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Abstract

Background: Polymorphic loci exist throughout the genomes of a population and provide the raw genetic material

needed for a species to adapt to changes in the environment. The minor allele frequencies of rare Single Nucleotide

Polymorphisms (SNPs) within a population have been difficult to track with Next-Generation Sequencing (NGS), due to

the high error rate of standard methods such as Illumina sequencing.

Results: We have developed a wet-lab protocol and variant-calling method that identifies both sequencing and PCR

errors, called Paired-End Low Error Sequencing (PELE-Seq). To test the specificity and sensitivity of the PELE-Seq

method, we sequenced control E. coli DNA libraries containing known rare alleles present at frequencies ranging

from 0.2–0.4 % of the total reads. PELE-Seq had higher specificity and sensitivity than standard libraries. We then

used PELE-Seq to characterize rare alleles in a Caenorhabditis remanei nematode worm population before and

after laboratory adaptation, and found that minor and rare alleles can undergo large changes in frequency during

lab-adaptation.

Conclusion: We have developed a method of rare allele detection that mitigates both sequencing and PCR

errors, called PELE-Seq. PELE-Seq was evaluated using control E. coli populations and was then used to compare

a wild C. remanei population to a lab-adapted population. The PELE-Seq method is ideal for investigating the

dynamics of rare alleles in a broad range of reduced-representation sequencing methods, including targeted

amplicon sequencing, RAD-Seq, ddRAD, and GBS. PELE-Seq is also well-suited for whole genome sequencing of

mitochondria and viruses, and for high-throughput rare mutation screens.

Keywords: De novo mutations, Genetic heterogeneity, Laboratory adaptation, Minor alleles, Next-generation

sequencing, PELE analysis, SNPs

Background

Populations with high levels of genetic heterogeneity are

able to evolve rapidly through natural selection, for

example providing the basis for drug resistance in pop-

ulations of microbes, viruses, and tumor cells [1–3]. In

order to understand how these heterogeneous popula-

tions evolve in response to selection, it is important to

be able to characterize the full catalog of genetic vari-

ation present in the population, including de novo

mutations and minor alleles.

The reduced cost of DNA sequencing has powered the

wide-scale discovery of functional and disease-causing

single nucleotide polymorphisms (SNPs) and genomic

regions under selection [4, 5]. However, the current high

error rate (~1 %) leads to the generation of millions of

sequencing errors in a single experiment. Thus, when

attempting to sequence de novo mutations or genetically

heterogeneous populations, it is challenging to distinguish

between errors and true rare genetic variants [6–9]. Errors

are also introduced into NGS data during the PCR ampli-

fication step of library generation and during library prep-

aration when acoustic shearing is used to fragment the

DNA molecules [10–12].

Here we present a new method of rare allele detection

that removes sequencing and PCR errors from deep-

* Correspondence: jpreston@molbio.uoregon.edu
1Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA

Full list of author information is available at the end of the article

© 2016 Preston et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Preston et al. BMC Genomics 2016, 16:

http://www.biomedcentral.com/1471-2164/16/1/

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2669-3&domain=pdf
mailto:jpreston@molbio.uoregon.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


sequencing NGS data without a loss of sensitivity, called

Paired-End Low-Error Sequencing (PELE-Seq). The PELE-

Seq method is based on two principles. First, each DNA

molecule is prepared with a short insert size and then

sequenced with overlapping paired-end (PE) reads. The

reads are then merged into a single, high-quality consensus

sequence that is free of sequencing errors. Second, during

library generation each sample is PCR amplified with a

mixture of two uniquely barcoded adapters that attach to

the same end of the DNA molecules. The PELE-Seq ana-

lysis pipeline incorporates the dual-barcoding information

to increase the sensitivity of the method by reducing the

incidence of false-positive SNPs in the sequencing data.

Sequencing error reduction through the use of over-

lapping read pairs (ORPs) has been described previously

by Chen-Harris et al., who showed that the use of overlap-

ping paired-end reads dramatically reduces the occurrence

of sequencing errors in NGS data [11]. Their group re-

ported that when overlapping paired-end reads are merged

to remove sequencing errors, a low level of background

error remains in the data that is presumably due to PCR

error. This background error rate can be empirically calcu-

lated using the ORP method by sequencing a pure sample

and counting the errors that remain after mismatched

nucleotides are removed from the overlapped reads. PELE-

Seq improves on the ORP method by incorporating a dual-

barcoding system that reduces background errors in the

data, allowing for a more sensitive detection of rare

polymorphisms.

To test the performance of the PELE-Seq method, we

generated a series of control E. coli “spike-in” DNA librar-

ies containing known rare SNPs at various allele frequen-

cies. The libraries were created through the serial dilution

of DNA from the E. coli K12 substrain W3110 into DNA

from the E. coli B substrain Rel606. The K12 W3110 sub-

strain of E. coli contains a SNP every ~117 bp compared

to E. coli B substrain Rel606 [13, 14]. The spike-in DNA

mixtures contained rare SNPs at average allele frequencies

ranging from 0.22–0.42 % of total nucleotides at a pos-

ition. We tested the effectiveness of the PELE-Seq, ORP,

and standard DNA-Seq methods at identifying the ex-

pected rare SNPs using ultra-deep sequencing at various

read depths ranging from 43,000–60,000× coverage of raw

reads. We show that PELE-Seq can detect rare alleles with

100 % specificity and without a loss of sensitivity com-

pared to standard methods.

We applied the PELE-Seq method to sequence rare

alleles in a wild population of Caenorhabditis remanei

nematode worms. C. remanei are highly heterogeneous,

non-hermaphroditic nematode worms that are amenable

to studies investigating the genetic basis of the response

to natural selection [15]. In this study, we sampled the

genome of an ancestral (wild) population originating

from 26 wild mating pairs from Toronto, Ontario that

were lab-propagated for a total of 23 generations. We

show that PELE-Seq can detect changes in the rare allele

frequencies between the genomes of the wild and lab-

adapted populations, including SNPs that appear in one

population but are completely absent in the other, using

an overlapped paired-end (OPE) read depth of 900× per

population.

Results

PELE-Seq library preparation and data analysis

PELE-Seq improves the specificity of standard SNP-calling

methods by reducing the occurrence of false-positive

SNPs in NGS data. An overview of the PELE-Seq method

is illustrated in Fig. 1. PELE-Seq library preparation and

analysis involves two separate error-filtering strategies

which are combined during analysis:

1. Overlapping Read Pairs (ORPs)

Illumina 100 bp paired-end sequencing of short 100 bp

DNA inserts is used to generate two completely overlap-

ping paired-end reads from each DNA molecule. The

overlapping paired-end reads are then merged into one

high-quality consensus sequence. After trimming off the

overhanging bases and filtering for high quality scores

(Q ≥ 60, as calculated by the program SeqPrep), the

resulting consensus sequence has a much lower incidence

of false positive SNPs compared to the non-overlapped

reads.

2. “Dual-barcoding” System

A “dual-barcoding” system is used to increase the

sensitivity of rare variant detection by removing PCR

errors from the data. The barcoding system employed

by PELE-Seq works by attaching two independently-

barcoded adapters to each sample, with the barcodes

on the same end of each DNA insert. The barcode

information is used to filter out SNPs that are called

with only a single barcode, which are putative PCR

errors.

PELE-Seq data analysis incorporates information from

both the barcoding and the overlapping steps, to pro-

duce a list of very high quality SNPs that have passed

numerous quality control filters without a loss in sensi-

tivity. Rare alleles are called using the program LoFreq,

which calls rare variants using a Bonferroni-corrected

P-value threshold of 0.05 [16]. We’ve empirically found

that altering the variant-calling parameters used to call

SNPs, such as allele frequency cutoffs and Q scores, can

lead to very different SNP calls for a given sequencing li-

brary. The PELE-Seq dual barcoding system allows for an

additional round of SNP-calling on the separately bar-

coded files, using less-stringent parameters than those that
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are required for calling SNPs from reads with both bar-

codes combined. Counting the SNPs that appear in both

separately-barcoded libraries leads to an increase in the

sensitivity of SNP-calling compared to the ORP method

alone.

The PELE-Seq analysis pipeline works by creating two

lists of SNP calls for each library: List A contains SNPs

called from the merged overlapping reads (ORP data) and

List B contains the SNPs that appear in both individually-

barcoded libraries, using less stringent parameters to call

variants from the overlapping reads. The final list of

PELE-Seq SNP calls is created by adding Lists A and B.

PELE-Seq specificity and sensitivity

We first sought to empirically determine the specificity

and sensitivity of the PELE-Seq variant calling method.

We PELE-sequenced four control E. coli DNA “spike-in”

mixtures containing SNPs present at average frequencies

ranging from 0.22–0.42 % (Table 1). We identified 64 ex-

pected “true-positive” control SNPs by sequencing the

pure E. coli K12 substrain W3110 at 2000× raw read depth

and aligning it to the genome of the pure E. coli B sub-

strain Rel606 (Additional file 1). The purity of the original

DNA samples was verified through sequencing by aligning

the sequencing reads from both strains to the Rel606 gen-

ome. The “true positive” SNPs were found to be present

at 100 % frequency in the W3110 DNA, and all other

Fig. 1 The PELE-Seq method of rare variant calling. DNA libraries with a 100 bp insert size are paired-end sequenced using 100 bp reads, generating

an overlap region of approximately 100 bp. The overlapping reads are merged into a consensus sequence and mismatching bases are discarded. A

mixture of two separately-barcoded P1 adapters (green and purple) is ligated to each sample. The P2 adapter that is common to all DNA molecules is

shown in blue. In order to pass PELE-Seq quality filtering, SNPs must be present in both paired-end reads and with both barcodes

Table 1 Allele frequencies of rare SNPs in control E. coli

“spike-in” DNA mixtures

Library Total read depth Allele frequency

1 38,000 0.0042

2 38,000 0.0025

3 71,000 0.0022

4 66,000 0.0020

Four control “spike-in” DNA mixtures were created by serial dilution of

one E. coli substrain (W3110) into another (Rel606). The libraries were

PELE-sequenced to an average total read depth of 53,000× OPE. The rare

alleles detected in the control libraries had average allele frequencies

ranging from 0.20–0.42 % or 1/238-1/500 of total reads
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positions contained reference bases at 100 % frequency.

Similarly, the Rel606 DNA contained a single nucleotide

at each position in the genome (Additional file 2). The

genome space sequenced was reduced to 14 Kb by using

Restriction-site Associated DNA Sequencing (RAD-Seq)

to sequence only the 200 nucleotides adjacent to an SbfI

restriction enzyme cut site [17]. SbfI cuts the sequence

CCTGCAGG, which occurs ~70 times in the E. coli

genome.

The control spike-in libraries were sequenced to a

total read depth of ~18,000–30,000× overlapping paired-

end (OPE) reads per barcode. To test the effectiveness of

the method at various depths of coverage, unsorted sam

files were truncated to depths of 1000 × -20,000× OPE

per barcode. In addition, various allele frequency and

quality score cutoffs were tested to optimize rare variant

identification with the method (Additional file 3). The

PELE-Seq and standard DNA-Seq libraries were com-

pared using the same number of raw reads, such that

the standard DNA-Seq bam files used to call SNPs have

a read depth that is 2.4× that of the PELE-Seq bam file, to

account for the loss associated with merging overlapped

reads to create ORPs. We found that PELE-Seq and ORP

data had no false positive SNP calls, compared to 50–80 %

specificity achieved by sequencing the same raw reads

using standard DNA-Seq methods (Fig. 2 and Table 2).

The sensitivity of the PELE-Seq method was not signifi-

cantly different from standard DNA-Seq data when using

the same raw sequencing reads, but was consistently more

sensitive than data generated with the ORP method alone.

For our sequencing libraries, the optimal read depth tested

was 10,000× OPE per barcode (Fig. 3).

When detecting rare SNPs present at 0.4 % average

allele frequency, with 10,000× OPE read depth per

barcode, PELE-Seq can identify 42 of the expected 64

SNPs with 100 % specificity, compared to 36 SNPs

with 75 % specificity that is achieved with standard

DNA-Seq (Figs. 4, 5 and Additional file 4). The remaining

22 SNPs were undetectable without compromising the

specificity of the method. By setting a very low allele

frequency cutoff (≤0.001) to call SNPs, 53 true positive

SNPs were identified, but 108 false positive SNP calls were

also made using those parameters (Additional file 3).

Upon further investigation, we found that the remaining

uncalled SNPs were present at far below the expected

frequency of 0.4 % in the libraries, rendering them indis-

tinguishable from background PCR errors. The reason for

the low frequency of these 11 alleles in the original spike-

in libraries is unclear, but may be due to stochastic bias

occurring during PCR amplification or serial dilution, or

perhaps the GC-bias of NGS data. Regardless, this lack

of detection is not an issue with the sensitivity of the

PELE-Seq variant calling method, and future improve-

ments in amplification-free and unbiased sequencing

methods should improve the detection of all rare alleles.

For PELE-Seq studies that seek to identify rare alleles with

100 % sensitivity, we recommend sequencing multiple

replicates of each sample, each with two barcodes and

with 10,000× OPE read depth per barcode.

At read depths below 5,000× OPE per barcode, the

PELE-Seq and Standard DNA-Seq methods were only

able to identify 13/64 and 6/64 of the expected SNPs in

the 0.4 % AF libraries, respectively. In addition, SNPs

with very low allele frequencies (≤0.25 %) were extremely

challenging to distinguish from the background PCR

errors in the libraries. Only 14/64 (PELE-Seq) and 13/64

(Standard DNA-Seq) of the expected SNPs at 0.25 % were

detected with a read depth of 35,000× OPE per barcode.

These SNPs were detected with 100 % specificity with

PELE-Seq (Additional file 3).

False-positive SNP calls were generated when overlap-

ping paired-end data was not filtered with a minimum

allele frequency threshold that was above the level of

the background error rate. Overlapping paired-end read

libraries sequenced to 10,000× OPE depth contained

109 false positive SNPs when rare variants were called

with Lofreq using default parameters with no minimum

allele frequency cutoff (Additional file 5). These errors

appeared in distinct clusters throughout the genome

and were found to be overwhelmingly C > T transitions,

when classified based on the mutated pyrimidine of

each base pair (Figs. 6 and 7). C > T transitions are a

Table 2 Rare SNPs identified using the PELE-Seq, ORP, and standard DNA-Seq methods, at various read depths

Average read depth
per barcode

PELE positives PELE false positives ORP positives ORP false positives Standard positives Standard false positives

1000 13 0 6 0 6 2

5000 19 0 18 0 24 7

10000 42 0 37 0 36 12

15000 36 0 32 0 35 13

18000 40 0 35 0 41 42

A control spike-in library containing 64 expected rare alleles present at 0.42 % frequency was sequenced with the PELE-Seq, ORP, and Standard DNA-Seq methods

at various read depths. The read depths listed are for the overlapping paired-end (OPE) reads per barcode of the PELE-Seq libraries. The methods are compared

using the same number of raw reads, such that the standard DNA-Seq bam files have a read depth that is 2.4× that of the PELE-Seq bam files (2400–43,000× per

barcode), to account for the loss associated with merging overlapped reads to create ORPs
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relatively common mutational event caused by spontan-

eous deamination of 5-methly-cytosine [18, 19]. C > T

transitions have previously been reported to comprise

the majority of PCR errors in NGS data [20].

We’ve found that in order to remove false-positive

SNP calls from overlapping paired-end read data

without a drop in sensitivity, it is critical to set a

minimum allele frequency cutoff that is above the

maximum per-sequenced-base error rate of a library.

The background PCR error rate of PELE-Seq data can

be calculated by sequencing a pure DNA control

sample with overlapping read pairs, and then count-

ing the unaligned nucleotides that remain in the data

after the sequencing errors are removed through mer-

ging the overlapping reads. In practice, the most im-

portant metric of background error for calling SNPs

is not the overall error rate in the data, but rather

the maximum error rate per-sequenced-base accord-

ing to genome position, as this correlates to the allele

frequency of the errors. In other words, sequencing

data may have a very low overall incidence of PCR

errors, but certain positions may can have an un-

usually high rate of error, which is difficult to distin-

guish from true SNPs. Because this error rate is

impossible to calculate a priori, we recommend that

PELE-Seq projects include a control amplicon con-

taining a known rare allele, that is run alongside the

experimental samples in order to empirically deter-

mine the optimal SNP calling parameters for each li-

brary. By sequencing a control amplicon, the SNP

results can be optimized for each unique library and

sequencing depth to ensure high-quality SNP calls

with 100 % specificity and high sensitivity.

We’ve determined the optimal parameters for calling

SNPs from our spike-in libraries at various read

depths using the PELE-Seq, ORP, and standard DNA-

Seq methods, which are reported in Additional file 6.

For our libraries, the minimum SNP allele frequency

cutoff of ≥0.002 was found to eliminate all false posi-

tive mutations in the overlapping read data when read

depths above 1,000× OPE per barcode are used (Add-

itional file 3). We’ve empirically found that libraries

sequenced with lower read depths have a higher ef-

fective per-sequenced-base error rate, as they require

more stringent allele frequency filtering to achieve

100 % error-free data. This implies that the effective

background error rate for a library is dependent on

depth of coverage.

Fig. 2 The PELE-Seq and ORP methods detect rare alleles with 100 % specificity. Sequencing a control E. coli DNA library containing 64 expected

rare SNPs present at 0.42 % average allele frequency, with read depths ranging from 2000–35,000× OPE (4800–88,000× non-overlapped read depth),

produces 100 % specific data with PELE-Seq and ORP methods, compared to the 50–77 % specificity achieved with standard (non-overlapped)

sequencing methods. Standard DNA-Seq of the control libraries resulted in 12 false positive mutations, compared to zero for the PELE-Seq

and ORP methods. The methods were compared using the same number of raw reads
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Detection of rare and de novo mutations in wild and

lab-adapted C. remanei

We applied PELE-Seq to track changes in the rare allele

frequencies of a wild population of C. remanei nematode

worms that was subjected to laboratory-adaptation. The

ancestral (wild) C. remanei population originated from

26 mating pairs of nematodes that were expanded to a

population of 1000+ individuals and then frozen within

three generations. A branch of this ancestral population

was grown in the lab for 23 generations, during which

time it was culled randomly to a population of 1000

individuals for each generation. The lab-adapted population

was also subjected to 2 freezes and 9 bleach treatments

(hatchoffs) during this time. The numerous selection events

endured by the lab-reared nematodes were expected to

lower the genetic diversity of the population via drift and

bottlenecking. Rare advantageous SNPs could also be se-

lected for during the process of lab-adaptation.

To assess the changes in genetic diversity of the nema-

tode population before and after lab-adaptation, DNA

from the wild and laboratory-adapted populations of C.

remanei worms was PELE-sequenced using PacI RAD-

Seq. The PacI restriction enzyme cuts the sequence

AATTAATT, which occurs 2044 times in the C. rema-

nei caeRem3 genome. In order to further decrease the

complexity of the genome, we performed an additional

restriction enzyme digestion with NlaIII to destroy a

portion of the RAD tags in the library. NlaIII cuts the

sequence CATG, which is within the sequence of ap-

proximately 30 % of the PacI RAD tags. The resulting

genome space covered was approximately 300 Kb,

which was sequenced to an average of 2000× OPE

read depth.

With PELE-Seq we found that the wild and lab-adapted

C. remanei populations had a distinct profile of SNPs

before and after laboratory-adaptation (Fig. 8). By plotting

the allele frequencies of SNPs present in both populations

before and after lab adaptation, it is possible to visualize

the changes in the allele frequencies of minor alleles in a

population undergoing a response to selection (Fig. 9).

We identified rare SNPs in the wild C. remanei popula-

tions whose allele frequencies increased dramatically dur-

ing lab-adaptation (Additional file 7). Table 3 lists 7 rare

SNPs found in the wild population that increase in fre-

quency at least five-fold in the lab-adapted population.

We detected a SNP at position 127,723,967 of the

caeRem3 (WUSTL) genome that had increased in fre-

quency by 44× in the lab-adapted population. The

number of reads containing this G > C transversion

jumped from 31/13000 (0.24 %) in the wild population

Fig. 3 PELE-Seq is more sensitive than the ORP and standard DNA-Seq methods at detecting rare SNPs. The PELE-Seq method detects a similar

number of rare alleles present at 0.42 % average allele frequency as the standard DNA-Seq method, and is more sensitive than the ORP method.

A control E. coli DNA library containing 64 expected rare SNPs present at 0.42 % average allele frequency was sequenced with read depths ranging

from 2000–35,000× OPE (4800–88,000× non-overlapped read depth). The methods were compared using the same number of raw reads
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to 738/7100 (10.4 %) in the lab-adapted population.

This SNP is located upstream of the promoter region of

a gene predicted by the UCSC Genome Browser to be

homologous to the C. elegans gene ugt-5, which codes

for a UDP-Glucuronosyltransferase. The read pileups

mapping to this SNP are shown in Fig. 10.

We then sought to determine if PELE-Seq could detect

SNPs present in one population that were completely

absent in the other. The high level of sequencing error

in standard NGS libraries typically prevents any investiga-

tion into the presence of “de novo” alleles, as ultra-deep

NGS data contains sequencing errors at every position

which are impossible to distinguish from true SNPs. In

order to call SNPs that are present in one population but

completely absent in another, we used a variant calling

program that is specifically designed to detect rare somatic

mutations present in one sample and completely absent

from another, which is Seurat Somatic [21]. Seurat Som-

atic was designed to take two separate bam files as input

and compare them to each other when searching for rare

SNPs. The program outputs SNP calls that are present in

one sample but completely absent in the other. We refer

to these SNPs as “putative de novo SNPs” since they are

undetectable in the original population when sequenced

with high read depth. It is important to ensure that the

SNPs called using this method are completely absent from

the wild population, as a false-negative SNP call in the

wild population would appear as a false positive de novo

mutation in the lab-adapted population.

We’ve identified 91 rare SNPs that are present in

the lab-adapted population but are undetectable in

the wild population, using a minimum read depth of

900× OPE (Additional file 7). Many of these putative

de novo SNPs were present at significant frequencies

(5–15 %) in the lab-adapted population, despite being

absent in the wild population. Table 4 contains a list

of 9 putative de novo SNPs found to be present above

6 % in the lab-adapted population. The read pileups

at these positions provide strong supporting evidence

that the SNPs are completely absent in the wild DNA

reads and are therefore present below 0.11 % in the

libraries (Additional file 7).

We identified a SNP at position 22,410,779 of the

caeRem3 genome that is completely absent in the

wild population (0/992 reads) and is present at 16 %

frequency in the lab-adapted population (159/997

reads) (Fig. 11). This SNP is located within an intron

of a gene predicted by UCSC to be homologous to

the C. elegans gene ilrd-14, which codes for an insu-

lin/EGF receptor L-domain protein. In addition, when

a minimum read depth of 800× OPE was used to de-

tect putative de novo alleles, a SNP at 90,148,415 was

Fig. 4 PELE-Seq data has zero false positive SNPs and high sensitivity. Sequencing a control E. coli DNA library containing 64 expected rare SNPs

present at 0.42 % average allele frequency with PELE-Seq at 20,000× OPE read depth (48,000× raw read depth) produces 100 % specific data,

compared to 75 % specificity achieved with standard sequencing methods. Standard DNA-Seq of the control libraries resulted in 12 false positive

mutations, compared to zero with the PELE-Seq method
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found to increase from 0/862 reads in the wild popu-

lation to 153/811 reads (21.5 %) in the lab-adapted

population (Fig. 12). This SNP is upstream of a gene

predicted by UCSC to be homologous to the C. ele-

gans gene srh-265, which codes for a serpentine re-

ceptor, of class H.

We then used Seurat Somatic to identify 19 SNPs that

were present in the wild population but were undetectable

in the lab-adapted population, using a minimum read

depth of 900× OPE (Additional file 7). These SNPs

were all present at frequencies below 6 % in the wild

population and were presumably lost due to bottle-

necking and genetic drift. These SNPs appeared at a

lower rate and with lower allele frequencies than the

putative de novo SNPs appear in the lab-adapted

population (Fig. 13).
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Fig. 5 Rare SNPs present at 0.42 % frequency, detected with PELE-Seq and standard DNA-Seq methods. A control E. coli library containing rare

alleles present at 0.42 % frequency were sequenced with PELE-Seq and standard DNA-Seq with 20,000× OPE depth (48,000 non-overlapped read

depth). The read depths of the individual barcode files are plotted in light green, and the total read depth is plotted in blue. The SNPs detected

with PELE-Seq are plotted in the inner circle, and the standard DNA-Seq SNPs are plotted in the next outer circle. The 12 false positive SNP calls

present in the standard DNA-Seq data are designated with a red “X”. Of the 64 expected rare SNPs, PELE-Seq detected 42 SNPs with 100 % specificity,

compared to 36 SNPs with 75 % specificity achieved with standard DNA-Seq methods
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Discussion
Current genomic studies of genetically heterogeneous

samples, such as de novo mutations in growing tumors

or natural populations that are difficult to sequence as

individuals, are hampered by the difficulty in distinguish-

ing alleles at low frequency from the background of se-

quencing and PCR errors. We have developed a method

of rare allele detection that mitigates both sequence and

Fig. 7 Background PCR errors are predominately C > T transitions. ORP libraries sequenced to 10,000× OPE read depth contained 109 false positive

mutations when SNPs were called with Lofreq using default parameters without a minimum allele frequency cutoff above the level of background

error. These mutations were found to be overwhelmingly C > T transitions, when classified based on the mutated pyrimidine of each base pair

Fig. 6 Background PCR errors are found in distinct clusters throughout the sequenced RAD tags. ORP libraries sequenced to 10,000× OPE depth

contained 109 false positive mutations when SNPs were called with Lofreq using default parameters without a minimum allele frequency cutoff

above the level of background error. These mutations appeared in distinct clusters throughout the sequenced RAD tags. The SNPs are plotted

across the 14 Kb of sequenced RAD tags. Each blue bar represents a cluster of 2–3 errors. Of the 140 RAD tags sequenced, only 45 contained

PCR errors, and each of those contained an average of 2.6 PCR errors. The maximum allele frequency of the sequencing errors was 0.002 at this

read depth
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PCR errors, called PELE-Seq. PELE-Seq was evaluated

using synthetic E. coli populations and used to compare

a wild C. remanei population to a lab-adapted population.

Our results demonstrate the utility of the method and

provide guidelines for optimal specificity and sensitivity

when using PELE-Seq.

The PELE-Seq method was developed in order to inves-

tigate the behavior of rare alleles within dynamic, hetero-

geneous populations. Examples of research applications

that the PELE-Seq method is well-suited include: RAD

and double-digest RAD ddRAD [22] sequencing of pooled

populations, whole genome sequencing of populations

with small genomes such as viruses and mitochondria,

targeted-amplicon DNA capture of tumors and popula-

tions, and high-throughput rare mutation screens such as

the TILLING by sequencing method [23]. The PELE-Seq

method could also be useful for reduced-representation

sequencing studies using barcoded individual organisms if

Fig. 8 Wild and lab-adapted C. remanei populations have distinct SNP profiles. SNPs detected in the C. remanei population before and

lab-adaptation are plotted for a subset (0.006 %) of the caeRem3 genome, sequenced at 2000× OPE depth. SNPs detected with PELE-Seq

in the wild population are plotted in the light blue circle; SNPs detected in the lab-adapted population are plotted in the inner light purple circle. SNPs

present in both the wild and lab-adapted populations are shown with black letters. SNPs appearing in only the wild or lab-adapted populations are

shown with red letters
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the goal is to uncover rare genetic variants within an indi-

vidual, such as somatic and mitochondrial mutations. In

this instance, each individual would need to have two

separate barcodes and would need to be sequenced to a

high read depth in order to detect rare alleles.

Many phenotypic traits are believed to arise from

combinations of large numbers of rare genetic variants.

For example, modern human Genome-Wide Association

Studies (GWAS) are currently unable to identify the

expected number of disease-associated alleles in humans

based on heritability studies. This may be due to the fact

that the disease-causing rare alleles are present at frequen-

cies below the limit of detection with standard sequencing

methods, leading researchers to propose that many inher-

ited diseases could result from unique combinations of

rare susceptibility genes [24, 25]. PELE-Seq would be a

very useful tool for studies seeking to understand the roles

of rare mutations within a population.

By using PELE-Seq, we increased the number of inde-

pendent validations of a rare SNP by sequencing each

molecule twice with overlapping paired-end reads and

by calling each SNP twice through the use of multiple

barcodes. The multiple PELE-Seq quality control steps

result in genotype calls of low-frequency alleles with a

false positive rate of zero, allowing for the specific detec-

tion of rare alleles in genetically heterogeneous popula-

tions. For our libraries, we found that the optimal level

of read depth was 10,000× of overlapping paired-end

(OPE) reads per barcode. Sequencing below this level re-

duced the sensitivity of the method, while sequencing

Fig. 9 SNP allele frequencies in C. remanei before and after lab-adaptation. The allele frequencies of 13,000 SNPs that are present in both

populations are plotted, with each point representing a SNP in the genome. Top Allele frequencies before and after lab-adaptation for all SNPs that are

present in both populations, detected with PELE-Seq. SNPs in the top left corner are less frequent in the lab-adapted worms; SNPs in the bottom

right corner are more frequent in the lab-adapted worms. The estimated 0.25 and 0.75 quantiles of the square root of variance are shown with

the dashed red lines. Bottom A zoom-in of allele frequencies before and after lab-adaptation, for SNPs present below 2 % in the wild C. rema-

nei population. Seven rare SNPs in the wild population increased in frequency at least fivefold after lab adaptation
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above this level, up to the maximum tested depth of

18,000× OPE per barcode, did not significantly improve

the results.

We found that calling rare variants from overlapped

reads without filtering with a minimum allele frequency

cutoff led to the introduction of false-positive genotype

calls in the sequencing data. These errors are believed to

be caused during PCR amplification, and are predomin-

ately C > T transversions, when classified based on the

pyrimidine of the base pair. C > T transversions that are

present in NGS data due to PCR error have been previ-

ously reported [20]. We have demonstrated that these

erroneous base calls can be removed by carefully select-

ing optimized parameters during variant calling, so that

the minimum allele frequency cutoff used to call SNPs is

above the maximum per-sequenced-base error rate of a

library.

Because the background error rate for a library is im-

possible to calculate a priori, we recommend that PELE-

Seq projects include a control amplicon containing a

known rare allele be run alongside the experimental

samples, in order to empirically determine the optimal

SNP-calling parameters for each library. Running a small

amplicon as a control would be relatively inexpensive

and the extra sequencing cost would be well-worth the

improved specificity and sensitivity of the sequencing

data. If it unfeasible to sequence a control amplicon for

a PELE-Seq project, the optimized SNP-calling parame-

ters that we’ve identified for calling rare alleles from our

libraries at various read depths could theoretically be

generalized to other libraries that are prepared in the

same way.

Sequencing error reduction through the use of over-

lapping read pairs (ORPs) has been described previously

by Chen-Harris et al., who show that the use of overlap-

ping paired-end data dramatically reduces the occurrence

of sequencing errors in NGS data [11]. Their group

concluded that PCR error is the dominant source of error

for Illumina sequencing data with a quality score above

Q30, which they estimate to be on the order of 0.05 %.

PELE-Seq improves on the ORP method by incorporating

a dual-barcoding system that allows for the removal of

PCR errors from the data. We have shown that the PELE-

Seq method is more sensitive than the ORP method

for detecting rare alleles.

The main disadvantage of the PELE-Seq and ORP

methods compared to standard, non-overlapped NGS

data is that the sequencing cost is ~2.4 times more for a

given amount of genomic space, due to the use of over-

lapping paired-end reads. Also, due to the high depth of

read coverage (~20,000× OPE) that is required to detect

most alleles present below 0.5 %, using the PELE-Seq

method can lead to high sequencing costs for some pro-

jects. The number of genetic markers or amplicons to

sequence should be carefully chosen, depending on the

specific goals of each research project. The exact cost of

sequencing PELE-Seq libraries depends on the accuracy

of the size-selection process during library preparation,

as any overhanging bases are trimmed off of the read

pairs during analysis. Sequencing methods such as ddRAD

and Genotyping By Sequencing (GBS) that generate a

uniformly-sized library should experience negligible losses

of sequencing data during the overlapping step, and in

that case the cost of PELE-Seq would be exactly twice that

of standard sequencing per base. In our study, which used

a Pippin Prep (Sage) to size-select a 240 bp insert that was

then sequenced with 100 bp reads, there was a ~20 % loss

of data during the overlapping stage (Additional file 3).

The high read depth required to call rare alleles below

0.5 % frequency makes it economically unfeasible to se-

quence entire large genomes using PELE-Seq. In addition,

the PELE-Seq method is not currently applicable for popu-

lation genomic studies where minor alleles are believed to

provide little useful information.

The PELE-Seq method can detect the majority of rare

alleles that are present in a library at a frequency of 0.4 %,

but it is very difficult to detect rare SNPs present at or

below 0.2 % frequency, even with very high depths of

coverage (60,000× OPE), as these SNPs are impossible to

distinguish from background PCR errors in the library.

For this reason, the ideal number of individuals in a

pooled sample would be below 500 in order to maintain

rare allele frequencies that are detectable with PELE-Seq.

PELE-Seq is very well-suited for sequencing rare alleles

in a small, localized genomic space, such as a gene ampli-

con. For example, a research project seeking to determine

the somatic mutation rate of an organism would be very

reasonable economically with PELE-Seq. In this instance,

20,000× coverage of a 1 Kb amplicon could currently be

sequenced with 0.062 % of a lane on a 100 bp paired-end

Illumina Hiseq 2500 run (1 Kb × 20,000× depth/100 bp

Table 3 Rare SNPs in the wild C. remanei population that

significantly increase in frequency after lab-adaptation

Position Ref Alt Wild allele
frequency

Wild allele
depth

Lab allele
frequency

Lab allele
depth

2933656 G A 0.010233 11 0.111517 61

84255709 C A 0.018789 27 0.17717 149

89350272 A G 0.018276 60 0.122693 379

114867644 G A 0.017125 43 0.164325 386

127723967 C G 0.00235 31 0.103739 738

138506868 A C 0.013662 31 0.163548 236

141293514 T C 0.018643 25 0.275908 205

Seven SNPs found below 2 % frequency in the wild C. remanei population

increased in frequency at least five-fold in the lab-adapted population. The

read depths listed are those of the detected rare allele, not the total read

depth at that position. Read depths listed are for overlapping paired-end

(OPE) reads
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reads/400 M reads/lane/0.80 loss during overlap). PELE-

Seq is also an ideal method for investigating rare SNPs in

the small genomes of mitochondria and viruses, whose

genome sizes are in the Kb size range. Similarly, t 16.7 Kb

human mitochondrial genome can currently be sequenced

to a depth of 20,000× with 1.0 % of a lane on a 100 bp

paired-end Illumina Hiseq 2500 run.

Targeted DNA capture libraries are also relatively af-

fordable to sequence with PELE-Seq. A targeted DNA

capture library containing 3000 amplicons from a single

individual or a population can be sequenced to 20,000×

read depth with 18.8 % of a lane on a 100 bp paired-end

run on an Illumina Hiseq 2500. However, large-scale

eukaryotic genome projects such as eukaryotic exome

and transcriptome sequencing would be very expensive

to sequence to an ideal read depth for PELE-Seq. To

achieve 20,000× OPE read depth of the diploid human

exome, it would require 16 lanes on a 250 bp paired-end

Fig. 10 A SNP near the promoter region of ugt-5 increases in frequency 44× after lab adaptation. A G > C transversion found at below 1 % frequency

in the ancestral C. remanei population has a 44× increase in frequency after 23 generations of laboratory adaptation. This SNP maps to the promoter

region of a gene predicted to be homologous to the C. elegans gene ugt-5, which codes for an enzyme responsible for the removal of drugs, toxins,

and foreign substances. The top panel shows 500 sequencing reads from the ancestral (wild) population; the bottom panel shows 500 sequencing

reads from the lab-adapted population. The non-reference SNP at position 127,723,967 of the caeRem3 genome is visible in orange
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Illumina Hiseq 2500 run, which is currently very expen-

sive (81 Mb exome × 20,000× read depth/250 bp reads/

400 M reads/lane/0.80 loss during overlap). PELE-Seq li-

braries of genomic regions in the Mb range would need

to be sequenced at lower than ideal read depths, based

on available funding.

In our study we found that the cost of PELE-Seq data

was approximately equal to that of standard DNA-Seq

data when the results are based on the amount of rare

alleles detected, starting the same raw reads. The PELE-

Seq data is completely error-free whereas the standard

data contains ~30–50 % errors. We’ve empirically ob-

served that reducing the background noise in a bam file

caused by sequencing errors, through the use of overlap-

ping reads, improves the ability of the rare variant-calling

program LoFreq to detect rare alleles. This observation is

presumably due to the fact that LoFreq calculates infor-

mation about the amount of background noise in a library,

and uses this information to determine whether to call a

non-reference allele as an error or a true SNP [16]. The

fact that PELE-Seq can identify the same number of

rare alleles, with no false-positive SNPs, as the standard

methods which generate numerous false positive SNPs,

makes PELE-Seq the logical choice for research projects

where the main goal of the project is to detect rare

alleles, such as with tumor amplicon sequencing and

high-throughput screens for rare mutations.

We have used PELE-Seq to identify several rare alleles in a

wild C. remanei population whose frequencies have in-

creased dramatically as a result of laboratory cultivation. We

identified a rare G >C transversion upstream of the pro-

moter of ugt-5 that was increased in frequency 44× in the

lab-adapted strain, compared to the wild strain. UGT en-

zymes catalyze the addition of a glucuronic acid moiety

onto xenobiotics and drugs to enhance their elimination.

The UGT pathway is a major pathway responsible for the re-

moval of most drugs, toxins, and foreign substances [26].

The striking increase in the frequency of this rare mutation

after lab adaptation suggests that the surrounding genomic

region is under positive selection. One possibility is that a

change in ugt-5 expression may confer a growth advantage

on the laboratory-grown nematodes by increasing their abil-

ity to process and eliminate the bleach ingested during the

hatchoff procedures. With PELE-Seq, it is possible to know

that the ugt-5 SNP was present at a very low frequency in

the wild population, and is not a de novomutation.

With PELE-Seq we were able to identify91 putative de

novo mutations in the lab-adapted C. remanei population

that were completely absent in the wild population at read

depths of 900× OPE. Many of these SNPs were present at

significant frequencies (5–15 %) in the lab population des-

pite being absent in the wild population. We also identified

19 SNPs in the wild population that were undetectable in

the lab-adapted population; these were all present at fre-

quencies below 6 % in the wild population and were pre-

sumably lost due to bottlenecking and genetic drift. The

different profiles of the SNPs found only in the wild popu-

lation and those found only in the lab-adapted population

provides supporting evidence that the method is detecting

actual biological changes in the rare allele frequencies of

the populations. If the large increases in frequency seen

with the putative de novo SNPs were due to some sequen-

cing artifact such as biased PCR amplification, then the al-

lele frequencies of the SNPs present only in the wild and

lab-adapted populations would have similar characteristics

since they were sequenced exactly the same way. The fact

that the putative de novo alleles that we’ve detected can in-

crease dramatically in frequency after only 23 generations

implies that de novo alleles are a valuable source of genetic

diversity for populations adapting to change. In this study,

we sampled only a very small fraction (~1/500) of the C.

remanei genome with RAD-Seq, and discovered multiple

instances of apparent selection taking place.

Conclusions
We have demonstrated that the PELE-Seq method of vari-

ant calling is highly specific at detecting rare SNPs found at

below 1 % in a population. There were zero instances of

false positive SNPs called from PELE-sequenced control E.

coli libraries containing rare alleles present at known fre-

quencies, whereas standard NGS DNA-Seq libraries con-

tained 30–50 % false-positive SNPs. The PELE-Seq method

makes it possible to know with 100 % certainty that minor

alleles identified by sequencing are actually present in a

population and not due to sequencing or PCR error. PELE-

Seq can also be used to detect putative de novo mutations

that are present in one population but absent in another.

As a proof of principle, we have used PELE-Seq to identify

rare mutations found in lab-adapted strains of C.

Table 4 Putative de novo SNPs present in the lab-adapted

C. remanei population above 6 %

Position Ref Alt Wild allele
frequency

Lab allele
frequency

Wild depth Lab depth

8678151 T C 0 0.07 998 993

22410779 C T 0 0.16 992 997

23864162 T A 0 0.06 991 895

27788600 A G 0 0.069 995 956

67266085 C T 0 0.066 998 846

67492174 A G 0 0.07 940 961

96566683 T C 0 0.071 988 971

127028996 C T 0 0.065 982 965

143968069 T G 0 0.121 996 988

Many putative de novo SNPs were present at significant frequencies in the

lab-adapted population, despite being absent in the wild population. Using a

minimum read depth of 900× overlapping paired-end (OPE) reads, PELE-Seq

detected 9 putative de novo SNPs found above 6 % frequency in the

lab-adapted population
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remanei nematode worms. We identified SNPs in the

lab-adapted worms that had dramatically increased in

frequency after 23 generations in the lab, as well as

SNPs present at 5–15 % frequency in the lab-adapted

population that were completely absent in the wild

population. This research demonstrates that model or-

ganisms grown in a laboratory can become genetically

distinct from wild populations in a short period of time,

and that care must be taken when generalizing from

conclusions drawn from research involving lab-reared

organisms. These conclusions would not have been

possible without PELE-Seq because rare alleles present

below 1 % are undetectable with standard DNA-Seq

methods, even with high read depths and quality scores.

Methods

Caenorhabditis remanei population harvesting and

cultivation

Isofemale strains originating from 26 wild mating pairs

of C. remanei worms were expanded to a population size

Fig. 11 An ilrd-14 SNP at 16 % frequency in the lab-adapted and 0 % in the wild C. remanei. A C > T transition that is completely undetectable in

the wild population (0/992 reads) is present at 16 % frequency in the lab-adapted population (159/997 reads). This SNP is located within an intron

of a gene predicted to be homologous to the C. elegans gene ilrd-14, which codes for an insulin/EGF receptor L-domain protein. The top panel

shows 500 sequencing reads from the ancestral (wild) population; the bottom panel shows 500 sequencing reads from the lab-adapted population.

The non-reference SNP at position 22,410,779 of the caeRem3 genome is visible in red

Preston et al. BMC Genomics 2016, 16: Page 15 of 21

http://www.biomedcentral.com/1471-2164/16/1/



of 2000 following the initial mating. All worms collected,

and those in the experiment described below, were grown

on nematode growth media (NGM) seeded with E. coli

strain OP50. All collected strains were frozen within three

generations of collection to minimize lab adaptation. To

create a cohort representative of naturally segregating

variation for experimental evolution, we thawed samples

from each of the 26 isofemale strains and crossed them in

a controlled fashion to promote equal contributions from

all strains, including from mitochondrial genomes and Y

chromosomes. The resulting genetically heterogeneous

population was frozen after creation and was the ancestral

population used for the experiment.

A lab-adaptation strain consisting of 1000–2000 mating

individuals was propagated. The control populations were

randomly culled to 1000 L1 larvae during each selective

generation, for 23 generations. Each population was fro-

zen (N ≥ 100,000 individuals) periodically to retain a rec-

ord of evolutionary change in the populations and to

ensure that worms did not lose the ability to survive freeze

Fig. 12 A SNP near srh-265 at 21.5 % in the lab-adapted and 0 % in the wild C. remanei. When a minimum read depth of 800× OPE was used to

detect putative de novo alleles, a C > A transversion was found that increased from 0/862 reads in the wild population to 153/811 reads (21.5 %)

in the lab-adapted population. This SNP is upstream of a gene predicted by UCSC to be homologous to the C. elegans gene srh-265, which codes

for a serpentine receptor, of class H. The top panel shows 500 sequencing reads from the ancestral (wild) population; the bottom panel shows 500

sequencing reads from the lab-adapted population. The non-reference SNP at position 90,148,415 of the caeRem3 genome is visible in red
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and thaw. Approximately 5000 individuals from the frozen

populations were thawed to continue the evolution experi-

ment, while the remaining 95,000 worms remained frozen

for future phenotyping and genetic and genomic analyses.

Populations were thawed for selection after a minimum

of 24 h at −80 °C. Freezing occurred a total of 2 times

during lab-adaptation selection. The lab-adapted popu-

lation was also subjected to 11 rounds of bleaching/

age-synchronization.

DNA isolation

C. remanei genomic DNA was isolated using the DNeasy

Tissue Kit (Qiagen). E. coli genomic DNA was acquired

from REL606 strain (provided by the Bohannan lab, UO)

and from W3110 strain (life technologies).

E. coli spike-in PELE-RAD library construction for Illumina

sequencing

Serial dilution of E. coli W3110 DNA with E. coli Rel606

DNA was performed to generate 4 spike-in libraries with

average rare allele frequencies ranging from 1:200 to

1:500, at a concentration of 0.8 ng/μl. The spike-in mix-

tures were generated as a serial dilution to represent a

titration curve of rare allele frequencies. The true allele

frequencies of the libraries were determined by sequen-

cing and were found to represent a dilution series of rare

allele frequencies, as expected. All dilutions were con-

centrated with a SpeedVac to 40 μl.

The 6 DNA samples (4 spike-in and 2 pure libraries)

were sequenced with 2 barcodes per sample. Each library

was generated with 300 ng DNA, representing a copy

number of ~60 million individual E. coli cells.

Restriction-Site Associated DNA (RAD) Sequencing

was used to reduce the complexity of the C. remanei gen-

ome [17]. RAD-Seq libraries were prepared according to

the standard protocol with two modifications:

1. A 100 bp insert size was created by size-selection

of a tight 240 bp band. The libraries were then

sequenced with 100 bp paired-end reads to

generate two completely-overlapping reads.

Precise size-selection of the libraries is important

because the paired-end reads must completely

overlap in order to be merged into a consensus

sequence. Any bases overhanging the overlapped

sequence are excluded from the analysis.

2. During the amplification step, each PCR reaction

contained a mixture of two independently-barcoded

Fig. 13 Putative de novo SNPs are more numerous than SNPs lost during lab-adaptation of C. remanei. With PELE-Seq we identified 91 putative

de novo mutations that are found only in the lab-adapted C. remanei population (red), and 19 SNPs found only in the wild population (blue), using

a minimum read depth of 900× OPE. Each vertical line represents a single SNP and the height of the line is proportional to the allele frequency.

The SNPs present only in the lab-adapted population occur more frequently (91 vs. 19 SNPs) and with higher allele frequencies (max 16 % vs 6 %) than

the SNPs present only in the wild population
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adapters. After DNA amplification, the resulting

libraries contained a mixture of two separately-

barcoded adapters on the same end of the DNA

molecules.

For this application we used the restriction enzyme

SbfI, which cuts the sequence CCTGCAGG. The SbfI

site occurs ~70 times in the E. coli genome, leading to

the creation of 140, 100 bp RAD tags, spanning 14 Kb of

total DNA.

DNA from each dilution was digested for 60 min at

37C in a 50 μL reaction volume containing 5.0 μL Buffer

4, 10 units (U) SbfI-HF (New England Biolabs [NEB]).

Samples were heat-inactivated for 20 min at 65 C. 2.0 μL

of barcoded SbfI-P1 adapter mixture (100 nM), a modi-

fied Illumina© adapter (2006 Illumina, Inc., all rights

reserved; top oligo: 5′-Phos-AATGATACGGCGACCAC

CGAGATCTACACTCTTTCCCTACACGACGCTCTT

CCGATCTxxxxxxTGC*A 3′[xxxxxx = barcode (mixture

of two barcodes per sample), * = phosphoro-thioate bond];

bottom oligo: 5′-Phos-xxxxxxAGATCGGAAGAGCGTC

GTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCC

GTATCAT*T), was added to each sample along with

0.6 ml rATP (100 mM, Promega), 1.0 μl 10× NEB Buffer

4, 0.5 μl (1000 U) T4 DNA Ligase (high concentration,

NEB), 3.9 μl H2O and incubated at room temperature

(RT) for 30 min. Samples were again heat-inactivated for

20 min at 65C, combined, and randomly sheared (Biorup-

tor) to an average size of 140 bp. The sheared sample was

purified using Agencourt AMPure XP beads at a 1×

volume. The Quick Blunting Kit (NEB) was used to blunt

the ends of the DNA in a 50 μl reaction volume, and the

sample was purified using Agencourt AMPure XP beads

at a 1× volume. The sample was incubated at 37C for

30 min with 10 U Klenow Fragment (3′–5′ exo-, NEB) in

a 50 μl reaction volume with 5.0 μl NEB Buffer 2 and

1.0 μl dATP (10 mM, Fermentas), to add 3’ adenine over-

hangs to the DNA. After another 1× bead purification,

1.0 ml of Paired-End-P2 Adapter (PE-P2; 10 mM), a diver-

gent modified Illumina© adapter (2006 Illumina, Inc., all

rights reserved; top oligo: 5′-Phos-GATCGGAAGAGCG

GTTCAGCAGGAATGCCGAGACCGATCAGAACAA-

3′, bottom oligo: 5′-CAAGCAGAAGACGGCATACGAG

ATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCC

GATC*T-3′), was ligated to the DNA fragments at RT.

The sample was purified and eluted in 40 μl elution buffer.

Ten separate PCR amplifications were performed with

each of the 6 samples, each using 4 μl of eluate as tem-

plate, in a 50 μl volume with 25 μl Phusion Master Mix

(NEB) and 1.0 μl modified Illumina© amplification primer

mix (10 mM, 2006 Illumina, Inc., all rights reserved; P1-

forward primer: 5′ AATGATACGGCGACCACCGAGAT

CTACACTCTTTCCCTACACGACGCTCTTCCGATC*T

3′, P2-reverse primer: 5′ CAAGCAGAAGACGGCATA

CG*A 3′). Phusion PCR settings followed product guide-

lines (NEB) for a total of 18 cycles with an annealing

temperature of 65C. The 6 libraries were then pooled,

cleaned through a QIAquick Spin column (Qiagen), and

size selected with a Pippin Prep (Sage), collecting a tight

band of DNA of 240 bp size. The sample was diluted

to 1 nM and sequenced on the Paired-end module of

an Illumina HiSeq 2500 following Illumina protocols

for 100 bp reads.

C. remanei PELE-RAD library construction for Illumina

sequencing

Restriction-Site Associated DNA (RAD) Sequencing was

used to reduce the complexity of the C. remanei genome

[17] RAD-Seq libraries were prepared according to the

standard protocol with two modifications:

1. A 100 bp insert size was created by size-selection

of a tight 240 bp band. The libraries were then se-

quenced with 100 bp paired-end reads to

generate two completely-overlapping reads. Precise

size-selection of the libraries is important because

the paired-end reads must completely overlap in

order to be merged into a consensus sequence. Any

bases overhanging the overlapped sequence are ex-

cluded from the analysis.

2. During the amplification step, each PCR reaction

contained a mixture of two independently-barcoded

adapters. After DNA amplification, the resulting li-

braries contained a mixture of two separately-

barcoded adapters on the same end of the DNA

molecules.

For this application we used the restriction enzyme PacI,

which has an AT-rich cut site. The complexity of the PacI

RAD library was further reduced by digestion with NlaIII,

which destroyed ~30 % of the total RAD tags. The PacI

cut site AATTAATT occurs 2044 times in the C. remanei

genome, leading to the creation of 4088, 100 bp RAD tags,

spanning 409 Kb of total DNA. After NlaII digestion,

287 Kb of DNA sequence remained and was sequenced

with RAD-Seq at 800× PE coverage. RAD tags were

present at approximately every 10 kb throughout the

genome.

For the C. remanei study, there were 2 samples (“wild”

and “lab-adapted”) sequenced with two barcodes each.

The ancestral population was produced from 39 isofe-

male strains, and each sample contained ~1000 individual

worms.

Genomic DNA (2.0 μg) from each population was

digested for 60 min at 37C in a 50 μL reaction volume

containing 5.0 μL Buffer 1, 10 units (U) PacI (New Eng-

land Biolabs [NEB]), and 0.5 μl 100× BSA (NEB). Sam-

ples were heat-inactivated for 20 min at 65 C. 1.0 μL of
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barcoded PacI-P1 adapter mixture (100 nM), a modified

Illumina© adapter (2006 Illumina, Inc., all rights reserved;

top oligo: 5′-ACACTCTTTCCCTACACGACGCTCTTC

CGATCTxxxxx(xx)A*T -3′[xxxxx(xx) = barcode (TACGT,

AGATCGA - ancestor; CTGCAA, GCTAGTC –evolved

control, mixture of two barcodes per sample), * = phos-

phoro-thioate bond]; bottom oligo: 5′-Phos-xxxxx(xx)A

GATCGGAAGAGCGTCGTGTAGGGAAAGAGTG*T),

was added to each sample along with 0.6 ml rATP

(100 mM, Promega), 1.0 μl 10× NEB Buffer 4, 0.5 μl

(1000 U) T4 DNA Ligase (high concentration, NEB),

3.9 μl H2O and incubated at room temperature (RT)

for 30 min. Samples were again heat-inactivated for 20 min

at 65C, combined, and randomly sheared (Bioruptor) to an

average size of 140 bp. The sheared sample was purified

using a QIAquick Spin column (Qiagen) and run out on a

1.25 % agarose (Sigma), 0.5× TBE gel. A tight band of

DNA from 130–150 bp was isolated with a clean razor

blade and purified using the MinElute Gel Extraction Kit

(Qiagen). The Quick Blunting Kit (NEB) was used to blunt

the ends of the DNA in a 25 μl reaction volume containing

2.5 μl 10× Blunting Buffer, 2.5 μl dNTP Mix and 1.0 μl

Blunt Enzyme Mix. The sample was purified and incu-

bated at 37C for 30 min with 10 U Klenow Fragment

(3′–5′ exo-, NEB) in a 50 μl reaction volume with

5.0 μl NEB Buffer 2 and 1.0 μl dATP (10 mM, Fermentas),

to add 3’ adenine overhangs to the DNA. After another

purification, 1.0 ml of Paired-End-P2 Adapter (PE-P2;

10 mM), a divergent modified Illumina© adapter (2006

Illumina, Inc., all rights reserved; top oligo: 5′-Phos-

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGAC

CGATCAGAACAA-3′, bottom oligo: 5′-CAAGCAGAA

GACGGCATACGAGATCGGTCTCGGCATTCCTGCT

GAACCGCTCTTCCGATC*T-3′), was ligated to the

DNA fragments at RT. The sample was purified and

eluted in 50 μl. The eluate was digested again with

NlaIII to reduce library complexity. The sample was

column-purified and eluted in 10 μl elution buffer. Two

separate PCR amplifications were performed with each

sample, each using 5 μl of eluate as template, in a 50 μl

volume with 25 μl Phusion Master Mix (NEB) and

1.0 μl modified Illumina© amplification primer mix

(10 mM, 2006 Illumina, Inc., all rights reserved; P1-

forward primer: 5′ AATGATACGGCGACCACCGAGA

TCTACACTCTTTCCCTACACGACGCTCTTCCGAT

C*T 3′, P2-reverse primer: 5′ CAAGCAGAAGACG

GCATACG*A 3′). Phusion PCR settings followed prod-

uct guidelines (NEB) for a total of 17 cycles with an an-

nealing temperature of 65C. The wild and lab-adapted

DNA libraries were pooled and cleaned through a column

and gel purified, excising a tight band of DNA of 240 bp

size. The sample was diluted to 1 nM and sequenced on

the Paired-end module of the Genome Analyzer II follow-

ing Illumina protocols for 100 bp reads.

Data analysis of standard paired-end data

Raw reads were cleaned with Stacks process_radtags

(v0.99993) to remove low quality bases present at the ends

of reads (http://catchenlab.life.illinois.edu/stacks/). Reads

were aligned to reference genomes with Bowtie (v2.2.1).

Sam files were converted to bams and mpileups with Sam-

tools (v0.1.18). Bam files were sorted with Picard SortSam

(v1.115). Base quality score recalibration (BQSR) was per-

formed using GATK (v2.6-4). Low-frequency variants

were called with LoFreq (v2.0.0-rc-1) using default mode

[16], with a minimum allele frequency cutoff of AF =

0.002.

Data analysis of PELE-Seq data

An overview of the recommended PELE-Seq analysis

workflow and optimized variant-calling parameters are

provided in Additional file 6. Basic scripts are written as

a shell pipeline, and are included in Additional file 8.

Raw reads were cleaned with Stacks process_radtags

(v0.99993) to remove low quality bases present at the

ends of reads. (http://catchenlab.life.illinois.edu/stacks/).

Overlapping paired-end reads were merged with Seq-

Prep (v0.1) (https://github.com/jstjohn/SeqPrep). Over-

hanging reads were trimmed from merged reads with

BBMap (v32.07) (http://sourceforge.net/projects/bbmap/),

using a quality score cutoff of Q60. Reads were aligned to

reference genomes with Bowtie (v2.2.1) (http://bowtie-

bio.sourceforge.net/index.shtml). Sam files were converted

to bams and mpileups with Samtools (v0.1.18) (http://

www.htslib.org/). Bam files were sorted with Picard Sort-

Sam (v1.115) (http://broadinstitute.github.io/picard/).

PELE-Seq SNPs were called using a multi-step variant

calling approach to incorporate information from the

barcoding and overlapping steps, without a large drop in

sensitivity. The PELE-Seq analysis pipeline is based on

creating two lists of SNP calls for each library: List A

contains SNPs called from the merged overlapping reads

(ORP data) and List B contains SNPs that were called

separately in both individually-barcoded library called

using less stringent parameters during SNP-calling, also

with overlapping reads.

To create List A, SNPs were called from overlapped

paired-end read data using the program Lofreq (v2.1.2)

(http://csb5.github.io/lofreq/) with a minimum allele fre-

quency cutoff of AF = 0.0055-0.002 (see Additional file 3).

The two separately barcoded files were pooled prior to

variant calling using Picard MergeSamFiles (v1.115).

To create List B, SNPs were called from each barcoded

sample separately using LoFreq at a decreased stringency

mode (-J –B options) with a minimum allele frequency

cutoff of 0.0005-0.002 and Q Score cutoff of 150–820

(see Additional file 3). SNPs present in both barcode

files were recorded in “List B”.
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To generate the final list of PELE-Seq SNPs, List A

and B were added.

In general, the allele frequency cutoff of 0.002 was

found to always eliminate false positive mutations in the

data, as did using a Q score cutoff of 700 for the

separately-barcoded files, when read depths above 1000×

OPE per barcode were used. If the background PCR

error rate of the ORP data is unknown, one option for

achieving very high-quality SNP calls is to call SNPs only

if they are present in both Lists A and B, however this

decreases the sensitivity of the method.

Detection of putative “de novo” alleles

Raw reads were cleaned with Stacks process_radtags

(v0.99993) to remove low quality bases present at the

ends of reads (http://catchenlab.life.illinois.edu/stacks/).

Overlapping paired-end reads were merged with Seq-

Prep (v0.1) (https://github.com/jstjohn/SeqPrep). Over-

hanging reads were trimmed from merged reads with

BBMap (v32.07) (http://sourceforge.net/projects/bbmap/).

Reads were aligned to reference genomes with Bowtie

(v2.2.1) (http://bowtie-bio.sourceforge.net/index.shtml). Sam

files were converted to bams and mpileups with Samtools

(v0.1.18) (http://www.htslib.org/). Bam files were sorted with

Picard SortSam (v1.115) (http://broadinstitute.github.io/pic-

ard/).

Rare alleles present in one sample and absent in another

were called using Seurat Somatic (v2.5) [21] Alleles were

called with a minimum read depth of 900 OPE and were

filtered to remove any allele that appeared in the original

population with an allele frequency above 0.000.

Visualization of sequencing data

Sequencing data is visualized using circos [27], the Integra-

tive Genomics Viewer (IGV) [28, 29], and the R packages

Sushi [30] and ggplot2 [31].

Additional files

Additional file 1: The 64 control alleles present in the control E. coli

“spike-in” libraries. The rare SNPs present in the control libraries were

determined by sequencing the pure E. coli K12 substrain W3110 and

aligning it to the E. coli B substrain Rel606 genome. (PDF 15 kb)

Additional file 2: Sequencing reads from the pure W3110 and Rel606

E. coli substrains. The purity of the original DNA samples was verified

through sequencing by aligning the sequencing reads from both E. coli

substrains to the Rel606 genome. The “true positive” SNPs were found to

be present at 100 % frequency in the W3110 DNA, and all other positions

contained reference bases at 100 % frequency. (PDF 604 kb)

Additional file 3: SNP-calling results from E. coli spike-in libraries using

the PELE-Seq, ORP, and Standard DNA-Seq methods. The performance

of the PELE-Seq, ORP, and standard DNA-Seq methods at detecting rare

alleles at various read depths. SNP results for spike-in libraries 1–4 are

reported, as well as read depths and other metrics for the libraries.

Various allele frequency and quality score cutoffs were tested to optimize

rare variant identification with the method, and the SNP-calling results

are reported here. Recommended workflow and SNP-calling parameters

are reported here and in Additional file 6. (XLSX 54 kb)

Additional file 4: Control SNPs detected with PELE-Seq, standard DNA-

Seq, and the ORP method. Rare alleles present at 0.42 % frequency in a

control E. coli spike-in library were sequenced with PELE-Seq, the ORP

method, and the standard DNA-Seq method at 10,000× OPE depth of

coverage per barcode (24,000× depth per barcode of non-overlapped

reads). PELE-Seq and the ORP method are 100 % specific and the

standard DNA-Seq method is 75 % specific. This data is also included

as a spreadsheet in Additional file 3. (PDF 1109 kb)

Additional file 5: PCR errors that result in false positive SNPs when

using unfiltered ORP data. Overlapping paired-end read libraries sequenced

to 10,000× OPE depth contained 109 false positive SNPs when rare variants

were called with Lofreq, using default parameters with no minimum allele

frequency cutoff. These putative PCR errors are predominately C > T

transitions are are found in distinct clusters throughout the genome.

This data is also included as a spreadsheet in Additional file 3.

(PDF 18 kb)

Additional file 6: Recommended PELE-Seq workflow and SNP-calling

parameters. An overview of the PELE-Seq analysis pipeline is outlined and

optimized variant-calling parameters are provided for various read depths.

(XLSX 8 kb)

Additional file 7: SNP results from PELE-sequencing of wild and lab-

adapted C. remanei populations. Rare SNPs in the wild and lab-adapted

C. remanei populations were detected with PELE-Seq at 2000× OPE read

depth. Alleles present in both populations are listed, as well as those

found in either the wild or lab-adapted population alone. Read pileups

are listed for SNPs are absent in one population (putative de novo SNPs

and SNPs lost during lab-adaptation). (XLSX 722 kb)

Additional file 8: Basic PELE-seq SNP-calling scripts. The basic

commands used for PELE-Seq analysis are provided as a shell script.

(TXT 11 kb)
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