
Anais da Academia Brasileira de Ciências (2009) 81(1): 99-114
(Annals of the Brazilian Academy of Sciences)
ISSN 0001-3765
www.scielo.br/aabc

High spatial resolution analysis of Pb and U isotopes for geochronology by
laser ablation multi-collector inductively coupled plasma mass spectrometry

(LA-MC-ICP-MS)

BERNHARD BÜHN, MÁRCIO M. PIMENTEL, MASSIMO MATTEINI and ELTON L. DANTAS

Instituto de Geociências, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brasil

Manuscript received on March 13, 2008; accepted for publication on July 15, 2008;

contributed by MARCIO M. PIMENTEL*

ABSTRACT

Age determinations using the 235U and 238U radioactive decay series to the daughter isotopes 207Pb and 206Pb,

respectively, using the mineral zircon (ZrSiO4), are widely used to decipher geological processes. A new method

developed in the last couple of years, the laser ablation multi-collector inductively coupled plasma mass spectrometry

(LA-MC-ICP-MS), overcomes previous laborious sample preparation, and yields isotopic ratios and age data with a

high spatial resolution of ten of microns. The present study describes the analytical set-up and data reduction process

as presently applied at the Laboratory for Geochronology of the University of Brasília. It explores the precision and

accuracy of the method by cross-analysing three international zircon standards. We arrive at a precision of 1.9 to 3.7%

(2σ SD) and an accuracy of 0.6 to 3.8% (2σ SD) for and U isotopic ratios of the standards. We also apply the method

to two natural zircon samples, which have previously been dated by other analytical methods. A comparison of the

results shows a good conformity of the age data, being within the error limits. The data demonstrate the great analytical

potential of the method for rapid, precise and accurate U-Pb isotopic analyses on the micron scale.

Key words: geochronology, U-Pb isotopes, LA-MC-ICP-MS, zircon, age dating.

INTRODUCTION

Absolute age determinations in the geosciences serve

for a variety of applications including geotectonic stud-

ies, sedimentation ages and sediment provenance, as

well as dating of igneous and metamorphic rocks. They

use the decay of a radioactive isotope in a natural min-

eral with a half-life favourable for the expected age of

the material or process investigated. Many of these

applications are conducted in materials of considerable

age (millions to billions of years), which suggests the

use of the radioactive uranium isotopes 235U and 238U

with half-lifes of 7.04 × 108 and 4.47 × 109 years,

and the radiogenic daughter isotopes 207Pb and 206Pb,
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respectively. Analysis of the parent and daughter iso-

topes allows the determination of the crystallization age

of the mineral. The mineral analysed should show cer-

tain physicochemically favourable characteristics, such

as high resistance to chemical exchange and recrystal-

lization, and reasonably high U and radiogenic Pb con-

tents for analysis, amongst others. These are met by

the abundantly occurring mineral zircon (ZrSiO4)which

is, therefore, the most traditional and widely used min-

eral for age determinations of various geological appli-

cations (e.g. Garbe-Schönberg and Arpe 1997, Košler et

al. 2002).

Apart from the improvement in precision, accuracy

and mass resolution on the detector side of the instru-

mental set-up, a new method of material sampling is

gaining more and more importance. Instead of the in-
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troduction of the sample in aqueous solution, a laser

microprobe for sampling of solid material on the micron

scale is connected to an ionization cell, which ionizes the

sampled material in an inductively coupled plasma (ICP)

and supplies single-charged ions to a magnetic sector or

quadrupolemass spectrometer. The technique is referred

to as “laser ablation inductively coupled mass spectro-

metry” (LA-ICP-MS). It avoids the laborious sample

cleaning, dissolution and element separation in an ultra-

clean laboratory environment required by the traditional

isotope dilution thermal ionization mass spectrometry

(ID-TIMS). Since the pioneering work by Feng et al.

(1993) and Hirata and Nesbitt (1995), significant analyt-

ical progress of the LA-ICP-MS method was achieved

(see Vanhaecke and Moens 1999, Günther et al. 2000,

Horn et al. 2000, Stirling et al. 2000, Simonetti et al.

2006, Paquette and Tiepolo 2007, Simon et al. 2007).

In this study, advances of this particular dating

method, the multi-collector inductively coupled plasma

mass spectrometry (MC-ICP-MS) coupled to a laser

microprobe, which has recently been set up at the Geo-

chronology Laboratory of the University of Brasilia, are

reported. We present results of three international zir-

con standards cross-calibrated one against the other, and

two natural zircon samples which have previously been

analysed by other analytical methods. The data demon-

strate the capacity of the method in terms of rapid, pre-

cise and accurate U and Pb isotope analyses with high

spatial resolution.

RATIONALE

For the case of two radioactive isotopes of a single el-

ement, as for the decay systems of 238U and 235U, the

ratios between the stable decay products and the radio-

active parent isotopes (206Pb/238U and 207Pb/235U) are

interrelated. Given closed-system conditions, they plot

on a curve which extends from today towards the forma-

tion of the Earth and the solar system at approximately

4.53 Ga ago (Fig. 1). The ratios have to concord one to

the other following the relationship:

206Pb
238U

=
( 207Pb
235U

+ 1
)λ238U/λ235U

− 1 (1)

and define the “Concordia curve”, with λ being the decay

constant of the respective radioactive isotope. Another

age information can be obtained by the 207Pb/206Pb age,

based on the relationship:

207Pb
206Pb

=
235U
238U

×
(eλ235U×t − 1)
(eλ238U×t − 1)

(2)

With the constant present-day 238U/235U ratio of 137.88,

this age information considers only the daughter iso-

topes. Hence, the more accurate and valid age infor-

mation is obtained from the 206Pb/238U and 207Pb/235U

isotope ratios.
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Fig. 1 – Principles of the Concordia diagram 207Pb/235U versus

206Pb/238U. Concordant analyses fall on the Concordia curve. Min-

erals with a contribution of common Pb to the bulk Pb content plot

below the Concordia curve. Lead loss leads to zircon analyses plot-

ting on a Discordia line with the upper intercept indicating the age of

crystallization.

There are two fundamental problems with this

method. Firstly, the material analysed may contain ini-

tial common Pb of non-radiogenic origin. The non-

radiogenic Pb fraction displaces the isotope analyses to-

wards values below the Concordia curve (Fig. 1). The

problem of this “common Pb” content can be resolved

by correction procedures using crustal 206Pb/204Pb and
207Pb/204Pb compositions. These Pb isotope ratios, how-

ever, change with time in terrestrial materials, due to the

radiogenic growth of 206Pb and 207Pb from the decay

of 238U and 235U, respectively. The respective, time-

dependant isotope ratio used for correction may be cal-

culated from the average crustal Pb isotopic composi-

tion, or may directly be analysed in cogenetic minerals

which contain predominantly common, and little radio-

genic Pb.
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In order to avoid these corrections, it is alwaysmore

effective to analyse minerals which, due to their crystal

lattice characteristics, contain sufficient U to analyse the

parent and the daughter isotope but, on the other hand,

do not accommodate common Pb in the structure, be-

cause of the mismatch between ionic charge and effec-

tive ionic radius (Shannon 1976). These are, for ex-

ample, zircon (ZrSiO4) or monazite (Ce,La,Nd,Th)PO4,

which generally contain sufficient U to be analysed,

ranging from 1 to > 10000 ppm for zircon and 282 to

> 50000 ppm for monazite (Heaman and Parish 1991).

The common Pb content of the two minerals is gener-

ally (but not always) very low.

Secondly, the system must have been closed to the

gain or loss of the parent and daughter isotopes. In most

cases, we deal with a loss of radiogenic lead which can

be easily mobilized by geological processes because, as

in the case of zircon, radiogenic Pb2+ does not fit the

Zr4+ ion characteristics (Mezger and Krogstad 1997).

The result is that the isotopic analyses plot on a “Dis-

cordia line” which intersects the Concordia curve twice

(Fig. 1): the upper intercept generally represents the

time of crystallization of the mineral; the lower inter-

cept may, in cases, be interpreted as the geological event

when the crystal lost part of his radiogenic lead. Min-

eral standards for isotopic analyses by LA-ICP-MS or

ion microprobe should meet these two requirements, i.e.

they should be concordant, and void of common lead.

METHOLOGICAL PROGRESS OF Pb-U ISOTOPIC

ANALYSIS

Conventional Pb-U analyses for absolute age determi-

nation of geological materials commonly use the tech-

nique of ID-TIMS (Isotope Dilution Thermal Ioniza-

tion Mass Spectrometry). Sample preparation is labori-

ous (e.g. Nebel-Jacobsen et al. 2005, Amelin and Davis

2006). The minerals have to be separated from the rock

matrix, cleaned and sometimes abraded if the outer

margins show alteration features (Mattinson 2005). The

minerals are dissolved, and the Pb and U isotopes sep-

arated by resin columns in an ultra-clean laboratory to

allow sub-nanogram Pb isotopic analysis. The solutions

are deposited on rhenium filaments for thermal ioniza-

tion and introduction of the ionized species into a mag-

netic sector mass spectrometer.

This techniques has been successfully applied for

decades and is still commonly used for U-Pb age deter-

minations and other isotopic geochemical applications

worldwide. Low-blank laboratories normally achieve a

very high precision of the age determinations (Parrish

and Noble 2003, Krymsky et al. 2007). However, short-

comings of the technique are the need to separate the

minerals from the matrix, the lack of spatial resolution

of the analyses, and the laborious wet chemical prepara-

tion under ultra-clean laboratory conditions. On the other

hand, the quality of the analyses is excellent, reaching

precisions down to ≤ 0.1% for the Pb/U isotopic ratios

(e.g., Mattinson 2005).

Another method which overcomes the need for wet

chemical preparation is the Sensitive High Resolution

Ion Micro Probe (SHRIMP). It focuses a high-energy

ion beam (usually O−
2 ) onto an area of usually <30µm

for in situ isotopic analysis of minerals such as zircon.

The method reaches a precision and accuracy of about

1.0% (e.g., Cocherie et al. 2005). The SIMS method

(Secondary Ion Mass Spectrometry), on the other hand,

employs a primary ion beam and analyses the ejected

secondary ions. It focuses an O− ion beam of typically

> 10µm in diameter on a solid sample surface, and is

primarily applied to quantify major and trace element

contents (for example, Pettke et al. 2004).

Many recent analytical methods, instead, use an

“Inductively coupled plasma” ionization method (ICP)

of the sample, generating a fine aerosol which is ionized

in an Ar plasma (Horn et al. 2000). With Ar having a

high first ionization potential of 15.759 V, the plasma

ionizes all other elements to single-charged ions except

for He, F and Ne. The method was developed in the

early 1980s for introduction of dissolved samples.

Likewise, the ICP array may be connected to a laser

system which ablates a solid sample whose vaporized

material is then transported by a He gas flow into the

ICP unit. This method overcomes the need of ultra-clean

laboratory conditions and allows the selective sampling

of solid material on the micrometer scale. On the de-

tector side, the recent technology came up with multi-

collector (MC) arrangements which allow the simulta-

neous detection of the relative abundance of various

isotopes (see Simonetti et al. 2005). The conventional

Faraday cup detectors (normally 9 in a line) may be
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equipped with additional multichannel ion counters

(MICs) for high-sensitivity isotope analyses. The equip-

ment with additional MICs is only a spatial problem

within the Faraday cup arrangement and, generally,

6–8 MICs may easily be accommodated, allowing the

simultaneous analysis of about 15 isotopes.

The shortcomings of the laser ablation multi-col-

lector inductively coupled plasma mass spectrometry

(LA-MC-ICP-MS) relative to SHRIMP or conventional

TIMS analyses have been its lower precision. The laser

ablation process is not as stable as the SHRIMP method,

or as the introduction of the sample in solution as in

the case of TIMS. Firstly, this is due to the fragmenta-

tion and vaporization process of the solid material ab-

lated. The laser beam may ablate parts of the mineral

which are slightly fractured, altered or otherwise phys-

ically weakened or inhomogenized by previous geolog-

ical processes, including the destruction of the mineral

lattice by the proper radioactive radiation. The result is

that the ablation and vaporization process of the mate-

rial may vary in efficiency and completeness and, thus,

the material transport to the plasma may not be contin-

uous. Secondly, the carrier gas flux, normally ultrapure

He, has an appreciable effect on the stability of the gas

flow. Hence, the laser settings, such as laser intensity,

laser frequency and beam diameter, together with the

gas flow parameters, are fundamental for a reasonably

stable signal reaching the detectors.

With the more recent developments, however, the

analytical uncertainties are getting closer to those of

SHRIMP (see Willigers et al. 2002). Bruguier et al.

(2001) arrived at 6%, Horn et al. (2000) at 2%, Chang

et al. (2006) at 4%, and Gerdes and Zeh (2006) at

3–4% precision or accuracy for U-Pb isotope ratios of

natural materials. These values depend very much on

the nature of the material analysed, such as its com-

position, presence of fractures, inclusions and hetero-

geneities. The LA-ICP-MS analyses may be even more

precise for synthetic glass standards which are chemi-

cally and isotopically homogeneous (Bernal et al. 2005).

Often, the largest uncertainty is given by the analysis

of the standards (Chang et al. 2006) which are gener-

ally natural minerals including all the potential pitfalls.

With a precision of that magnitude, however, with the

control of the spatial resolution of the material anal-

ysed, and with the relatively easy preparation of the

samples, the laser ablation MC-ICP mass spectrometry

certainly is the method of choice for the coming years

for isotopic analysis of solid materials in the geo- and

environmental sciences (Willigers et al. 2002, Košler

and Sylvester 2003).

SET-UP OF THE LASER ABLATION

MC-ICP-MS U-Pb METHOD

The analytical equipment used in this study was installed

at the “Laboratório de estudos geocronológicos, geo-

dinâmicos e ambientais” of the Geosciences Institute

of the University of Brasília, Brasília, Brazil, by ini-

tiative of Petróleo Brasileiro S/A – PETROBRAS and

the “Ministério de Minas e Energia”. The laboratory is

part of the “Rede de Estudos Geodinâmicos e Ambien-

tais – GEOCHRONOS”. It was inaugurated in Decem-

ber 2006 and consists, apart from other installations and

instrumentation, of a Thermo Finnigan Neptune multi-

collector inductively coupled plasma mass spectrometer.

Attached to this is a New Wave 213µm Nd-YAG solid

state laser which provides the ablated material to the

mass spectrometer.

SAMPLE PREPARATION

Sample preparation is straightforward. The minerals of

interest, in this case zircon, are separated from the rock

matrix by crushing the rock, concentrating the heavy

mineral fraction by panning, separating the zircon grains

by a Frantz magnetic separator, and final hand-picking

of individual zircon grains. In situ analysis directly on

a rock slab or thin section is also possible. However,

it was found that the procedure of pre-concentration

largely facilitates the measurements and localization of

the zircons, so that it is worthwhile to be done.

The zircon grains are then located under the binoc-

ular one by one on a glass wafer covered with a double-

sided tape in order to secure the grains. A 9mmdiameter

plastic ring is placed on the tape around the zircons, and

filled with two-compound epoxy. After 1-2 days of dry-

ing, the mounts are removed from the tape. Polishing of

themounts is done with 3µm followed by 1µmdiamond

paste in order to expose unaltered and clean zircon sur-

faces. It is advisable to locate the grains on existing flat

crystal surfaces (if present) to avoid excessive polishing.
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The mounts are then taken to an ultrasonic bath with 3%

HNO3, and then cleaned with distilled water. A Nylon

sample holder which takes three mounts was especially

constructed. The three sites may be occupied with one

standard and two samples, or with two standards and one

sample.

THE LASER SET-UP

The sample chamber is flushed with He gas of analyt-

ical quality, which samples the ablated and vaporized

material to be transported via Tygon tubes into the ICP.

Before entering the laser sample chamber, the He passes

through a glass tube filled with gold-coated quartz crys-

tals (gold trap) to remove the largest part of mercury

(Hg) whose isotope 204Hg interferes with the 204Pb iso-

tope analysed to apply the common Pb correction. The

He gas flux is commonly 0.35–0.45 L/min.

The laser is run at a frequency of 7–10 Hz and

an energy of 30–36%, resulting in a laser energy of ca.

0.5 to 1.2 J/cm2. A small laser spot size of say 30µm

applied to a single spot with these laser conditions would

not produce enough material for a reasonable signal, but

at least 40–50µm would be required, with the signal

intensity deteriorating along duration of the analysis be-

cause of the deepening of the laser pit. This suggested

the use of a raster scheme of the laser which samples

only the surface of the zircon. The raster is composed of

two parallel and a connecting line with a 20µm spacing.

With a 30µm beam diameter applied here, the sampled

area of the zircon is a square of about 70µm on each

side. With a speed of 1µm/sec, the propagating laser

spot takes about 1 min to pass the raster, which is enough

time to collect the signal. This setting also avoids the

prominent down-hole fractionation of isotopes which

would require an additional correction, and a signifi-

cantly higher laser energy to drill the zircon. Before

signal collection, a pre-ablation run along the raster is

applied to clean the mineral surface. The running con-

ditions of this cleaning run are: 40µm spot size, fre-

quency 10 Hz and 25% laser energy.

THE ICP-MS AND MULTI-COLLECTOR SET-UP

Before entering the plasma, the He gas coming from the

laser with the ablated material, is combined with Ar gas

of analytical quality which sustains the plasma. The de-

tector arrangement consists of a central Faraday cup and

4 Faraday cups each on the high side and low side of the

centre cup (Fig. 2). For high-sensitivity analyses of the

Pb and U isotopes, the mass spectrometer is equipped

with 6 ion counters (ICs, or multichannel ion counters

MICs). Four of them are fixed on the outermost Faraday

cup of the low side (cup L4), one on the third cup of the

low side (cup L3), and one on the outermost Faraday cup

on the high side (cup H4). The latter is used only for

the analysis of 238U in materials with extremely low U

content. For the present application, we analysed 238U

on the Faraday cup H4. The other isotopes are collected

on the low side. The four ICs on the cup L4 are fixed

at defined distances referring to: one mass unit between

L4 and IC5, one mass unit between IC5 and IC4, two

mass units between IC4 and IC3, and two mass units

between IC3 and IC2. The signals collected on the four

ICs are: 207Pb on IC5, 206Pb on IC4, 204Hg/204Pb on

IC3, and 202Hg on IC2. Because of the always present

contamination of the He gas with Hg, a correction for

the isobaric interference between 204Hg and 204Pb has

to be applied, using the signal of 202Hg collected on IC2.

DATA COLLECTION

With this collector set-up, five isotopes are analysed si-

multaneously. Before analysis, the Faraday cups are

calibrated for baseline and gain, and the ICs for their

yield. To ensure the optimal operating voltage and the

same sensitivity for the ICs, a signal of about 300,000

counts per second (cps) is successively directed into the

4 ICs using different analysing lines. We use a solution

of 206Pb for this cross-calibration. Based on the signal

response for each IC, the operating voltage of each IC

is adjusted in order to ensure measuring conditions with

the same sensitivity for all ICs used.

For standard and sample analysis, the signals are

collected in a single block with 40 cycles of 1.049 sec.

each. The laser is started and, when the signal at

the detectors has reached its maximum, the 40 cycles

are taken. A typical analysis therefore takes about 1

min and is illustrated in Figure 3. The isotopes 202Hg,
204(Pb+Hg), 206Pb and 207Pb are read in counts per sec-

ond (cps), and 235U in mV, which is transferred into

cps by multiplication by a factor of 62,500. We ap-

ply a standard-sample bracketing technique, analysing
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Fig. 2 – Set-up of the cup configurations (Faraday cups and ICs) for low U-Pb and high U-Pb concentrations in

zircon with the Thermo Finnigan NeptuneMC-ICP-MS.

a blank, a standard, and three samples, blank, standard,

and so on. The method accounts for the drift of the

instrument, and eliminates the need to correct for the

mass bias of individual isotopes.

DATA REDUCTION

The isotope data of the 40 analysed cycles are trans-

ferred into an in-house Excel spreadsheet for data re-

duction. The isotope ratios of the 40 cycles are evalu-

ated on a 2σ standard error rejection basis. The routine

then calculates the error correlation value ρ (rho) for the
206Pb/238U and 207Pb/235U data. The isobaric contri-

bution of 204Hg is subtracted from the joint 204Pb/204Hg

peak by considering the analyzed 202Hg/204Hg ratio. The

spreadsheet allows to chose between three ways to deter-

mine the 202Hg/204Hg value which is applied for correc-

tion: (i) from the mean of the two bracketing blanks, (ii)

from the mean of the two bracketing (common Pb-free)

standards, or (iii) from the mean of the four. Normally,

the difference between the three determinations is mi-

nor. We consider this more favourable than applying the

natural 202Hg/204Hg ratio of 4.346, which would require

an absolutely precise cross-calibration of IC2 and IC3.

Because 235U cannot be analysed with this type of cup

configuration, the natural ratio 238U/235U of 137.88 is

used to calculate the 235U intensity.

The correction for instrumental drift and mass bias

is done by considering the two standards analysed be-

fore and after the samples, and the two blank analy-

ses run before and after the samples, respectively, af-

ter applying a blank correction for all isotopes analysed.

The normalization of the isotopic ratios of the samples

(Rspl) follows the formula of Albarède et al. (2004):

Rspl =
Rstd × rspl

(

r1−θ
std1 × rθstd2

) (3)

for which Rstd is the true isotopic ratio of the standard

(207Pb/206Pb or 206Pb/238U ratios, respectively), rspl is

the analysed isotopic ratio of the sample, and rstd1 and

rstd2 are the analysed isotopic ratios of the two standards

before and after the samples along the sequence. The

variable θ (theta) is a time factor (Albarède et al. 2004)

or, in other words, gives respective weight to the two

standard measurements. It depends on the location of

the samples within the analysing sequence, and takes

values between 0 and 1. For example, three successive

analyses run between two standards and two blanks sug-

gest θ = 0.25, 0.50 and 0.75 for samples 1, 2 and 3,

respectively. The term
(

r1−θ
std1× rθstd2

)

is a linear inter-

polation of the logarithms of the isotopic ratios, which

accounts for the generally exponential instrumental drift.

The same algorithm is applied to correct for the drift in

the blank analyses. An alternative would be to inject

a diluted thallium (Tl) solution to determine the mass

bias of the Pb isotopes (e.g., Horn et al. 2000) which,

however, does not allow the correction of U mass bias.

The standard-sample bracketing approach applied here,

therefore, certainly bears the least error for that analyt-

ical method, as it does not require intensive mass bias

corrections.

The corrected 206Pb/238U and 207Pb/206Pb ratios so

obtained are transferred into absolute age information

using the software of Ludwig (2003). The software was

also used to plot the Concordia diagrams. The errors of

the 206Pb/238U and 207Pb/206Pb ratios were propagated

by quadratic addition of the external reproducibility and

the within-run precision, following equation (4):

2σ

(

206Pb
238U

, or
207Pb
206Pb

)

propagated

=
(

2SD∧2
analysed + 2SE∧2

analysed

)1/2

(4)
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of the isotopes may vary during the ablation process while the isotope ratios remain constant. The

signals of 202Hg and 204Hg/Pb, in the case of no common 204Pb present in the ablated sample, come

solely from the Hg contents in the Ar gas, and are therefore not influenced by the ablation process.

with SD being the sample standard deviation σ :

σ =

√

√

√

√

√

1

N

N
∑

i=1

(

xi − xm
)2

(5)

where N is the number of analyses, xi is the value of

each individual analyses xi to xN, and xm is the arith-

metic mean of all analyses. Whereas the SD is indepen-

dent of the number of analyses, the standard error SE:

SE =
σ

√
N

(6)

decreases with the number of analyses N taken. The

external reproducibility (2 SD∧2
analysed) is represented by

the standard deviation obtained by repeated analysis of

standard zircon GJ-1 which were run during the analyti-

cal session (generally ∼0.8% for 207Pb/206Pb, and∼1%
for 206Pb/238U). The within-run precision (2 SE∧2

analysed)

is the standard error calculated for each analysis. The

resulting errors are 2σ standard deviations.

ZirconU-Pb isotopic analysesmay require a correc-

tion for the common lead contribution to the total 206Pb

and 207Pb signals. There are a couple of methods to do

this in the literature (see Andersen 2002, Horstwood et

al. 2003). For minerals with a low common Pb content

as, for example, zircon, we use a correction based on the

amount of non-radiogenic 204Pb. The counts per second

of 204Pb (including a correction for 204Hg) are used to

deduce the amount of non-radiogenic, common 206Pb

and 207Pb, given a common Pb composition following

the model of Stacey and Kramers (1975). With the frac-

tion fc of common 206Pb and 207Pb so obtained:

fc =
Pbc
Pbt

=
Pbc

Pbc + Pbr
(7)

where Pbc is the value (in counts per second) of common

Pb, Pbt the total Pb, and Pbr the radiogenic Pb, with Pb

being 206Pb or 207Pb, respectively, we use the relation-

ships:

206Pb
238Uradiogenic

=
206Pb
238Utotal

× (1− fc), (8)

and
207Pb

235Uradiogenic
=

207Pb
235Utotal

−

(

206Pb
238Utotal

×
207Pb

206Pbcommon
×
238U
235U

× fc

)

(9)
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of Andersen (2002) to arrive at common Pb-corrected
206Pb/238U and 207Pb/235U isotopic ratios. The neces-

sity for a correction is judged from the 204Pb signal in-

tensity. Values smaller than ∼25 cps (blank-corrected),
resulting in 206Pb/204Pb ratios well beyond 3000, sug-

gest an insignificant common Pb content which would

not recognizably effect the calculated ages. All zircons

analysed in this study met this condition, and therefore

did not require a correction.

STANDARDS AND SAMPLES

Three international zircon standards were analysed, us-

ing each one as an external standard and correcting the

remaining two against it. This yields a set of 6 iso-

tope ratio and age data which are compared with the

certified values of the standards (see Table I). The stan-

dards are: (i) GJ-1 zircon standard provided by the ARC

National Key Centre for Geochemical Evolution and

Metallogeny of Continents (GEMOC), Australia. This is

a gem-quality zircon crystal of about 0.7 cm in diameter

which was broken and prepared for analysis. Its refer-

ence age after Jackson et al. (2004) is: 207Pb/206Pb age

= 608.6 ± 1.1 Ma, 206Pb/238U age = 600.4 ± 1.8 Ma,
207Pb/235U age = 602.1 ± 3.0 Ma; (ii) Temora 2, pro-

vided by Lance Black, Geoscience Australia, Australia,

which comes from the Middledale gabbroic diorite in

eastern Australia; the zircon crystals have a size of about

300–500 µm and, prior to sample preparation, the con-

centrate was hand-picked to obtain a high-purity zircon

concentrate. Its reference age after Black et al. (2004)

is: 207Pb/206Pb age = 419.1 ± 9.1 Ma, 206Pb/238U age
= 416.2 ± 1.1 Ma, 207Pb/235U age = 416.7 ± 1.7 Ma;

(iii) FC1 zircon concentrate provided by Richard Arm-

strong, Australian National University, Canberra, Aus-

tralia; the crystals have sizes of approximately 50–

100µm, and were hand-picked prior to sample prepara-

tion; they were extracted from the Duluth Complex in

the U.S.A. Its reference age (Paces and Miller 1993)

is: 207Pb/206Pb age = 1098.9 Ma, 206Pb/238U age =

1099.9 Ma, 207Pb/235U age = 1100.0 Ma.

For an additional test of the method, two zircon

samples from our own laboratory which had previously

been dated by other analytical methods were also investi-

gated here. One is a relatively young zircon concentrate

(sample HD66) from a hornblende-bearing orthogneiss

of the Neoproterozoic Goiás magmatic arc which has

previously been dated at 630 ± 5 Ma (2σ) by U-Pb ID-

TIMS in our laboratory (Laux et al. 2005). Its average
207Pb/206PbTIMS age is 633.3±5.7Ma. The other sam-
ple (EC69A) has much older zircon crystals and went

through a more complex geological history. They were

extracted from a migmatized hornblende- and biotite-

bearing tonalite from an Archean nucleus of the São

José do Campestre Massif in the Borborema Province,

NE Brazil. The zircons yielded an upper intercept age

of 3065 ± 12 Ma determined by SHRIMP analysis

(Dantas et al. unpublished data).

RESULTS

Between 13 and 23 analyses were run for the standards

GJ1, Temora 2 and FC1. Figure 4 shows the ages ob-

tained for each standard normalized against one another

in a Concordia diagram, and Table I summarizes the data

obtained. The concordance between the values obtained

and the referenced standard data of the 207Pb/206Pb,
206Pb/238U and 207Pb/235U age data is well satisfactory.

We obtained precisions of 1.9 to 3.7% (2σ standard de-

viation) for the 207Pb/206Pb, 206Pb/238U and 207Pb/235U

age data, depending on the isotope system and on the

particular standard. The accuracy was calculated as the

percentage of deviation between the analysed Concor-

dia age and the referenced 207Pb/206Pb age. The Concor-

dia age, following Ludwig (2003) is, “the most-probable

age for a data-point (or weighted-mean data-point) on a

Concordia diagram, where the true location of the data

point is assumed to fall precisely on the Concordia

curve”. Because not all referenced standards provide

the error correlation coefficient to calculate that age,

their referenced 207Pb/206Pb age was used. The accu-

racy so obtained varies between 0.6 and 3.8% (2σ stan-

dard deviation).

The majority of the 23 analyses obtained for the

natural sample HD66 (Table II) were taken as multi-

ple analyses on different localities of individual grains.

They are all concordant (Fig. 5), yielding a Concordia

age of 627.6 ± 1.3 Ma, which is identical within er-

ror to the TIMS age of 630 ± 5 Ma. None of the zir-

cons required a common Pb correction. The 204Hg-cor-

rected 204Pb signal was 30 cps at most, yielding calcu-

lated 206Pb/204Pb ratios between 3000 and 50000. The
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TABLE I

Referenced and determined ages (by LA-ICP-MS) of the zircon standards GJ1, Temora 2 and FC1.

Sample Standard
No.

207Pb*/
Error

207Pb*/
Error Prec.

206Pb*/
Error

206Pb*/
Error Prec.

of
206Pb*

(2σ)
206Pb*

(2σ) (2σ)
238U

(2σ)
238U

(2σ) (2σ)

anal.
age (Ma)

(Ma)
age (Ma)

(Ma) (%)
age (Ma)

(Ma)
age (Ma)

(Ma) (%)
referenced analysed referenced analysed

GJ1 Temora 2 23 608.6 1.1 598.4 6.3 2.8 600.4 1.8 598.3 20.2 2.7

GJ1 FC1 20 608.6 1.1 583.7 6.1 2.4 600.4 1.8 584.0 19.8 2.3

Temora 2 GJ1 23 419.1 9.1 424.8 16.5 2.9 416.2 1.1 424.9 12.9 2.8

Temora 2 FC1 20 419.1 9.1 414.9 16.6 3.5 416.2 1.1 414.9 12.6 3.5

FC1 Temora 2 13 1098.9 n.r. 1111.6 5.5 3.7 1099.9 n.r. 1109.9 30.4 3.4

FC1 GJ1 13 1098.9 n.r. 1127.8 4.8 2.9 1099.9 n.r. 1127.2 25.5 2.7

Sample Standard
No.

207Pb*/
Error

207Pb*/
Error Prec.

Concordia
Error

Accuracy
of

235U
(2σ)

235U
(2σ) (2σ)

age (Ma)
(2σ)

(%)
anal.

age (Ma)
(Ma)

age (Ma)
(Ma) (%)

determined
(Ma)

referenced analysed

GJ1 Temora 2 23 602.1 3.0 596.7 15.9 1.6 597.1 2.3 1.9

GJ1 FC1 20 602.1 3.0 587.7 15.7 1.9 585.1 2.3 3.9

Temora 2 GJ1 23 416.7 1.7 426.6 10.8 2.8 424.5 1.6 1.3

Temora 2 FC1 20 416.7 1.7 415.9 10.6 3.7 416.4 1.7 0.6

FC1 Temora 2 13 1100.0 n.r. 1098.0 24.7 2.6 1093.9 9.8 0.5

FC1 GJ1 13 1100.0 n.r. 1123.3 21.9 2.2 1124.6 6.7 2.3

Referenced values from: GJ1 (Jackson et al. 2004), Temora 2 (Black et al. 2004), FC1 (Paces and Miller 1993). Precision (Prec.): 2σ

precision for the number of analyses, “n.r.” = not reported. All errors are 2σ standard deviations. Accuracy: Percentage of deviation between

analysed concordia age and referenced 207Pb/206Pb age.

weighted average of 24 207Pb/206Pb ages resulted in a
207Pb/206Pb age of 628.7 ± 6.0 Ma, compared with

the TIMS 207Pb/206Pb age of 633.3± 5.7 Ma.
Sample EC69A shows a more complex zircon pop-

ulation, as seen from 24 SHRIMP (Table III) and 35

LA-ICP-MS analyses (Table IV). Most of the LA-ICP-

MS analyses were taken as multiple shots on individ-

ual zircon grains. None of the zircons required a com-

mon Pb correction. The ICP-MS analyses display var-

ious groups of zircons plotting on supposedly different

Discordia lines (Fig. 6). The youngest upper intercept

age, defined by four discordant and three concordant

analytical points, yields the age of 3045 ± 24 Ma,

which agrees within error with the SHRIMP age of

3065 ± 12 Ma. However, various older zircon popu-

lations were encountered in the sample. One is defined

by 17 discordant zircon analyses which yield an upper

intercept age of 3305 ± 51 Ma. A minor population

composed of three discordant analyses gives an upper

intercept age of 3625 ± 38 Ma. The two latter pop-

ulations may relate to 3.4–3.5 Ga ages reported from

the same area by Dantas et al. (2004). Another group

of five highly discordant zircon analyses with extremely

low 206Pb/238U ratios may represent still another, even

older geological event. Three analyses on grain 14 (see

Table IV, but not included in Fig. 6) yielded one con-

cordant and two nearly concordant data with ages be-

tween 540 and 570 Ma. They represent another event

of resetting of the isotope system during the Neopro-

terozoic/Cambrian Brasiliano cycle. Therefore, the Dis-

cordias of all older zircon populations were anchored to

558 Ma, which is the mean of these three analyses.

DISCUSSION AND CONCLUSIONS

A comparison of the LA-ICP-MS results of the natural

sample HD66 with TIMS analyses shows a fine confor-

mity even within the limits of error, yielding 627.6 ±
1.3 Ma for LA-ICP-MS and 630 ± 5 Ma for the TIMS
analyses. Moreover, the LA-ICP-MS analyses indicate
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TABLE II

TIMS and LA-ICP-MS analyses of sample HD66.

T I M S

207Pb*/
2σ 207Pb*/

2σ 206Pb*/
2σ 207Pb/ 2σ 207Pb*/ 2σ 206Pb*/ 2σ

Analysis 206Pb*
error 235U

error 238U
error ρ 206Pb error 235U error 238U error

(%) (%) (%) age (Ma) age (Ma) age (Ma)

1 0.0609 0.16 0.841 0.28 0.100 0.23 0.82 637.0 3.5 619.7 1.3 614.4 1.3

2 0.0609 0.24 0.844 0.46 0.100 0.39 0.84 636.0 5.3 621.4 2.1 614.4 2.3

3 0.0608 0.20 0.851 0.44 0.101 0.39 0.89 634.0 4.3 625.2 2.1 620.3 2.3

4 0.0606 0.44 0.856 1.17 0.102 1.09 0.93 626.0 9.5 627.9 5.5 626.1 6.5

LA-ICP-MS

1 0.06112 1.6 0.8864 2.5 0.10499 2.5 0.91 643.5 33.9 644.4 11.9 643.6 15.4

2 0.06054 2.2 0.8511 1.6 0.10147 1.6 0.63 622.8 46.3 625.2 7.4 623.0 9.5

3a 0.06068 1.0 0.8566 2.8 0.10230 2.8 0.94 627.9 22.4 628.2 12.9 627.9 16.5

3b 0.06054 1.2 0.8474 2.7 0.10147 2.7 0.93 623.0 26.1 623.2 12.5 623.0 16.1

3c 0.06082 1.1 0.8658 2.0 0.10316 2.0 0.90 632.8 22.5 633.3 9.5 632.9 12.2

4 0.06116 1.5 0.8885 1.9 0.10525 1.9 0.76 645.0 31.2 645.5 9.2 645.1 11.9

5a 0.06094 2.0 0.8666 2.2 0.10385 2.2 0.86 637.2 42.8 633.7 10.5 636.9 13.5

5b 0.06090 1.7 0.8637 2.4 0.10358 2.4 0.92 635.7 37.2 632.1 11.0 635.3 14.3

6a 0.06080 1.9 0.8653 2.3 0.10303 2.3 0.77 632.1 39.7 633.0 10.9 632.2 14.0

6b 0.06076 1.6 0.8642 1.7 0.10283 1.7 0.75 630.8 33.1 632.4 7.8 631.0 10.0

6c 0.06077 2.0 0.8632 2.5 0.10284 2.5 0.82 630.9 41.9 631.8 11.8 631.0 15.2

7a 0.06085 1.0 0.8671 1.9 0.10333 1.9 0.94 633.9 21.0 634.0 8.9 633.9 11.4

7b 0.06079 1.1 0.8637 1.7 0.10296 1.7 0.87 631.7 24.0 632.1 7.9 631.7 10.1

7c 0.06083 1.2 0.8662 1.6 0.10319 1.6 0.89 633.1 26.6 633.5 7.6 633.1 9.7

8a 0.06049 1.1 0.8441 2.1 0.10114 2.1 0.90 621.0 23.5 621.4 9.5 621.1 12.1

8b 0.06059 1.3 0.8657 2.2 0.10188 2.2 0.83 624.6 27.7 633.2 10.1 625.4 12.8

8c 0.06069 1.7 0.8571 2.2 0.10236 2.2 0.82 628.2 35.9 628.6 10.1 628.2 13.0

9 0.06056 1.6 0.8524 2.5 0.10161 2.5 0.83 623.6 34.3 626.0 11.4 623.8 14.6

10a 0.06018 2.1 0.8231 2.6 0.09928 2.6 0.80 610.2 44.8 609.8 11.7 610.2 14.9

10b 0.06046 1.8 0.8424 2.4 0.10097 2.4 0.88 620.0 38.4 620.5 10.9 620.1 14.0

10c 0.06051 2.1 0.8484 2.9 0.10127 2.9 0.85 621.7 45.7 623.8 13.5 621.9 17.3

11a 0.06035 1.4 0.8346 2.3 0.10028 2.3 0.86 616.1 29.3 616.1 10.7 616.1 13.6

11b 0.06057 1.4 0.8485 1.8 0.10162 1.8 0.76 623.9 30.3 623.8 8.4 623.9 10.7

Note: Analyses with letters (a, b, c) indicate analyses on the same zircon grain. All errors are 2σ standard deviations.
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TABLE III

SHRIMP data of sample EC69A.

207Pb*/
1σ 207Pb*/

1σ 206Pb*/
1σ 207Pb/ 1σ 207Pb*/ 1σ 206Pb*/ 1σ

Analysis 206Pb*
error 235U

error 238U
error ρ 206Pb error 235U error 238U error

(%) (%) (%) age (Ma) age (Ma) age (Ma)

1 0.23187 0.16 18.88 1.4 0.5904 1.4 0.99 3065 2.6 3036 13.6 2991 34

2 0.22398 0.26 17.02 1.6 0.5512 1.5 0.99 3010 4.2 2936 15.5 2830 34

3 0.22960 0.59 18.61 1.6 0.5877 1.4 0.92 3049 9.6 3022 15.5 2980 33

4a 0.17531 0.17 5.20 1.5 0.2153 1.5 0.99 2609 2.8 1853 12.9 1257 17

4b 0.23401 0.24 17.90 1.5 0.5547 1.5 0.99 3080 3.9 2984 14.5 2845 35

5 0.22896 0.20 18.83 1.5 0.5964 1.4 0.99 3045 3.2 3033 14.6 3015 33

6 0.23269 0.11 18.40 1.4 0.5734 1.4 1.00 3071 1.7 3011 13.6 2922 33

7 0.22065 0.33 15.63 1.5 0.5139 1.5 0.98 2986 5.4 2854 14.4 2673 33

8a 0.22995 0.22 18.74 1.5 0.5909 1.4 0.99 3052 3.5 3029 14.6 2993 34

8b 0.23278 0.20 19.57 1.4 0.6098 1.4 0.99 3071 3.2 3070 13.6 3069 34

9 0.22789 0.36 17.77 1.5 0.5654 1.4 0.97 3037 5.8 2977 14.5 2889 33

10 0.22748 0.34 16.34 1.5 0.5210 1.4 0.97 3034 5.5 2897 14.5 2703 31

11 0.23340 0.41 19.46 1.6 0.6047 1.5 0.96 3076 6.6 3065 15.6 3049 37

12 0.22859 0.26 15.47 1.5 0.4907 1.4 0.98 3042 4.2 2845 14.4 2574 30

13 0.22691 0.13 17.89 1.4 0.5719 1.4 1.00 3030 2.1 2984 13.6 2915 32

14 0.23221 0.14 19.22 1.4 0.6003 1.4 1.00 3067 2.2 3053 13.6 3031 34

15 0.22759 0.23 17.75 1.5 0.5655 1.5 0.99 3035 3.7 2976 14.5 2889 35

16 0.23251 0.09 18.21 1.4 0.5680 1.4 1.00 3069 1.4 3001 13.6 2900 33

17 0.23087 0.12 18.37 1.4 0.5772 1.4 1.00 3058 1.9 3009 13.6 2937 33

18 0.22915 0.32 17.01 1.5 0.5382 1.4 0.98 3046 5.1 2935 14.5 2776 32

19 0.21750 0.68 15.98 1.6 0.5327 1.5 0.91 2962 11 2876 15.4 2753 34

20 0.22271 0.44 15.34 1.5 0.4996 1.4 0.96 3000 7.1 2837 14.4 2612 30

21 0.23329 0.19 19.00 1.4 0.5906 1.4 0.99 3075 3.1 3042 13.6 2992 34

22 0.22929 0.10 17.43 1.4 0.5513 1.4 1.00 3047 1.6 2959 13.5 2830 32

Note that the errors are 1σ errors. The majority of shots were taken as single shots on zircon grains.

that there was no Pb loss in the zircons (no discordant

zircons), in contrast to three out of four TIMS analy-

ses (Fig. 5a). It is most probable, that weathered or

otherwise isotopically disturbed surfaces of the zircons

are responsible for the discordant U-Pb TIMS data,

since the zircons were not abraded before digestion to

remove possible alterations or disturbances. The LA-

ICP-MS method avoids this by polishing of the zircon

grains before analysis, and by a laser pre-ablation which

cleans the uppermost part of the mineral surface.

The LA-ICP-MS analyses of the natural sample

EC69A show a complex history of zircon growth and

lead loss. Three concordant zircon analyses, together

with 4 other analyses, define an upper intercept age of

3045± 24 Ma (Fig. 6) which agrees, within error, with
the 3065± 12 Ma SHRIMP age. There are other discor-

dant zircon analyses which, although being discordant,

indicate a complex history of crystallization and partial

resetting. In that particular case, the internal structure

of the zircons would have to be imaged by cathodolu-

minescence or back-scattered electron techniques prior

to analysis, for ensuring an unequivocal interpretation

of the various age populations. The analyses presented

here show, nevertheless, that it is possible to detect an

even complex geological history from a set of only 10–

15 zircon grains, by high spatial resolution LA-ICP-MS

analysis.

The LA-MC-ICP-MS method presented here is

designed for rapid analysis of large sample sets, which

often are needed in sediment provenance or other re-

gional geological studies. It overcomes extensive sample

preparation and careful wet chemical isotope separation,

An Acad Bras Cienc (2009) 81 (1)



Pb AND U ISOTOPE ANALYSIS BY LA-MC-ICP-MS 111

TABLE IV

LA-ICP-MS data of sample EC69A.

207Pb*/
2σ 207Pb*/

2σ 206Pb*/
2σ 207Pb/ 2σ 207Pb*/ 2σ 206Pb*/ 2σ

Analysis 206Pb*
error 235U

error 238U
error ρ 206Pb error 235U error 238U error

(%) (%) (%) age (Ma) age (Ma) age (Ma)

1 0.18772 0.4 18.40 6.2 0.55912 6.2 0.99 2722 7.2 3011 57.9 2863 141

2a 0.12520 1.7 15.34 12.8 0.43386 12.8 0.99 2032 29.4 2836 115 2323 245

2b 0.13026 2.3 15.21 7.3 0.44414 7.3 0.96 2101 40.1 2828 67.6 2369 144

3a 0.14210 2.6 16.13 4.2 0.47461 4.2 0.82 2253 44.5 2885 39.0 2504 85.7

3b 0.11516 13.4 10.85 15.2 0.37785 15.2 0.98 1882 224 2510 133 2066 264

3c 0.15040 1.5 17.38 4.8 0.49850 4.8 0.99 2351 24.9 2956 44.9 2607 102

4a 0.17586 0.8 17.33 4.5 0.53625 4.5 0.99 2614 12.6 2953 42.0 2768 99.7

4b 0.17187 1.6 16.36 10.7 0.52396 10.7 0.98 2576 26.4 2898 97.7 2716 233

5 0.14147 6.7 14.30 15.0 0.46184 15.0 0.98 2245 111 2770 133 2448 299

6 0.13705 6.1 17.42 5.8 0.47611 5.8 0.43 2190 102 2958 53.8 2510 119

7a 0.10342 7.7 15.16 5.8 0.37870 5.8 0.93 1686 136 2825 53.6 2070 102

7b 0.12225 0.9 16.12 3.6 0.43484 3.6 0.98 1989 16.4 2884 34.1 2328 70.4

7c 0.12528 4.6 15.74 6.5 0.43896 6.5 0.92 2033 79.9 2861 60.3 2346 127

8a 0.16852 3.5 18.26 5.1 0.53185 5.1 0.80 2543 57.0 3003 47.8 2749 113

8b 0.14777 1.2 17.80 1.5 0.49492 1.5 0.92 2320 20.7 2979 14.2 2592 31.8

8c 0.09571 2.3 13.34 14.1 0.33741 14.1 0.99 1542 42.7 2704 125 1874 226

9a 0.09655 7.2 17.69 9.3 0.36624 9.3 0.93 1559 129 2973 85.7 2012 159

9b 0.07537 13.3 16.89 14.7 0.28108 14.7 0.41 1078 246 2929 132 1597 205

9c 0.08637 4.9 16.78 4.0 0.32480 4.0 0.25 1346 91.0 2922 38.0 1813 63.6

9d 0.08336 8.0 16.41 7.6 0.31092 7.6 0.11 1278 148 2901 70.4 1745 115

10a 0.23273 1.0 19.28 2.5 0.60829 2.5 0.98 3071 15.8 3056 23.4 3063 59.5

10b 0.23732 0.9 19.18 2.1 0.61117 2.1 0.96 3102 14.4 3051 20.3 3075 51.8

10c 0.21793 1.7 18.07 3.4 0.58752 3.4 0.98 2965 26.9 2993 32.1 2979 80.4

11a 0.13695 3.3 14.30 4.7 0.45064 4.7 0.95 2189 55.6 2770 43.3 2398 92.6

11b 0.14320 1.6 16.17 8.6 0.47580 8.6 0.99 2266 27.5 2887 78.8 2509 176

11c 0.18069 1.5 18.19 3.5 0.54860 3.5 0.96 2659 23.9 3000 33.0 2819 79.0

12a 0.09062 3.6 15.42 4.1 0.33203 4.1 0.57 1439 67.9 2842 38.3 1848 65.5

12b 0.12647 1.2 15.27 1.7 0.43256 1.7 0.76 2049 20.3 2832 15.8 2317 32.4

12c 0.09022 9.4 13.17 8.0 0.31563 8.0 0.78 1430 170 2692 73.0 1768 123

13a 0.12573 3.9 16.94 4.6 0.44200 4.6 0.61 2039 66.8 2931 42.7 2360 89.3

13b 0.14744 3.8 17.27 5.1 0.48892 5.1 0.65 2316 63.4 2950 48.1 2566 108

13c 0.13245 4.5 16.69 6.4 0.45527 6.4 0.78 2131 75.9 2917 59.4 2419 128

14a 0.05842 0.8 0.7476 6.4 0.08864 6.4 0.99 545.7 16.9 566.8 27.6 547.5 33.7

14b 0.05902 1.1 0.7526 2.9 0.09212 2.9 0.97 567.9 23.8 569.8 12.5 568.0 15.6

14c 0.05882 0.8 0.7486 1.5 0.09090 1.5 0.93 560.3 17.8 567.4 6.6 560.9 8.2

Note that the errors are 2σ errors. The majority of shots were taken as multiple shots on zircon grains.

which may always be a source of sample contamination.

Apart from that, however, it serve as well as a precise and

accurate geochronological tool. With a precision of 1.9

to 3.7% (2σ SD) and an accuracy of 0.6 to 3.8% (2σ SD)

for the 207Pb/206Pb, 206Pb/238U and 207Pb/235U isotopic

analyses, the LA-ICP-MSmethod is a highly competitive

method for rapid but nonetheless high-quality analyses

of geological materials.
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Fig. 6 – Comparison of (a) SHRIMP data (24 analyses from Dantas et al. unpublished data) with (b) 32 LA-ICP-MS analyses of sample EC69A.

An upper intercept age of 3045 ± 24 Ma, defined by three concordant and four discordant analyses, is within error of the SHRIMP age of

3065± 12 Ma. The Discordia lines obtained by LA-ICP-MS are archored at 558 Ma. See Tables III and IV for full analyses.
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RESUMO

A determinação de idades através do decaimento dos isóto-

pos radioativos 235U e 238U para os isótopos radiogênicos
207Pb e 206Pb, respectivamente, utilizando o mineral zircão

(ZrSiO4), é amplamente aplicada para decifrar processos geo-

lógicos. Um novo método tem sido desenvolvido nos últimos

anos, a ablação a laser multi-coletor espectrometria de massas

com plasma indutivamente acoplado (LA-MC-ICP-MS), su-

perando o laborioso trabalho anteriormente necessário em ou-

tros métodos, na preparação de amostras, e permite obtenção

de razões isotópicas com alta resolução espacial de micrôme-

tros. O presente estudo descreve os procedimentos analíticos e

os métodos usados na redução de dados que estão sendo apli-

cados no Laboratório de Geocronologia da Universidade de

Brasília. Explora-se a precisão e exatidão do método através

da análise de três padrões internacionais de zircão. Observa-

se uma precisão entre 1,9 a 3,7% (2σ desvio padrão) e uma

exatidão de 0,6 a 3,8% (2σ desvio padrão) para as razões

isotópicas de Pb e U dos padrões. Também foram obtidas

idades pelo método LA-ICP-MS de duas amostras de zircões

naturais, que já foram datadas anteriormente por outros méto-

dos analíticos. A comparação dos resultados mostra uma boa

conformidade das idades obtidas, dentro dos limites de erro.

Os dados demonstram o grande potencial do método analítico

para análises isotópicas rápidas, precisas e exatas de U-Pb,

numa escala de micrômetros.

Palavras-chave: geocronologia, isótopos U-Pb, LA-MC-ICP-

MS, zircão, datação.
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