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Imaging systems with temporal resolution play a vital role in a diverse range of scientific, in-

dustrial, and consumer applications, e.g. fluorescent lifetime imaging in microscopy and time-

of-flight (ToF) depth sensing in autonomous vehicles. In recent years, single-photon avalanche

diode (SPAD) arrays with picosecond timing capabilities have emerged as a key technology

driving these systems forward. Here we report a high-speed 3D imaging system enabled by

a state-of-the-art SPAD sensor used in a hybrid imaging mode that can perform multi-event

histogramming. The hybrid imaging modality alternates between photon counting and timing

frames at rates exceeding 1000 frames per second, enabling guided upscaling of depth data from

a native resolution of 64 × 32 to 256 × 128. The combination of hardware and processing allows

us to demonstrate high-speed time-of-flight 3D imaging in outdoor conditions and with low la-

tency. The results indicate potential in a range of applications where real-time, high throughput

data is necessary. One such example is improving the accuracy and speed of situational aware-

ness in autonomous systems and robotics. © 2020 Optical Society of America under the terms of

the OSA Open Access Publishing Agreement

http://dx.doi.org/10.1364/optica.XX.XXXXXX

1. INTRODUCTION

Three-dimensional depth sensing is used in a growing range
of applications, including autonomous vehicles [1], industrial
machine vision [2], gesture recognition in computer interfaces
[3], and augmented and virtual reality [4]. Amongst a number of
approaches to capture depth, time-of-flight (ToF) [5], which illu-
minates the scene with a modulated or pulsed light source, and
measures the return time of the back-scattered light, is emerg-
ing as an appealing choice in many applications. Advantages
include greater than centimetre depth resolution over distances
ranging from a few meters to several kilometers. In contrast to al-
ternative techniques such as stereoscopy [6] and structure-from-
motion, there is low computational overhead, and no reliance
on scenes being textured. Furthermore, ToF uses simple point,
blade or flood-type illumination, as opposed to the projection
patterns that structured light-type approaches rely on [7].

Whilst frame rates of 10-60 frames per second (FPS) are typi-
cal for ToF, an order of magnitude faster acquisition rates, cou-
pled with minimal latency would be beneficial in several appli-
cations. In autonomous cars, for example, fast 3D mapping of
the environment would help ensure the timely detection of ob-
stacles. For city driving, video rate acquisition equates to several
meters of travel for every few frames of 3D data, which may
mean the difference between a collision being avoided or not.
Similarly, augmented reality requires fast capture of the user’s
environment, so that it can be interpreted by computer vision,
and digitally enhanced, in real time for a seamless experience.
In a broader context, ToF at > 1 kFPS would access the realm of
scientific imaging, and enable the recording of transient, high-
speed phenomena [8], such as in fluid dynamics, not possible
with current ToF technology.

Achieving high frame rates requires high photon efficiency

https://doi.org/10.1364/OA_License_v1
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throughout the pipeline of converting incident photons into
timing information as presented at the outputs of the sensor.
Furthermore, the parallelised acquisition of 2D array format
sensors, coupled with flood-type illumination [9], offers higher
potential frame rates than systems based on a single-point sensor
and beam steering, where the scanning rate can be a limiting
factor. From the perspective of photon-efficiency, SPADs have
inherent advantages, thanks to an ability to time individual pho-
tons with picosecond timing resolution, and shot-noise limited
operation. However in SPAD image sensors providing time-
correlated single-photon counting (TCSPC), both the fill-factor,
and the overall photon throughput has been relatively low, com-
pared to the maximal rate of > 100 M events/s that a single
SPAD can generate [10]. This is due to the use of photon timers,
or time-to-digital converters (TDC), which register only the first
detected photon in every frame [11]. Whilst computational imag-
ing approaches [12–14] have been proposed to estimate depth
from sparse photon events, current approaches tend to be com-
putationally intensive, and the "filling in" of gaps in data may
not be acceptable in safety critical applications. A further disad-
vantage of "first photon" TDCs is a susceptibility to distortion
in the resulting timing histograms under high ambient levels,
corrupting depth estimates. A number of strategies have been
proposed to reduce this distortion [15–17], the offsetting of the
photon measurement window with respect to the laser cycle
having been shown as the most effective approach [18].

Previously reported high-speed ToF results include underwa-
ter depth imaging [19] with a 192 × 128 SPAD at binary (first-
photon) frame rates approaching 1 kFPS (the resulting depth
frames showing relatively sparse depth information due to low
photon returns). Another study [20] presents indoor depth re-
sults from a 32 × 32 InGaAs SPAD running at a binary frame
rate of 50 kFPS. Frames are accumulated in groups of ≥25 and
Kalman filtering applied to obtain depth maps, the example
timing histograms provided showing evidence of pile-up effects.
The same SPAD has been used to demonstrate a computation-
ally efficient approach for reconstructing 3D scenes from single-
photon data in real-time at video rates [21]. A frame rate of 200
FPS has been shown for a 64 × 32 SPAD with an indirect ToF
architecture [22]. It is also important to mention compressive
sensing ToF systems [23], that have the potential of generating
depth maps with high frame rates, by reducing the number
of measurements. However, at present, the reconstruction of
frames can be computationally demanding.

In this work, we use a state-of-the-art SPAD array sensor
[24] for high-speed 3D sensing. The sensor has a 3D-stacked
structure with separate detector and photon processing tiers,
that enables high-fill factor of 50% and an increased processing
capability within the array. The array has a full resolution of
256 × 256 pixels, and this is made up of 64 × 64 macropixels,
each containing a small array of 4 × 4 SPADs. The sensor can
operate in multiple modes, two of which are relevant to this
work: first, intensity or photon counting mode at a resolution of
256 × 256; and second, multi-event TCSPC histogram mode at
a resolution of 64 × 64. To maximise the potential frame rate of
the sensor, we halve the number of rows read out, thus doubling
the frame rate.

In the intensity mode each pixel provides a 14-bit photon
count, thus, in principle the photon counting capacity of the
sensor is 256 × 128 × (214 − 1) ≈ 0.5 giga photons in a single
frame. In the histogram mode, events in each 4 × 4 macropixel
are combined to provide a single histogram, hence the reduced
resolution in this case. Each histogram contains 16 bins, and each

bin has a minimum temporal resolution of 500 ps and a photon
counting capacity of 14-bits. The temporal bin width of the
sensor can be increased arbitrarily. When operating in histogram
mode, the photon counting capacity of the entire sensor is 64 ×
32 × 16 × (214 − 1) ≈ 0.5 giga photons in a single frame. The
consequence of this is that the sensor is able to operate in high
photon flux environments without getting saturated.

For this work, we have developed the firmware of the sen-
sor with regards to [24] such that it can operate in a hybrid
imaging mode at high speeds. In the hybrid imaging mode,
high-resolution intensity images and low-resolution time-of-
flight histograms can be captured in an interleaved fashion. The
advantage of the hybrid imaging mode is that we have a high res-
olution intensity image with which to guide the upsampling of
the lower resolution depth information, resulting in a four-fold
improvement in the spatial resolution of the depth data.

The sensor operates such that alternating frames at ≈ 500 FPS
in intensity and histogram mode are captured, providing an
overall frame rate of ≈ 1 kFPS. The upper estimate of the maxi-
mum photon throughput of the sensor is then ≈ 500 giga pho-
tons per second. Table 1 compares the maximum photon count-
ing in 1 ms of the sensor to other state-of-the-art devices. We
see that the sensor used in this work has a maximum photon
counting capacity of ≈ 500 mega photons in 1 ms. This is a three
orders of magnitude improvement in total photon count, thus
enabling operation in high photon flux environments.

The work presented here demonstrates high-speed 3D imag-
ing in ambient light conditions. This is enabled by the unique
combination of the factors mentioned above: first, the state-
of-the-art SPAD array that can operate in a high photon flux
environment; second, firmware that enables alternating modes
of imaging at high rates; and third, the guided upsampling
algorithm that upscales the native resolution of the depth data.

Figure 1 illustrates the advantages of multi-event histogram-
ming over conventional first photon timing: photon-rich his-
tograms are generated in-pixel, which dramatically increases the
acquisition rate of photons. Furthermore, pile-up distortion is
minimised, as it requires multiple photon detections within the
time interval of a bin, rather than within the entire histogram
time period, and when it does occur, its effect is independent
of bin position. We also note that as the SPADs are continually
active, rather being turned on at the start of the timing period,
detector pile-up due to the SPAD dead-time and macro-pixel
combination tree [25] does not distort towards early time bins
either.

2. EXPERIMENT

The experimental setup is illustrated in Figure 2, and has the
SPAD camera trigerring a pulsed, fibre-coupled laser source
(Picoquant LDH-Series 670 nm laser diode, 60MHz repetition
rate), whose light is spread over the fast-changing scene to be
captured using a 3.3 mm, NA = 0.47 aspheric lens (Thorlabs
N414TM-A). Imaging is through a 3.5 mm/f1.4 objective (Thor-
labs MVL4WA, giving a 25 degrees diagonal field-of-view), re-
sulting in matching imaging and illumination cones. Adjustable
ambient illumination is provided by a high-intensity LED array.
The 40 mW average optical power from the laser is sufficient for
the setup to achieve sub-cm depth precision for targets at a close
distance range (2 m) whilst maintaining high frame rates in the
kFPS range. Global shutter is used, so that the camera frame
rate is given by 1/(Texp + Tread) where Texp is the exposure time
and Tread = 655 µs is the frame readout time. The total power
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Fig. 1. Photon registration for a given pixel in a conventional direct ToF sensor (top plots) versus an in-pixel, multi-event histogram-
ming sensor (bottom plots). A conventional sensor registers only the first photon detected in the frame time, which could be an
ambient photon. Thus, multiple frames are required to build up a histogram of photon arrival times from which depth can be reli-
ably estimated. Furthermore, the histograms, which are accumulated off-chip, become distorted in high ambient conditions, due
to the dominance of early photons. In contrast, the present multi-event histogramming sensor is able to register multiple photons
per frame, even within the same laser cycle, if falling into different bins. Hence the sensor can generate photon-rich histograms,
in-pixel, for each frame. Orders of magnitude higher number of photons can be collected within the same acquisition time this way,
and pile-up in high ambient is minimised.

Table 1. Comparison of direct ToF sensors used in high-
speed imaging in terms of array pixel count A, number of
bins n, bin size δ, frame rate fmax, number of photons Nmax

acquired in 1 ms

[19] [20] this work

A 192 × 128 32 × 32 64 × 32

n 4096 8000 16

δ 33-120 ps 250 ps-1.25 ns ≥ 500ps

fmax
binary

@ 10 kFPS

binary

@ 50 kFPS

14-bit histogram

@ 1 kFPS

Nmax 246 k 51.2 k 500 M*

*theoretical; 197M measured outdoors with 400 µs exposure

consumption of the sensor is <100 mW.

Figure 2 also shows a sample depth frame from the SPAD
when capturing a high-speed (1000 RPM) fan. The figure also
gives the histogram corresponding to a macropixel, showing
time resolved photon returns from the fan blade. The bin width
in this case is around 700 ps. The histogram can be approximated
as a sampled Gaussian function with a vertical offset, each bin
being subject to Poisson noise. Depth may be obtained by esti-
mating the time position of the peak using iterative curve fitting
[26], but a simple approximate maximum likelihood method
leads to similar performance. The latter reduces to a localized
centre-of-mass method using signal counts, obtained after sub-
traction of background counts from the histograms [27]. A sce-
nario where centre-of-mass gives sub-optimal results is when
there are multiple overlapping peaks in the histogram.

To highlight the considerable photon throughput of the sys-

tem Figure 3a shows an example depth frame, obtained in high
ambient conditions, of a person juggling outdoors. The sequence
was captured under the midday sun on a clear late-April day in
Edinburgh, Scotland, leading to considerable solar radiation at
the laser wavelength (670 nm). Despite the high ambient level,
the content of the frame, i.e. the torso, arms, ball, is clearly recog-
nisable. The figure also plots the histogram for a macropixel
registering photons from the surface of the ball, indicating an
ambient level of around 0.9 background photons per laser cycle.
At such level of background photons, conventional first-photon
TDCs suffer from considerable photon pile-up effects [15], mak-
ing it difficult to detect the laser return and hence capture an
accurate depth map, as illustrated using synthesised data in
Figure 3b. We note that the multi-event TDC used here gives
a histogram free from obvious distortions, as evidenced by the
flat baseline, and a visible signal peak, despite the short 300 µs
exposure time.

Depth frames captured using the camera are limited, in their
native form, to the macropixel resolution of 64 × 32. However
they may be upscaled, with relatively low computational needs,
to the detector resolution of 256 × 128, by acquiring photon
counting data, at this resolution, in alternate frames. The scheme,
illustrated in Figure 4 has the following steps. The number of
depth frames is upconverted to the overall frame rate of the cam-
era to produce depth frames that are aligned with the intensity
images. The newly generated depth frames are then upscaled ac-
cording to the corresponding intensity data, and 3D images are
generated from the resulting depth frames, with intensity over-
laid. The overall processing time for a Matlab implementation
running on a PC with Intel® Core™ i7-4790 CPU at 3.60 GHz
and 32 GB RAM is currently in the 50 ms region. However, as
significant portions of the algorithm operate on individual or
groups of pixels, it is anticipated that with parallelisation, and
potential hardware acceleration, the computational time can be
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Fig. 2. (a) Setup for high-speed 3D data capture using the
SPAD camera. A pulsed laser, triggered by the SPAD, illu-
minates the scene via an optical fibre followed by lens to diver-
gence the beam. In addition, a high intensity, continuous wave,
white LED source is used to provide ambient illumination in-
doors. (b) Example depth frame from SPAD, cropped to 32×32
pixels, together with the underlying time-correlated single-
photon counting (TCSPC) histogram for a selected macropixel.
Depth is obtained by peak extraction, followed by centre-of-
mass calculation, on the histograms. The exposure time was
500 µs.

reduced to a level commensurate with the frame time of 1ms
or shorter. A comparison with existing upscaling schemes us-
ing examples from the Middlebury dataset [28] shows generally
higher accuracy than the state-of-the-art GTV [29] algorithm,
together with an order-of-magnitude speed improvement, and
better edge-preserving properties (see Supplementary Informa-
tion).

3. DATA ANALYSIS

Data Acquisition and Depth Calculation

An Opal Kelly XEM7310 FPGA integration module is used to
interface to the SPAD sensor. With the data output clock set to
100 MHz, frames are acquired at a rate of up to 1.5 kFPS, and
streamed continuously over a USB3.0 link to the PC. A software
interface implemented in Matlab controls the acquisition of data,
and decodes the frames. Assuming a Gaussian system impulse
response, depth frames are produced using an approximate
maximum likelihood estimator that can be efficiently computed
using a localized centre-of-mass of TCSPC histograms. In the
default case, the following equation is used to estimate depth d:

d̂ =
∑

min(dmax+tr ,16)
t=max(dmax−tl ,1)

t max (0, ht − b)

∑
min(dmax+tr ,16)
t=max(dmax−tl ,1)

max (0, ht − b)
, (1)

where ht (t = 1...16) are the histogram bins at a given
macropixel, dmax is the index of the bin with the maximum
count and b is the median of the bins used as a measure of the
ambient level. The parameters tl , tr are chosen such that the
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Fig. 3. a) Depth frame from outdoor juggling sequence, to-
gether with the underlying TCSPC histogram for a selected
macropixel. The histogram shows a considerable background
level without obvious photon pile-up effects. The background
level corresponds to around ≈ 0.9 photons per laser cycle.
b) A synthesised version of the depth frame in panel ’a’, as-
suming a first-photon TDC-based sensor. In this dataset, the
selected macropixel no longer shows a signal peak due to
photon pile-up effects. To generate this depth frame, signal
and ambient photon rates were estimated for each macropixel
and entered into a sensor model with 10× finer TDC resolu-
tion (70 ps) and 4× narrower instrument response function
(σ = 100 ps) than the present system. The same number of
total laser cycles (18000) were used as in the original data,
and the frame rate of single shot time stamps was taken to be
500 kFPS. Histograms were then composed from 500 expo-
sures and peak extraction applied assuming a minimum range
of 250 cm. This is to avoid the "false" peak at the start of the
histogram caused by pile-up.

calculation encompasses the width of the histogram peak (typi-
cally tl , tr = 2). Due to the background compensation, and the
centroid being calculated locally, the bias in the estimate is found
to be minimal in simulations (see Supplementary Information).
When imaging low reflectivity objects, such as the hammer head
in Figure 9, in front of a background of much higher reflectivity,
it is useful to extract the histogram peak closer to the camera,
rather than the highest peak. We test for the existence of a second,
closer peak by setting ht = b for t = (dmax − tl)...(dmax + tr) and
comparing the maximum bin count of the modified histogram
with the threshold [30]:

hthresh = b + 4
√

b, (2)

which, under the assumption of Poisson noise on the bin counts,
corresponds to a peak that is more than four standard deviations
away from the baseline ambient level. If the threshold is ex-
ceeded then Equation 1 is applied to estimate the time position
of this second peak, with dmax now corresponding to the second
peak. Values of d̂ are converted to distance via the scaling factor
cδ/2, where c is the speed of light and δ is the bin width (typi-
cally 700 ps). To compensate for timing skew across the sensor,
which arises from clock distribution, a calibration depth frame
is captured for a flat surface at a known distance, and subtracted
from subsequent depth frames.

The resulting precision in the depth values is plotted in Fig-
ure 5 for increasing ambient levels. Curves are shown for target
reflectivities of < 10% and ≈ 80%, with the target at 2 m dis-
tance. The results, obtained for an exposure time of 500 µs (860
FPS), indicate sub-centimeter precision, even at the highest LED
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Fig. 4. 3D image construction scheme. A data sequence alter-
nating between intensity and histogram frames is captured.
The histogram frames are converted into depth by applying
peak extraction to the histogram from each macropixel. By in-
terpolating between pairs of depth frames, additional depth
frames are created, aligned in time with the intensity frames.
These depth frames are then upscaled in x,y, guided by the
corresponding intensity data. Finally, the intensity data is over-
laid onto the upscaled depth to give 3D image frames.

setting (which was the setting used in the indoor imaging exam-
ples in this paper). The accuracy was previously characterised
[24] as approximately ±2 cm.

The limited number of bins constraints the total depth range,
for example, the 700 ps bin size used here leads to a ≈ 1.7 m
range. Outside of this range, aliasing or wrap-around occurs. As
the present paper focuses on short-range imaging, range disam-
biguation is not considered in detail here. However, potential
solutions include a two-step ranging approach [32] leading to
a scene adaptive sensing approach [33, 34]. In the first step, the
bin size is set to a suitably large size such that the entire distance
range of interest is covered. Once a measure of the absolute
depth has been obtained this way, we switch to a smaller bin
size to track the depth with sub-bin precision at high frame rates.
We note that the laser energy must spread over multiple bins
for sub-bin precision to be attained. In practice, it is expected
that only a small fraction of frames would need to be captured
at the wide bin setting for effective range disambiguation, the
impact on the effective frame rate therefore being limited. An
alternative is to use solely the wide bin setting, and scale the
laser pulse width (and power) accordingly. As an example, a
16 ns bin width would give a depth range of ≈ 38 m.

Depth Upscaling

The depth frames obtained as detailed above are at the
macropixel resolution of camera, which at 64 × 32 is relatively
low. To overcome this limitation, 14-bit photon counting frames
are captured in alternate frames, and used to guide the upscaling
of depth data to a 256× 128 resolution matching that of the inten-
sity data. This upscaling process raises several challenges due to
(i) the requirement to preserve edges to avoid artificially "joining
up" distinct surfaces in the scene, (ii) the possible misalignment
between the depth and intensity images for rapidly varying
dynamic scenes [35], and (iii) the need for fast processing ap-
proaching real-time rates. As detailed in the Supplementary
Information, while there are a number of existing method which
tackle these challenges separately [35–37], the aim here is to deal
with all three at the same time. The proposed strategy is based
on two main steps: (1) interpolate the low resolution depth maps
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Fig. 5. Precision of depth estimates for two different target re-
flectivities and a range of ambient light levels (as measured
at the target using a Thorlabs PM120D power meter). The dis-
tance to the flat target was 2 m. The precision is measured as
the standard deviation of depth values, across 100 exposures,
the median value being taken over a 10 × 10 macropixel region
of interest in the sensor array.

at times corresponding to the intensity frames, (2) generate the
high-resolution maps, with both steps considering the measured
high resolution intensity maps, as indicated in Figure 6. Inspired
by the alternating direction method of multipliers [38, 39] or reg-
ularization by denoising [40] approaches that alternate between
an estimation and filtering/denoising steps, each step of our
method has two sub-steps, an estimation sub-step followed by a
filtering sub-step to improve performance. To ensure fast pro-
cessing, the estimation is performed using analytical expressions
or simple operations. Edges are preserved in the filtering step
by adopting ℓ1-norm based algorithms such as the weighted
median filter [41]. Further details on the method, together with
comparisons with existing upscaling approaches in simulations,
can be found in the Supplementary Information.

4. RESULTS

We present illustrative results obtained with the above approach,
demonstrating the high-speed capture of 3D scenes. Figure 7
shows the application of the algorithm to the outdoor juggling
data in Figure 3. The results are presented in the form of in-
tensity, depth, upscaled depth, and 3D image frames. In each
case, a set of three frames are given, separated by a time inter-
val corresponding to 30 raw (15 SPC and 15 TCSPC) camera
frames. The final 3D image frames are seen to be enhanced in
definition compared to Figure 3a. We note an artefact protruding
from the left hand side of the person; this is due to a feature
in the background matching the shade of the person’s T-shirt.
Figure 8 gives the results of a similar juggling sequence, but
captured indoors. Comparing the upscaled depth frames (row
c) with the original (row b), improved smoothness can be seen
along edges in depth. This is achieved whilst preserving the
edges: no obvious interpolation effects are visible between the
person’s hands and chest, nor between the head/shoulders and
background. Furthermore, there is more detail overall on the
upscaled frames, as demonstrated by the individual fingers on
the hands being better defined. Figure 9 shows another set of
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Fig. 6. Block diagram of algorithm for generating upscaled depth frames, summarising the non-iterative, two-step approach. The
algorithm is also illustrated in the form of example input and output frames in Figure 4.

example frames, capturing an apple being struck with a hammer.
From the intensity frames as well as the depth frames, we can
readily identify individual pieces of fruit flying off with high
speed following impact. The upscaled depth frames (row c)
show an improvement in the definition of the edges of these
pieces, at the expense of very small fragments (of a size similar
to or smaller than a macropixel) being smoothed out. There is
also evidence of noisy depth values (resulting from photon shot
noise), as seen, for example, on the lower right corner of the first
frame in row b, being removed by the upscaling process.

Videos of all the above examples can be found in the supple-
mentary material. In addition, we show depth sequences captur-
ing the high-speed fan at exposure levels down to 50 µs (1418
FPS), demonstrating the viability of 3D imaging at > 10 kFPS
(provided a faster sensor read-out), even with the modest laser
optical power currently in use.

5. DISCUSSION AND OUTLOOK

By exploiting the multi-photon timing, in-pixel histogramming
functionality of a SPAD ToF image sensor, depth can be captured
at frame rates above 1 kFPS. The acquisition of depth frames
may also be combined, in a time-interleaved fashion, with that of
higher resolution intensity frames. Whilst this halves the frame
rate of native depth frames, it enables additional, upscaled depth
frames to be generated, guided by and aligned with the intensity
frames. We have demonstrated the practicability of the scheme
in the capture of high-speed 3D sequences, even under high
ambient illumination, with modest laser power requirements.
This system is therefore highly relevant for applications, such
as collision avoidance in robotics, where fast 3D perception that
matches or exceeds human reaction times is required. To that
end, we can see a number of ways that the system could be
further improved:

• Whilst native depth frames can be obtained with minimal
processing, upscaled depth frames currently take several
10’s of milliseconds to produce. The target is to reduce this
latency down to (sub-)millisecond levels.

• The current algorithm provides upscaled point depth esti-
mates without uncertainty measures. The reformulation of
the algorithm using statistical modelling tools will allow the
generation of confidence maps necessary for autonomous
applications.

• The limiting factor in the frame rate for the short ranges
and modest field-of-view is the read out time of the sensor.
Increasing the number of output lines in the sensor from
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Fig. 7. Frames from a dataset of a person juggling outdoors:
(a) SPC frames at 256×128 resolution (b) TCSPC frames (con-
verted to depth) at 64×32 (c) upscaled depth (256×128) (d)
upscaled depth, presented as a 3D point cloud with intensity
overlaid (256×128). The exposure time was 300 µs, resulting in
a frame rate of 1050 FPS. An ambient filter was used in front of
the camera (Semrock LL01-671-12.5).
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Fig. 8. Frames from a dataset of a person juggling indoors:
(a) SPC frames at 256×128 resolution (b) TCSPC frames (con-
verted to depth) at 64×32 (c) upscaled depth (256×128) (d)
upscaled depth, presented as a 3D point cloud with intensity
overlaid (256×128). The exposure time was 500 µs, resulting in
a frame rate of 860 FPS.
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Fig. 9. Frames from a dataset of an apple being shattered
by a hammer: (a) SPC frames at 256×128 resolution (b) TC-
SPC frames (converted to depth) at 64×32 (c) upscaled depth
(256×128) (d) upscaled depth, presented as a 3D point cloud
with intensity overlaid (256×128). The exposure time was
500 µs, resulting in a frame rate of 860 FPS.

the current eight data outputs would enable even higher
frame rates and/or support larger array sizes.

• We do not currently make full use of the information within
the histograms. In particular, only a single peak is extracted
from each histogram. We can extract either the highest peak
or the peak closer to the sensor. It is anticipated that by ex-
tracting multiple peaks, as well as the widths of these peaks
[42], the upscaling of depth could be further improved.

• A picosecond laser source is currently used, leading to an
instrument response function that can be approximated by
a Gaussian with σ ≈ 400 ps. This means that the histogram
bin width of δ = 700 ps is within the range of σ < δ < 2σ
identified in literature for optimal precision [43]. Neverthe-
less, it may be advantageous to switch to a nanosecond laser
(typical of lidar), and adjusting the bin width accordingly,
as these lasers are available in compact driver boards.

• Although the present work only considers imaging over a
short range, the system is expected to be capable of high-
frame rates at longer distances, provided the laser power is
scaled accordingly, noting the inverse-square law governing
photon returns [9].

The high-speed sensing that we present is enabled by the
combination of the SPAD array sensor with high photon flux
capabilities, firmware that provides high-speed hybrid imag-
ing, and a guided upsampling approach to super-resolution.
Re-configurable sensor architectures, paired with appropriate
processing, could form the basis of future, "agile" 3D ToF sys-
tems, that recognise the environmental conditions, and adapt the
data acquisition and illumination source accordingly to ensure
optimal 3D perception.
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