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Abstract

Profiling microbial community function from metagenomic sequencing data remains a com-

putationally challenging problem. Mapping millions of DNA reads from such samples to ref-

erence protein databases requires long run-times, and short read lengths can result in

spurious hits to unrelated proteins (loss of specificity). We developed ShortBRED (Short,

Better Representative Extract Dataset) to address these challenges, facilitating fast, accu-

rate functional profiling of metagenomic samples. ShortBRED consists of two components:

(i) a method that reduces reference proteins of interest to short, highly representative amino

acid sequences (“markers”) and (ii) a search step that maps reads to these markers to

quantify the relative abundance of their associated proteins. After evaluating ShortBRED on

synthetic data, we applied it to profile antibiotic resistance protein families in the gut micro-

biomes of individuals from the United States, China, Malawi, and Venezuela. Our results

support antibiotic resistance as a core function in the human gut microbiome, with tetracy-

cline-resistant ribosomal protection proteins and Class A beta-lactamases being the most

widely distributed resistance mechanisms worldwide. ShortBRED markers are applicable to

other homology-based search tasks, which we demonstrate here by identifying phyloge-

netic signatures of antibiotic resistance across more than 3,000 microbial isolate genomes.

ShortBRED can be applied to profile a wide variety of protein families of interest; the soft-

ware, source code, and documentation are available for download at http://huttenhower.

sph.harvard.edu/shortbred

Author Summary

High throughput DNA sequencing of the human microbiome presents a tremendous

resource for researchers interested in studying microbial community functions such as
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antibiotic resistance. However, assigning DNA reads to protein families remains a chal-

lenging problem, as reads derived from a given protein-coding gene may map spuriously

to homologous regions from unrelated proteins, which results in false positives. We

addressed this problem with our method ShortBRED, which first identifies short peptide

sequences (“markers”) that are highly representative for specific protein families, and then

searches for these markers in metagenomic sequencing data to accurately detect and quan-

tify protein families. In this work, we applied ShortBRED to profile antibiotic resistance in

the healthy human microbiome of individuals worldwide and across bacterial genomes.

ShortBRED can be similarly applied to profile many other protein families of interest.

Introduction

Quantifying proteins of interest from metagenomic sequencing data in a fast and accurate

manner is a central challenge in microbial community analysis. Whole metagenome shotgun

(WMS) sequencing provides millions of short nucleotide sequences (often 100–250 bases long)

from the DNA of organisms in a sample; we refer to these short DNA sequences as “reads.” A

common approach to profiling protein families from these data involves (i) mapping reads to a

database of reference protein sequences followed by (ii) interpreting the mapping results to

estimate protein family relative abundance. This process is complicated by regions of local sim-

ilarity in otherwise unrelated protein families: reads drawn from such regions will map non-

specifically, which can result in false positive identifications (reduced specificity). Reducing the

time spent on mapping reads is also an important task, as typical metagenomic sequencing

depths and reference database sizes continue to grow rapidly.

Protein families are typically profiled in metagenomic sequencing data by one of three

approaches: (i) mapping DNA reads to a database of nucleotide sequences [1], (ii) mapping

translated DNA reads to a database of protein sequences [2], or (iii) assembling full-length

genes from DNA reads de novo and then annotating them via comparison with reference data-

bases [3]. Approaches (i) and (ii) rely on homology-based searches, as enabled by programs

such as BLAST [4], USEARCH [5], and RAPSearch2 [6]. Methods such as MEGAN [7] and

HUMAnN [2] can achieve very high sensitivity by mapping reads to large nucleotide and pro-

tein reference databases. However, this approach is vulnerable to false positives, as a read

derived from a given protein-coding sequence may spuriously align to other genes as a result of

local sequence homology, as mentioned above [8]. Moreover, searching nucleotide sequences

against large, full-length protein reference databases comes at great computational cost, as

search time is roughly proportional to database size and translated search is more computa-

tionally demanding than searching in nucleotide space. Assembly-based methods, while advan-

tageous for identifying new genes, tend to underrepresent known, low-abundance genes, as

more reads are required to assemble a gene than to identify it by homology-based search. Like

search-based methods, assembly is also challenged by regions of local homology, which may

lead to the construction of chimeric contigs.

False positive hits to regions of local homology can be mitigated by identifying and mapping

against only unique substrings of protein sequences. This has the added benefit of reducing

search time, as the unique portions of each database sequence constitute a smaller search

space. One approach to this method involves identifying unique k-mers within bacterial pro-

tein sequences relative to a larger reference database [9]. While this approach makes progress

toward increasing specificity and decreasing runtime, exact k-mer matching is not always bio-

logically satisfying as it can fail to model common patterns in protein sequence evolution. For
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example, two peptide k-mers that differ by a single substitution between glutamic and aspartic

acid (biochemically similar amino acids) are biologically similar, but would be scored as completely

distinct by exact k-mer matching. Moreover, while k-mer approaches focus on matches to unique

substrings of specific protein sequences, many metagenomics applications—particularly those

involving poorly characterized microbial communities—benefit from alignment to more

sequence-diverse protein families.

Here we present ShortBRED (Short, Better Representative Extract Dataset): a method for

profiling protein family abundance in metagenomic data by first identifying short peptide

markers that (i) are conserved within protein families and (ii) uniquely distinguish families

from one another. ShortBRED achieves equivalent sensitivity, enhanced specificity, and

enhanced speed relative to profiling strategies that map reads against full-length protein

sequences. Unlike k-mer based profiling, ShortBRED relies on standard sequence homology-

based methods to map reads to peptide markers, thus making it robust to common patterns in

protein sequence evolution. By enabling faster, more accurate profiling of protein families in

large metagenomes, ShortBRED allows researchers to better measure the prevalence and abun-

dance of protein families of interest, and can lead to better understanding of biological phe-

nomena. As proof-of-principle, we applied ShortBRED to profile antibiotic resistance (AR)

families in both human microbiomes and bacterial isolate genomes, revealing new, population-

specific, and phylogenetic trends in the distribution of this important class of proteins.

Results

We developed ShortBRED as a method to quickly and accurately quantify the relative abun-

dance of protein families in WMS sequencing data. ShortBRED profiles protein family abun-

dance in metagenomes by a two-step process: (i) ShortBRED-Identify isolates representative

peptide sequences (markers) for the protein families, and (ii) ShortBRED-Quantifymaps meta-

genomic reads against these markers to determine the relative abundance of their correspond-

ing families (Fig 1). To evaluate ShortBRED, we measured its speed and accuracy in profiling

synthetic metagenomes, and then tested its specificity by searching for yeast proteins in a syn-

thetic bacterial metagenome. We next applied ShortBRED to profile AR genes in the gut micro-

biomes of healthy American [10], Chinese [11], and Venezuelan and Malawian [12]

populations, as well as ~3,000 microbial isolate genomes.

Profiling protein families in metagenomes using representative marker
sequences

Current approaches to functional profiling of metagenomic samples often involve mapping

reads to full-length protein sequences (e.g. centroid sequences of previously defined protein

families). ShortBRED obtains higher speed and specificity relative to these approaches by

reducing protein families to short, highly representative peptide sequences (markers), and then

mapping reads against only those markers. To create the markers, ShortBRED-Identify uses

two inputs: (i) a FASTA file of proteins-of-interest and (ii) a comprehensive reference database

of additional protein sequences (provided as a FASTA file or preformatted BLAST database;

Fig 1). ShortBRED-Identify first clusters the protein sequences of interest to identify protein

families by global sequence homology, with each collapsed to form a single consensus

sequence. Regions of a family’s consensus sequence that share strong, local sequence homology

(“overlaps”) with proteins outside of the family are then penalized. Based on these overlaps,

ShortBRED then isolates short peptide markers from the consensus that best represent the pro-

tein family. We classify these markers into three groups: True Markers, which do not overlap
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with the other protein families, Junction Markers, which overlap partially with the other pro-

tein families, and Quasi Markers, which are completely overlapped by another protein family.

The marker creation process is run once for a given set of proteins, resulting in a reusable

and distributable marker database. ShortBRED-Quantify then (i) maps WMS sequencing reads

against a given protein marker database using a translated search, (ii) counts high-quality hits,

(iii) normalizes the counts based on marker length and sequencing depth, and (iv) produces a

relative abundance profile of the protein families of interest represented by the marker database

(Fig 1). Creating a highly specific marker sequence database has two major advantages: (i)

searches against this database are more accurate, as the exclusion of non-specific (overlap)

regions reduces false positive hits, and (ii) searches proceed more quickly, as the search space is

considerably reduced relative to the full database.

ShortBRED achieves better specificity than mapping reads to centroids

We constructed synthetic datasets to train ShortBRED’s default parameter settings and validate

its performance. For one set of AR protein families (ARDB [13]) and one set of virulence factor

Fig 1. The ShortBRED algorithm. ShortBRED-Identify creates distinctive markers for protein families of interest. ShortBRED-Quantify maps nucleotides
reads to markers and normalizes abundance.

doi:10.1371/journal.pcbi.1004557.g001
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protein families (VFDB [14]), we created three synthetic bacterial metagenomes spiked with

the proteins of interest at 5%, 10%, and 25% relative abundance. We first tuned ShortBRED’s

ability to correctly call the presence and absence of protein families in the 5%-spiked metagen-

omes by varying the initial protein clustering identity (80%, 85%, 90%, 95%, and 100%) and

minimum allowed marker length (8, 10, 12, 15, 18, 20, 22, 25, and 30 amino acids; S1–S8 Figs).

We first restricted the allowed parameter space to those combinations yielding a specificity of

at least 99% in our initial evaluation. From among these combinations, we selected a clustering

identity of 85% and minimum marker length of 8 amino acids as ShortBRED’s defaults as they

gave the best sensitivity performance on the ARDB-spiked metagenome (there was little varia-

tion in performance on the VFDB-spiked metagenome). These parameter settings were used

for the remaining analyses in this work; they can be easily tuned with command-line argu-

ments for other applications.

To further validate our parameter settings and ShortBRED’s performance, we generated

markers for the ARDB and VFDB protein families based on the optimal settings described

above (Table 1). We then used these markers to profile six synthetic metagenomes, including

the 10%- and 25%-spiked metagenomes that were not used in the training process. We com-

pared ShortBRED to an alternative profiling strategy in which reads were mapped directly to

the centroid sequences of protein families. Centroids were obtained by clustering the proteins

of interest at 85% identity; during the quantification stage, any matches to centroids with

length�30 amino acids and�95% identity were considered valid hits.

An ideal search methodology will correctly identify all protein families present in a meta-

genome (true positive rate, TPR, equal to 1) and will not erroneously identify any protein fami-

lies absent from the metagenome (false positive rate, FPR, equal to 0). As we intensify the

criteria for calling a family as present (e.g. requiring a higher normalized count for the family),

TPR and FPR will both decrease: a tradeoff we quantify using a receiver operating characteristic

(ROC) curve (Fig 2A and 2B; S1 Table). Notably, even treating a single hit to a ShortBRED

marker as evidence of the corresponding protein family’s presence resulted in exceptional sen-

sitivity with very low false positives (<5%). As we increased the number of protein families

present and the share they comprised of the metagenome, ShortBRED achieved TPR and FPR

values comparable to or exceeding those of the centroids method (S1 Table). Since greater

spike-in percentages provided more opportunities for centroids from one cluster to match to

reads from another cluster by local homology, the centroids method performed well for the

5%-spiked metagenomes but experienced a substantial drop in specificity at similar levels of

sensitivity to ShortBRED in analyses of the 10%- and 25%-spiked metagenomes.

Table 1. Characteristics of ShortBREDmarkers used to profile synthetic metagenomes.

ARDB VFDB

Families after initial clustering 618 2,089

Families with true markers 594 2,041

Families without true markers 24 48

Total markers 2,886 7,869

True markers 2,845 7,730

Junction markers 37 139

Quasi markers 4 0

Legend: This table lists the number of protein families and maker types present in the ARDB and VFDB

markers created by ShortBRED-Identify for profiling synthetic metagenomes.

doi:10.1371/journal.pcbi.1004557.t001
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Fig 2. Accuracy of ShortBRED and centroid-based profiling within synthetic metagenomes. (A, B) ROC curves report the sensitivity and specificity (in
terms of TPR and FPR) of the two methods for correctly identifying the presence and absence of protein families of interest in six synthetic metagenomes,
spiked with 5%, 10%, and 25% of their material from the ARDB (panel A) and VFDB (panel B). (C, D) Scatterplots of protein family “predicted frommapping”,
the abundance values calculated by ShortBRED and the centroids, versus “expected from gold standard”, the abundance values of the protein families in the
10% synthetic metagenome.

doi:10.1371/journal.pcbi.1004557.g002
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Beyond correctly calling protein family presence and absence, an ideal search strategy will

be able to accurately quantify the relative abundances of these families in a metagenome, which

may vary over several orders of magnitude. Using Spearman’s correlation to compare known

and predicted relative abundances, ShortBRED outperformed the centroid-based method in

the six Illumina metagenomes (median r = 0.95 versus 0.82; S1 Table). The weaker perfor-

mance of the centroid-based method was due in part to a larger fraction of false positive detec-

tion events (defined to have 0 expected abundance; Fig 2C and 2D). We additionally

performed a more challenging evaluation on sequences with either 3% or 5% amino acid sub-

stitutions, retaining specificity>0.95 and>0.98 respectively, and sensitivities>0.88 and>0.79

(S1 Table). This is in contrast to centroid matching on the same datasets, which achieved mini-

mum specificities of only 0.80 and 0.77, respectively. Thus, ShortBRED’s increased specificity

not only provides a more accurate qualitative profile of protein family presence and absence,

but also contributes to more accurate quantitative profiling. As an additional evaluation of

specificity, we applied ShortBRED and the centroid-based profiling method to search for yeast

proteins in a synthetic bacterial metagenome. Given that yeast and bacteria are extremely dis-

tantly diverged [15], homology between a short, bacterial DNA sequence and a yeast protein is

likely to have resulted from chance. ShortBRED did not identify any false positive hits to yeast

proteins among the bacterial DNA reads, while the centroid-based method produced fifteen

high-identity and long-length hits (S2 Table). The centroid-based profiling method offered

some advantages over ShortBRED when working with shallow sequencing data (e.g. as derived

from older 454 sequencing experiments), wherein reads are less likely to have been sampled

from marker regions (S9 Fig). However, this limitation vanishes when working with typical

modern sequencing depths, while the drawbacks of the centroid-based approach will only

grow as typical depths continue to increase.

ShortBRED is faster than centroid-based profiling

In addition to increasing the accuracy of metagenomic search, ShortBRED’s focus on a reduced

sequence database (the markers) results in considerably shorter run-times relative to searching

against full-length centroids (Fig 3). Focusing on metagenomes spiked with proteins from

ARDB, we were able to process ~10,400 reads/sec (on average) by mapping against full-length

ARDB centroid sequences, while ShortBRED processed ~19,600 reads/sec using the previously

generated ARDB marker sequences (a 1.9x increase in speed). For the VFDB-spiked metagen-

omes, we were able to map ~5,400 reads/sec against centroid sequences, while ShortBRED pro-

cessed ~11,300 reads/sec (a 2.1x increase in speed). All mapping experiments were carried out

on the same computer hardware using 5 CPU cores and the same underlying mapping pro-

gram (USEARCH); hence, ShortBRED’s increased speed can be attributed to the reduced size

of the marker database. For a modern metagenomics study producing 100s of millions of reads

for 100s of samples, this speedup corresponds to savings of 100s of CPU-hours of compute

time.

Antibiotic resistance in the human gut microbiome worldwide

We leveraged the improved specificity of ShortBRED to accurately quantify antibiotic resis-

tance (AR) worldwide in the human gut microbiomes of 552 individuals from the United States

[10, 12], China [11], Malawi, and Venezuela [12] (Fig 4 and S3 Table). We identified centroid

sequences (appropriate for the more shallow 454 sequencing in [12]) and ShortBRED markers

(for Illumina sequences from 10–12) for 849 AR protein families derived from the ARDB and

independent curation [16]. These families were further grouped into broader classes such as

such as “Class A beta-lactamase” and “quinolone resistance.” 107 microbiome samples based

Targeted Functional Profiling in Microbial Communities with ShortBRED
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on older 454 sequencing methods were mapped to centroid sequences to avoid loss of sensitiv-

ity from low sequencing depths; all other samples were profiled with ShortBRED (see

Methods).

Our results support AR as a core function in the human gut microbiome, with every indi-

vidual gut microbiome containing at least one AR determinant (Fig 4). As previously observed

[17, 18], resistance to the tetracyclines was the most widespread AR function in the human gut

microbiome, with at least one tetracycline resistance mechanism being identified in 99% of

individuals across all three studies' global populations (97% ribosomal protection; 87% efflux;

3% inactivation). In addition, Class A beta-lactamases were identified in 90% of individuals

and were widespread throughout all populations, with CfxA and CblA the most common vari-

ants (as represented by families P30898 at 68.5% prevalence and P30899 at 60.1% prevalence;

see S4 Table). Based on the diversity of participant ages present particularly in the Yatsunenko

et al study, these prevalent AR families appear early in life and appear cross-sectionally across a

wide range of subject demographics.

Consistent with previous findings [19], this global distribution of AR determinants in the

human gut microbiome appears to be driven by the underlying bacterial phylogenetic profile.

For example, while Class A beta-lactamases are known to be the most diverse and widely dis-

seminated class of beta-lactamase genes [20], the most abundant variants (CfxA and CblA)

have been previously shown to be specific to Bacteroides species [21, 22]. Hence, enrichment

for these families may be a direct marker for the presence of specific bacterial clades in the gut

microbiota rather than a response to selective pressures of individual-specific antibiotic use.

The relationship between microbiome-specific AR and phylogenetic profiles are addressed in

greater detail in subsequent sections.

In addition to the universal AR trends described above, ShortBRED revealed several consis-

tent differences in AR profiles between global populations. For example, Chinese individuals

were particularly enriched for a number of AR factors: quinolone resistance, aminoglycoside

acetyltransferases, and genes modulating antibiotic efflux. Among these individuals, the two

most prevalent quinolone resistance families (variants of fluoroquinolone-resistant DNA

Fig 3. Speed of execution: ShortBRED versus centroid-based profiling.Results are based on time used
by USEARCH in ShortBRED-Quantify.

doi:10.1371/journal.pcbi.1004557.g003
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topoisomerases) were found in 78% and 29% of individuals, the most prevalent aminoglycoside

acetyltransferase (YP_002559372) was found in 99.7% of individuals, and the next-most-preva-

lent (P13246) followed at 19.3% of individuals. Four gene-modulating antibiotic efflux families

(phoQ_1, soxR_5, marA_1, and baeR_2) had individual prevalence values exceeding 58% (S4

Table). In addition, while many AR genes were discretely strongly present or absent within the

Chinese cohort (Fig 4), their gut resistomes were differentiated into four clear clusters based

largely on the abundance of antibiotic efflux pumps, including major facilitator superfamily

(MFS) antibiotic efflux, resistance/nodulation/cell division (RND) antibiotic efflux, and small

multidrug resistance (SMR) antibiotic efflux pumps. Many multidrug antibiotic efflux pumps

are chromosomally encoded and highly conserved across all members of a given bacterial spe-

cies [23], further suggesting that observed AR distribution patterns are driven by underlying

community membership and phylogeny.

In comparison with the Chinese cohort, gut microbiome samples from the American

(HMP) cohort were much more homogeneous. This difference was likely influenced by the

greater diversity in membership among the Chinese cohort, which contained individuals with

and without type II diabetes and a wide range of ages (13–86). In comparison, the HMP cohort

consisted solely of young (ages 18–40), healthy individuals. Differences between the cohorts

Fig 4. Antibiotic resistance in the human gut microbiome. RPKM values produced by ShortBRED for antibiotic resistance protein families, summed by
class of resistance. Samples in the USA-Global, Venezuela, and Malawi cohorts were profiled by mapping reads to centroids due to their lower sequencing
depth. Marker information is listed in Table 2. Samples (columns) were clustered according to Canberra distance and antibiotic resistance families (rows)
were clustered according to Euclidean distance.

doi:10.1371/journal.pcbi.1004557.g004
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may also reflect variation in the sampling and sequencing protocols used by their correspond-

ing studies (in addition to real biological variation). American individuals were characterized

by increased abundance of four protein families within the Class A beta-lactamases (CfxA_11,

AAA22905, P30898, and P30899; S4 Table). Conversely, these individuals were depleted for

aminoglycosides and acetyltranferases. These observed differences between the American and

Chinese cohorts stress that, while AR is (at a high level) core to the global human gut micro-

biome, variation emerges in specific resistances present in individual populations.

Connecting antibiotic resistance to phylogeny

In order to understand and control the spread of AR, it is necessary to characterize the connec-

tions between AR determinants, source genomes and their phylogeny, and the relative propen-

sity of horizontal gene transfer (HGT). In addition to their usefulness in metagenomics

profiling, ShortBRED markers can aid in this goal by providing highly specific signatures of

AR protein families for microbial genome annotation. We used ShortBRED to profile the 849

AR protein families introduced above across 3,305 phylogenetically diverse microbial isolate

genomes [24] (see Methods).

Over 40% of microbial isolate genomes surveyed encoded at least one AR determinant, with

significant enrichments among particular genera (Fig 5). For example, Escherichia and Salmo-

nella are closely related bacterial genera that contain many human pathogens [25, 26]; both

were highly enriched for AR determinants. Specifically, all Escherichia and Salmonella encoded

at least one AR class, with an average of 20.3 AR genes for Escherichia and 11.2 AR genes for

Salmonella (S5 Table). In addition, while these two genera shared many similar AR determi-

nants, they appear to resist beta-lactam antibiotics using largely orthogonal mechanisms:

94.6% of Escherichia genomes were enriched for Class C beta-lactamases and were completely

depleted of Class B beta-lactamases, while Salmonella showed the opposite trend (6.5% of

genomes encoded Class C resistance, while all genomes encoded Class B resistance, S10 Fig, S5

Table). While these examples illustrate cases of strong coupling between AR determinants and

particular genera, this was not always the case. For example, glycopeptide resistance was highly

variable within the genus Enterococcus, with ~1/3 of isolate genomes possessing the function

while the remaining 2/3 lacked it.

Our observations further suggested that AR functions could be subdivided into two catego-

ries of phylogenetic distribution: (i) functions that are clade-specific, i.e. highly conserved

across all members of a bacterial clade, and (ii) functions that are broadly distributed across the

phylogenetic tree. Both distribution patterns were observed among abundant AR classes in the

human gut microbiome (Fig 5 and S5 Table). For example, multi-drug antibiotic efflux pumps

and rRNA methyltransferases showed strong signatures of clade-specific enrichment among

the Staphylococcus, Escherichia, Salmonella, and Yersinia genera. Functions that are tightly

linked to particular clades are notable in that their presence and abundance can be inferred

from profiles of community composition alone, including profiles based on lower-resolution

amplicon sequencing [28]. Conversely, tetracycline ribosomal protection determinants were

widely dispersed across the phylogenetic tree—a pattern more consistent with recent spread by

mechanisms such as HGT [1]. The presence and abundance of functions in this category

would be difficult to infer from community profiling and are best quantified directly from a

metagenome—a process facilitated by ShortBRED.

Predicting antibiotic resistance profiles from community composition

The previous section stressed that, while some AR functions can be accurately quantified based on

microbial community composition, broadly distributed functions pose a greater challenge. To

Targeted Functional Profiling in Microbial Communities with ShortBRED
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further explore this idea, we compared observed and predicted AR profiles for 82 gut metagen-

omes fromHMP individuals. We predicted the AR profile for a given gut metagenome by first

quantifying the sample’s microbial community composition with MetaPhlAn [29]. This step

resulted in a vector of relative abundance measurements for species present in the sample (in

RPKM units). Then, using the ShortBRED based-annotations of AR functions in bacterial

Fig 5. Prevalence of antibiotic resistance across bacterial isolate genomes. Phylogenetic tree of bacterial genomes from IMG [24] overlaid with
presence/absence of ShortBRED antibiotic resistance protein families. The outermost ring indicates the share of genes in each species’ genome that
mapped to any of the AR protein families. This figure was produced using GraPhlAn [27].

doi:10.1371/journal.pcbi.1004557.g005
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genomes described above, we computed the abundance of each AR function in the sample by mul-

tiplication. For example, if species A had a relative abundance of 5 RPKM and contained 1 copy of

AR protein X, while species B had a relative abundance of 10 RPKM and contained 2 copies of AR

protein X, then the total abundance of AR protein X in the metagenome was predicted to be:

1ð5 RPKMÞ þ 2ð10 RPKMÞ ¼ 25 RPKM:

This procedure was repeated for all samples and AR functions.

At the level of individual AR gene families, ShortBRED and the predicted profiles co-

detected 63 families, 57 were detected by ShortBRED but never observed in the predicted pro-

files, and 14 were predicted to be present but never confirmed by ShortBRED. Among the co-

detected families, the average quantitative agreement between the ShortBRED and predicted

profiles (as measured by Spearman’s correlation) was 0.43. When gene families were grouped

into broader AR classes, 17 were co-detected, 5 were found only by ShortBRED, and 1 was pre-

dicted to occur but not confirmed by ShortBRED. Average quantitative agreement for the 17

co-detected classes was 0.33 (Spearman’s correlation). The AR classes most under-represented

by the community composition-based predictions were tetracycline ribosomal protection,

Class A beta-lactamase, rRNA methyltransferase, MFS antibiotic efflux, and RND antibiotic

efflux (S6 Table). Notably, tetracycline resistance was also among the most broadly-distributed

AR classes.

In addition, individual-specific ShortBRED-based versus predicted AR profiles showed

poor quantitative agreement (average Spearman correlation = 0.53). There are a number of rea-

sons why the two profiles would agree poorly on an individual basis or for particular AR fami-

lies. While ShortBRED is able to profile AR gene abundance in cases where the genes are

present in uncharacterized genomes, the taxonomic profile method is limited to species with

known isolate genomes. Hence, predicting AR content from taxonomic composition will tend

to underestimate AR content, and explains why ShortBRED detects several families that the

predictive method does not. In instances where multiple isolate genomes were available for a

species detected in a sample, the species’ contributions were based on the median gene copy

number for each AR family across its isolate genomes. If the sample isolate contained fewer

copies of an AR gene than the median estimate, then we would tend to overestimate its abun-

dance; conversely, if the sample isolate contained more copies of an AR gene than the median

estimate, then we would tend to underestimate its abundance (both serving to weaken signal-

to-noise ratio among the predictions). For these reasons, directly profiling AR content in a

metagenome is preferable to predicting functional content from community composition.

ShortBRED offers a means to profile AR content and other protein families in a fast, highly

specific manner.

Discussion

In this work, we have presented and validated ShortBRED: a tool to build short peptide mark-

ers for protein families and then apply them to profile protein family content in a metagenomic

sequencing sample. We demonstrated that ShortBRED is both faster and more accurate than

the common approach of mapping reads to full-length protein family centroid sequences.

ShortBRED is extensible to a diverse collection of functional profiling tasks. The most straight-

forward of these was demonstrated in our profiling of antibiotic resistance in human gut meta-

genomes, which we discuss further below. Although this example was based on DNA sequence

data, ShortBRED’s markers are also applicable for profiling microbial community RNA-Seq

data (metatranscriptomics), which reveals the relative functional activity of protein families in

a community. In addition to profiling meta’omic sequencing data, ShortBRED’s markers have
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proven useful for identifying protein families of interest in microbial isolate genomes, as the

markers’ small sizes and highly representative sequences facilitate rapid, unambiguous gene

annotation. The functional profiles produced in these applications are amenable to a variety of

downstream analysis methods, including comparing functional composition in case versus

control samples or monitoring temporal variation in functional composition or activity from

longitudinal samples.

Mapping metagenomic reads to protein families of interest is an example of a search prob-

lem in which new queries (samples) arise more frequently than changes to the database (pro-

teins of interest). In such cases, it is desirable to pre-process the database in order to accelerate

downstream search. ShortBRED accomplishes this by reducing large numbers of protein

sequences first to clusters of related proteins (families) and then to representative peptide

markers. Searching a new metagenomic sample against these marker sequences represents a

considerable savings in computation relative to searching against the full database. Short-

BRED’s pre-processing steps, while not computationally trivial, can reduce a collection of

~1,000 protein families to identifying markers in a matter of hours on typical desktop or server

hardware (i.e. taking advantage of multiple CPU cores for parallelization, but not requiring

special high-memory or accelerated file I/O configurations). The bottleneck in this process is

the BLAST-based search of the proteins of interest against the universal protein reference data-

base. In the future, it may be possible to further accelerate pre-processing steps by incorporat-

ing an alternative program for protein homology search, provided that it meets or exceeds

BLAST’s sensitivity. In the same vein, downstream performance mapping reads to markers

depends largely on the speed of ShortBRED’s chosen translated search tool (currently

USEARCH), which could also be replaced or supplemented by future alternatives.

In our evaluations, the vast majority of protein families could be identified by one or more

unique amino acid subsequences (True Markers). Although these sequences are used here for

protein family identification and quantification, they are themselves interesting targets for

investigation. For example, the conservation of these sequences within a family may indicate

the presence of a functionally relevant domain, peptide recognition motif, or enzyme active

site. The small minority of protein families that lacked unique identifying subsequences are

also worthy of consideration (Tables 1 and 2). In such cases, ShortBRED constructs a Quasi

Marker to represent the family: i.e. the amino acid sub-sequence which, while not unique to

the family, is found in a minimal number of other families. Users may wish to exclude Quasi

Markers (and their associated families) in their analyses to increase specificity. That said, Quasi

Markers were always included in the analyses reported here and were found to compromise

specificity only slightly (far less than the centroid-based approach; Fig 2 and Table 2). In the

future, an expectation maximization (EM) step could be incorporated in ShortBRED-Quantify

to improve the accuracy of protein family quantification when mapping reads to ambiguous

Quasi-Markers

We demonstrated ShortBRED’s utility by generating and applying AR gene markers to pro-

file AR gene content in 552 human gut metagenomes and 3,305 bacterial isolate genomes. AR

determinants in pathogens are increasingly compromising infectious disease treatment due to

their acquisition from commensal or environmental bacteria [30, 31]. The human gut micro-

biome serves as a transferable reservoir of AR readily available to human pathogens [32], lead-

ing to an increased focus on characterization and quantification of AR genes in large

metagenomic studies [17, 18, 33]. However, accurate quantification of AR genes using short

reads is challenging: AR determinants are often originally genes with diverse native functions

repurposed through mutation or expression modulation to provide AR [34], therefore sharing

large sequence similarity to genes with no AR function. For example, when particular RND

efflux pumps (such as CmeABC, AcrB, and Mex) highly expressed, they are capable of
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exporting multiple antibiotics [35]. However, members of the RND efflux pump superfamily

also serve important functions as transporters of proteins required for nodulation and cell divi-

sion and, while they do not always demonstrate inherent AR activity, they share high sequence

similarity with proteins shown to serve resistance functions. As a result, previous attempts to

profile antibiotic resistance in human gut metagenomes by mapping short reads to full-length

protein sequences may have been compromised by spurious mapping events.

Our ShortBRED-based profiles avoided this complication by using only the most informa-

tion-rich portions of AR genes for identification and quantification of AR in microbial com-

munities and isolate genomes. Notably, our results agree with several of the major findings

from previous profiling attempts, specifically (i) high relative abundance of AR genes in the gut

microbiota of Chinese individuals compared to individuals from other countries as well as (ii)

ubiquity of tetracycline resistance worldwide [17, 18]. Hence, we can be confident that these

results are not the result of spurious mapping to full-length protein sequences. ShortBRED

demonstrated increased sensitivity for identification of additional classes of AR genes, includ-

ing resistance to the quinolone class of antibiotics. The application of ShortBRED to the identi-

fication and quantification of AR genes in microbial communities addresses a significant

challenge in the computational investigation of AR using high-throughput sequencing technol-

ogy. In addition, just as ShortBRED markers enabled confident differentiation between closely-

related AR and non-AR proteins in metagenomes, the same advantage applied to annotating

full-length protein sequences in bacterial isolate genomes. Indeed, we used this method to dis-

sect phylogenetic properties of the AR families under study, revealing distinct patterns of

clade-specific versus broad distribution. In the future, the same technique could be applied to

quickly and accurately determine AR gene content in a newly-sequenced bacterial strain—an

application with relevance to infectious disease management.

Table 2. Characteristics of ShortBREDmarkers used to profile metagenomes and bacterial genomes.

HMP T2D T2D_Short Yatsunenko Bacterial Genomes

Parameter settings

Clustering ID 8 8 8 8 8

Minimum marker length 85% 85% 85% 85% 85%

Average read BP 101 90 75 450 100

Min trusted BP 90 81 68 200 30

QM length 30 27 22 66 33

Statistics

Families after initial clustering 849 849 849 849 849

Families with true markers 820 820 820 ** 820

Families without true markers 29 29 29 ** 29

Total markers 4132 4135 4142 ** 4132

True markers 4078 4078 4078 ** 4078

Junction markers 48 50 61 ** 48

Quasi markers 6 7 3 ** 6

Dataset profiled

Samples profiled 82 272 91 107 3305

Legend: This table lists characteristics of the markers used to profile the metagenomes and bacterial genomes. Each metagenome from the Chinese

cohort was profiled with one of two sets of markers (T2D and T2D_Short) corresponding to the two different read sizes used in the dataset (90 and 75 bp)

None of the families without True Markers were combined in the second round of clustering.

** Centroids were used to profile the Yatsunenko dataset.

doi:10.1371/journal.pcbi.1004557.t002
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To facilitate such applications, the antibiotic resistance markers produced here are available

for download, along with the ShortBRED software and documentation, at the ShortBRED web-

site: http://huttenhower.sph.harvard.edu/shortbred. Although the preceding examples have

focused on applying ShortBRED to profile antibiotic resistance in genomes and metagenomes,

this is only one possible application. Indeed, the same analyses described above can be applied

to a wide range of protein families of interest, limited largely by the imagination of the user. To

that end, users who produce marker sets with ShortBRED and who would also like to share

them with the scientific community are encouraged to submit the markers (along with a rele-

vant citation) for posting on the ShortBRED website.

Methods

Creating protein family-specific marker sequences with
ShortBRED-Identify

ShortBRED-Identify takes two inputs: (i) a FASTA file of proteins of interest and (ii) a compre-

hensive catalog of reference protein sequences (as a FASTA file or preformatted BLAST data-

base). The reference database used here was based on version 3.5 of the Integrated Microbial

Genomes database [24]. The full version of this database contained 12,607,998 protein coding

sequences, which we previously reduced to 4,981,629 representative protein coding sequences

proteins by clustering at 80% nucleotide identity [36]. As of this writing, IMG is no longer

available for download, and we recommend using UniRef100 or UniRef90 as alternative com-

prehensive protein reference datasets [37].

ShortBRED-Identify first clusters the proteins of interest at 85% identity using CD-HIT [38,

39] to group them into highly conserved protein families. For each clustered protein family,

ShortBRED-Identify first calls MUSCLE [40] to generate a multiple sequence alignment

(MSA) for the family, then uses Biopython [41] to generate a consensus sequence for the MSA.

If the most common amino acid for a given MSA column occurred in less than 95% of

sequences, the corresponding position in the consensus sequence is marked as ambiguous

(“X”).

ShortBRED-Identify then uses BLAST [4] to query consensus sequences (i) against one

another and (ii) against the reference protein database. The results of these searches are used

to identify short segments of each consensus sequence that align with high sequence identity

(�90%) to unrelated proteins in the reference database, or share high identity with a length

greater than 80% of minimum marker length with other consensus sequences. (A short

sequence is defined as having a length between 80% of the minimum marker length and 15%

of a target sequence in the reference database.) Metagenomic reads derived from such seg-

ments will be prone to false positive matches across protein families. ShortBRED-Identify

thus interprets the BLAST results to find segments of a consensus sequence that participate

in a minimal number of such alignments (markers) and then uses these sequences as a basis

for more accurate functional profiling. Consensus sequences from different families can

share long regions of similarity even after initial clustering at high sequence identity. Because

of this, ShortBRED-Identify penalizes high-identity alignments of any length greater than

80% of marker length between pairs of consensus sequences in order to minimize inter-fam-

ily false positives. ShortBRED does not penalize high-coverage, high-identity alignments

between a consensus sequence and a protein from the reference database, as such proteins

are likely members of the protein family represented by the consensus.

ShortBRED counts the number of times each amino acid of each consensus sequence

appeared in a valid alignment with another protein. These “overlap counts” are then used to

identify the most representative segments (markers) for the consensus. For a given consensus
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sequence, ShortBRED will first try to build as many “True Markers” as possible. A True Marker

is a contiguous sequence of amino acids with zero overlap count; i.e. the corresponding peptide

was unique among the consensus sequences and non-member reference sequences. If no True

Markers are found above a minimum length (with a default of 8 amino acids), ShortBRED next

tries to make up to three “Junction Markers” for the consensus sequence. A Junction Marker is

a sequence of amino acids that partially overlaps with other consensus sequences or reference

sequences, but is not completely overlapped by any single consensus or reference sequence.

Note that when mapping reads to marker sequences, ShortBRED-Quantify requires high-iden-

tity (�95%) and high-length (minimum of the marker’s length or 95% of a read length), and

hence these partial overlaps will not lead to false positive matches. If it is not possible to build a

True Marker or a Junction Marker for a consensus sequence, ShortBRED-Identify will create a

single “Quasi Marker” for the consensus, which is a sequence of amino acids above a given

minimum length (with a default of 33 amino acids) that has the lowest total adjusted overlap

count. The adjusted overlap count is the fourth root of the raw overlap count, and helps to

down-weight very short outlier regions with extremely high overlap counts. Protein families

with similar Quasi Markers and Junction Markers (�95% identity) are merged, and then all

marker sequences are output as a FASTA file for use by ShortBRED-Quantify.

For Junction Markers and Quasi Markers, ShortBRED also lists the percentage of each

marker that overlaps with each other consensus sequence. Each sequence is given a weight,

which is defined as its total length in amino acids divided by the sum of that value, and all over-

lapping amino acids from other reference or consensus sequences. The weight is printed in the

FASTA header, along with other highly overlapping consensus sequences from the input data-

base. An additional text file lists the overlapping regions from the consensus sequences and the

reference database.

This ShortBRED-Identify process requires ~100 CPU-hours to complete given a set of pro-

teins of interest which cluster to ~1,000 protein families. The bottleneck in this process is the

BLAST-based search of the protein family consensus sequences against the comprehensive ref-

erence database. Notably, this process is highly parallelizable, as each consensus sequence can

be searched independently of the others. By allowing ShortBRED-Identify to use multiple cores

during the search process, the actual run-time can be reduced considerably. Once the initial

BLAST results have been generated, new markers can be generated in a few minutes provided

that the initial clustering identity and consensus thresholds are not changed. Precomputed

markers for the antibiotic resistance proteins (ARDB) [13] and virulence factors (VFDB) [14]

are available for download at http://huttenhower.sph.harvard.edu/shortbred. Notably, the

ShortBRED-Identify process needs to be applied only once to produce a set of markers, which

can then be used repeatedly to profile metagenomic datasets using ShortBRED-Quantify.

Profiling protein family metagenomic abundance with
ShortBRED-Quantify

After markers have been created for each protein family, the user can call ShortBRED-Quantify

to profile the relative abundance of these families in a whole metagenomic shotgun (WMS)

sequencing sample. ShortBRED-Quantify calls USEARCH [5] to find the best matching

marker for each nucleotide read. USEARCH specializes in fast search for high-identity

matches, which fits with ShortBRED’s objective of profiling metagenomic samples quickly with

high specificity.

By default, ShortBRED-Quantify will record a hit to a marker if the resulting alignment has

at least 95% identity, and is at least as long as the minimum of (i) the marker length or (ii) 95%

of the read length. For each marker, ShortBRED-Quantify computes an adjusted marker
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length, which takes into account how much of the marker is available to participate in a hit

meeting our length and percent identity requirements. When a marker of length L is longer

than the average read length (R), a read from the corresponding gene anywhere in the region

from 5% downstream of the marker to 5% upstream of the marker is allowed to align to the

marker. Therefore, the adjusted marker length (L’) is:

L0 ¼ L� 0:9Rþ 1

When the marker is shorter than the expected read length (L<R), the we require the entire

marker to align to the read. Thus, the adjusted marker length is:

L0 ¼ R� L� 1

ShortBRED then normalizes the number of raw USEARCH hits to a marker (H) to produce

a normalized count (C), adjusting for average read length, marker length, and sequencing

depth (number of reads in the sample, N):

C ¼
H

L0

103

� �

N
106

� � ¼
H

L0N
� 10

9

The normalized count is in units of RPKMs (reads per kilobase of reference sequence per

million sample reads). For protein families characterized by multiple markers, a normalized

count is first computed for each marker separately and then the median of these values is taken

to represent the protein family; this procedure adds robustness to variation in sequencing

depth across the markers. Finally, ShortBRED-Quantify outputs these normalized counts as a

relative abundance table for the protein families of interest.

Creation of synthetic spiked metagenomes

We used GemSim [42] to create synthetic metagenomes containing five million 100 nucleo-

tide-long reads, designed to mimic a typical WMS-sequencing run on an Illumina HiSeq

instrument (Illumina, San Diego, CA). Reads were drawn from twenty bacterial genomes

obtained from the KEGG database [43, 44]. We used USEARCH [5] to identify and exclude

from these genomes any naturally-occurring antibiotics resistance genes and virulence factors

(defined as a sequence matching a gene from the ARDB or VFDB with>90% identity). This

ensured that the only ARDB and VFDB sequences in our synthetic metagenomes were those

that had been artificially spiked in for the purposes of evaluating ShortBRED. Each bacterial

genome was assigned an abundance value drawn from a log-normal distribution with unit

mean and standard deviation.

We created six Illumina-like synthetic metagenomes with material spiked in from the

ARDB and VFDB sequence datasets. Three metagenomes were made for each dataset, with

150, 500, and 1,000 genes from the corresponding protein dataset spiked among the genomic

reads at 5%, 10%, and 25% relative abundance. Two additional sets of Illumina-like synthetic

metagenomes were created with 3% and 5% of the amino acid content of the sequences

mutated based on relative amino acid mutability and transition probabilities from the

BLOSUM62 table. An additional set of six metagenomes were created using the same proce-

dure but based on a simulated 454 sequencing instrument (454 Life Sciences, Branford, CT);

these samples contained only 155,890 reads each, consistent with the lower sequencing depth

of the 454 platform. We used 164 nucleotide sequences corresponding to ARDB protein

sequences as a base for the ARDB metagenomes and 2,296 VFDB nucleotide sequences as a

base for VFDB metagenomes. Nucleotide sequences were not always provided for ARDB
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proteins; in these cases, we used the EMBOSS program backtranseq [45] to create nucleotide

sequences that were compatible with the available amino acid sequences.

Code for creating the synthetic metagenomes can be found at http://bitbucket.org/

biobakery/shortbred_doit.

Application of ShortBRED to human gut metagenomes

We applied ShortBRED to profile antibiotic resistance (AR) in the human gut microbiome. We

first produced a set of new AR marker sequences by applying ShortBRED-Identify to a combi-

nation of (i) a curated version of the ARDB which we obtained by deleting sequences no longer

stored at NCBI and (ii) a set of known antibiotic resistance genes obtained from resistant bacte-

rial libraries. We then used ShortBRED-Quantify to profile the relative abundance of corre-

sponding AR protein families across 552 gut metagenomes: 82 from U.S. adults sampled

during the HumanMicrobiome Project (HMP) [10], 363 from Chinese adults with and without

diabetes [11], and 107 individuals fromMalawi, Venezuela, and the U.S. [12]. We used the

first-visit samples from multi-visit HMP subjects to avoid redundancy. For 454-based samples

characterized by sub-optimal sequencing depth, we mapped reads to full-length centroid

sequences to avoid compromising sensitivity.

Application of ShortBRED to bacterial isolate genomes

ShortBRED can be applied to identify protein families in a bacterial isolate genome given a cor-

responding set of ShortBRED markers for those families. To do so, ShortBRED first creates a

USEARCH database for the genome and then searches the markers against that database

(allowing for multiple hits per marker query). For protein families characterized by more than

one marker sequence, ShortBRED requires that a critical fraction of the markers map to a gene

in the genome before assigning it to that protein family. The default value for this cutoff is 10%

[i.e. 1 in 10 markers], but it can be tuned to be more conservative.

Supporting Information

S1 Fig. Training/testing of ShortBRED’s default parameters–ARDB AUC. Values reflect

area under the ROC curve (AUC) as minimummarker length and initial clustering ID are var-

ied. This analysis was based on the 5%-spiked synthetic metagenomes containing ARDB

sequences.

(PDF)

S2 Fig. Training/testing of ShortBRED’s default parameters–VFDB AUC. Values reflect

area under the ROC curve (AUC) as minimummarker length and initial clustering ID are var-

ied. This analysis was based on the 5%-spiked synthetic metagenomes containing VFDB

sequences.

(PDF)

S3 Fig. Training/testing of ShortBRED’s default parameters–ARDB specificity. Values

reflect specificity as minimummarker length and initial clustering ID are varied. This analysis

was based on the 5%-spiked synthetic metagenomes containing ARDB sequences.

(PDF)

S4 Fig. Training/testing of ShortBRED’s default parameters–VFDB specificity. Values

reflect specificity as minimummarker length and initial clustering ID are varied. This analysis

was based on the 5%-spiked synthetic metagenomes containing VFDB sequences.

(PDF)
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S5 Fig. Training/testing of ShortBRED’s default parameters–ARDB sensitivity. Values

reflect sensitivity as minimummarker length and initial clustering ID are varied. This analysis

was based on the 5%-spiked synthetic metagenomes containing ARDB sequences.

(PDF)

S6 Fig. Training/testing of ShortBRED’s default parameters–VFDB sensitivity. Values

reflect sensitivity as minimummarker length and initial clustering ID are varied. This analysis

was based on the 5%-spiked synthetic metagenomes containing VF sequences.

(PDF)

S7 Fig. Training/testing of ShortBRED’s default parameters–ARDB Spearman correlation.

Values reflect Spearman correlation between estimated abundances and true abundances as

minimummarker length and initial clustering ID are varied. This analysis was based on the

5%-spiked synthetic metagenomes containing ARDB sequences.

(PDF)

S8 Fig. Training/testing of ShortBRED’s default parameters–VFDB Spearman correlation.

Values reflect Spearman correlation between estimated abundances and true abundances as

minimummarker length and initial clustering ID are varied. This analysis was based on the

5%-spiked synthetic metagenomes containing VFDB sequences.

(PDF)

S9 Fig. Accuracy of ShortBRED and centroid-based mapping in applications involving 454

sequencing data. (A) and (B) report the sensitivity and specificity of the two methods for map-

ping reads to their correct families on six synthetic 454 metagenomes, spiked with 5%, 10%,

and 25% of their material from the ARDB (panel A) and VFDB (panel B). (C) and (D) display

scatterplots of protein family “predicted by mapping”, the abundance values calculated by

ShortBRED and the centroids, vs. “expected from gold standard”, the abundance values of the

protein families in the 10% synthetic metagenome. This figure is an analog of Fig 2 from the

main text.

(PDF)

S10 Fig. Prevalence of all antibiotic resistance classes across bacterial isolate genomes. Phy-

logenetic tree of bacterial genomes from IMG [24] overlaid with presence/absence of

ShortBRED antibiotic resistance protein families. The outermost ring indicates the share of

genes in the species’ genome that mapped to any of the AR protein families.

(PNG)

S1 Table. Performance of ShortBRED and centroid method across synthetic metagenomes.

This table displays measures of the performance of ShortBRED and centroids to profile syn-

thetic metagenomes. The results for ShortBRED using its default settings on the six synthetic

metagenomes are in bold. Illumina_05,Illumina_10, and Illumina_25 represent synthetic Illu-

mina metagenomes with reads from input dataset sequences comprising 5%, 10%, and 25% of

the metagenome. Illumina-mutated-3pct and Illumina-mutated-5pct metagenomes had 3%

and 5% of their amino acid content mutated before being incorporated into the metagenome.

Centroids were also obtained by clustering at 85% identity. Any result mapping to centroid

with length� 30 and ID� 95% was considered a “match”.

(XLSX)

S2 Table. False positive yeast hits detected by centroids in synthetic bacterial metagenome.

These are yeast centroids which had false positive matches to reads from a synthetic bacterial

metagenome at high identity (� 95%) and long length� 30 amino acids. Source: Kyoto
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(XLSX)

S3 Table. ShortBRED counts (RPKM) by AR family for each microbiome sample. Each row

of this table represents a family of antibiotic resistance (AR) proteins and each column corre-

sponds to a sample in our dataset. The abundance of the AR family in the sample is given in

RPKM.

(XLSX)

S4 Table. Summary statistics of ShortBRED counts for AR families in metagenomes. Each

row represents a family of antibiotic resistance (AR) proteins. Column B lists the correspond-

ing AR class. (The classes are groups of AR families.) The columns provide summary statistics

of the ShortBRED RPKM counts for each family. Sample statistics for columns C through I are

based on the entire sample of all three datasets. Summary statistics are also provided for the

individual three datasets. Please note that the Yatsunenko et al dataset results were based on

running ShortBRED using the centroids, as opposed to the markers from ShortBRED-Identify.

This is because this particular dataset has shallower coverage than the Illumina datasets (HMP

and T2D).

(XLSX)

S5 Table. Summary statistics of AR ORF counts in bacterial genomes by AR class. Each row

in this table represents summary statistics for the abundance of a particular AR class in a genus

of bacteria. We used 3,305 bacterial genomes obtained from the Integrated Microbial Genomes

database. In "annotated genome" mode, ShortBRED takes a fasta file of open reading frames

from the genome, calls USEARCH to build a database, and then checks the markers against the

database for hits.

(XLSX)

S6 Table. ShortBRED count for AR class minus count for "genome by median gene"

method. This table presents the differences between counting antibiotic resistance (AR) abun-

dance in microbiome samples using ShortBRED, and inferring AR abundance in the same

samples based on the abundance of bacteria in the microbiome multiplied by the median count

of each AR class found in available bacterial genomes. Each row is a class, each column is sam-

ple from the HMP and the value in each cell equals [ShortBRED Count in RPKM—Sum(Bacte-

rial Genome's Abundance in Sample � Median ShortBRED AR Count Across Copies of

Bacterial Genome in our 3,305 isolates from IMG.]

(XLSX)
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