-
physiologically, amyloid aggregation is dependent on
supersaturation [35–37], which is based on the abso-
lute concentration of the peptide. Decreasing peptide
concentration will decrease, not increase, the satu-
ration and the related propensity to form any type of
aggregates irrespective of its relative levels compared
to other peptides [38]. Nearly 90% of AD-related
mutations in the PSEN1 gene lead to reduced produc-
tion of both A�42 and A�40 [22], a classical genetic
loss-of-function mechanism. Further, there is no cor-
relation between the A�42/A�40 ratio and the age of
onset in mutation carriers [22].

In conclusion, higher soluble A�42 levels are asso-
ciated with reduced risk of CDR progression, normal
cognition, normal hippocampal volume, and normal
precuneus metabolism to a greater extent than lower
brain amyloid, lower p-tau, and lower t-tau levels in
amyloid PiB-PET-positive individuals with autoso-
mal dominant AD-causing genetic mutations. Brain
toxicity in AD may be predominantly mediated by a
reduction of the soluble protein pool, its functional
fraction, rather than its accrual into amyloids.
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