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Absiract-This paper introduces the problem of and presents some 

state-of-the-art approaches for high-speed digital image processing. An 

architecture based on distributed arithmetic, which eliminates the use of 

multipliers, is described. A minimum-cycle-time filter architecture, which 

features a high degree of parallelism and pipelining, is shown to have a 

throughput rate that is independent of the filter order. Furthermore, a new 

multiprocessing-element architecture is proposed. This leads to a filter 

structure which can be implemented using identical building blocks. A 

modular VLSI architecture based on the decomposition of the kernel 

matrix of a two-dimensional (2-D) transfer function is also presented. In 

this approach, a general 2-D transfer function is expanded in terms of 

low-order 2-D polynomials. Each one of these 2-D polynomials is then 

implemented by a VLSI chip using a bit-sliced technique. In addition, a 

class of nonlinear 2-D filters based on the extension of one-dimensional 

(1-D) quadratic digital filters is introduced. It is shown that with the use of 

matrix decomposition, these 2-D quadratic filters can be implemented 

using linear filters with some extra operations. Finally, comparisons are 

made among the different approaches in terms of cycle time, latency, 

hardware’complexity, and modularity. 

I. INTRODUCTION 

T HE NEED FOR high-speed digital image processing 
became evident with the increasing utilization of TV 

imaging to medical, geophysical, and industrial environ- 
ments. Many of these applications involve acquisition, 
processing and display in fractions of a second. This paper 
will describe the problems and some approaches taken to 
achieve high-speed digital image processing. In particular, 
different high-speed architectures characterized by paral- 
lelism, pipelining, modularity, and reduction of cycle time 
will be presented and compared. Table I summarizes the 
importance of speed in a variety .of image processing 
applications [l]-[5]. 

In this paper, high-speed image processing is defined as 
the processing of images in real-time or near real-time 
depending on the applications. The term “real-time image 
processing” is defined as “the processing of images at a 
speed, such that the data rate of the processed images is 
the same as that of the input images” [6]. If we consider an 
image of size M X N pixels and a TV scan rate of L 
images, the input data rate R is M x N x L pixels/s. 
With a display size of 256 X 256 pixels, this implies a serial 
data stream at the rate of 1.97 Mpixels/s or one pixel 
every 508 ns. The corresponding values for a 512x512 
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pixel image are 7.86 Mpixels/s and 127 ns, respectively. 
By “near real-time,” we usually mean that the image can 
be processed at a rate which is lo-100 times faster than 
those achieved with traditional sequential processors [7]. 

During recent years, a number of approaches have been 
considered to achieve high-speed image processing. These 
include array processors, VLSI architectures, and residue 
arithmetic. Array processors are well suited to perform 
typical image-processing functions. The use of array 
processors increases the total system throughput in two 
ways. First, the processing elements (memories, adders, 
etc.) are usually faster than those of a general-purpose 
processor. In addition, they run in parallel and/or may be 
pipelined, for further increasing the processing speed [8]. 
By making use of recent VLSI architectures, a set of VLSI 
building blocks (chips) which would meet the needs of a 
wide spectrum of algorithms can be designed. This ap- 
proach has been, considered in [9] and other recent contri- 
butions [lo]. A programmable read only memories 
(PROM’s) implementation of a two-dimensional (2-D) 5 X 5 
matrix convolution filter using residue arithmetic was re- 
ported in [ll]. This filter structure permits easy pipeline 
design and the inherent modular structure of residue arith- 
metic minimizes the design overhead. Special purpose ar- 
chitectures for residue arithmetic 2-D convolutions were 
also reported in [12]. 

A number of new architectures capable of achieving 
real-time or near real-time image processing will be pre- 
sented in this paper. These architectures will be compared 
in terms of, “cycle time” and “latency.” Cycle time is 
defined as the time between two consecutive input sam- 
ples, i.e., l/R. Latency is defined as the time interval 
separating the appearance of an input sample on the input 
port from the appearance .of the corresponding output 
sample at the output port. In Section II, approaches based 
on distributed arithmetic [13] will be discussed. Recursive 
filters implemented by this method involve ‘only memory 
fetches and additions. In particular, the hardware imple- 
mentation of a second-order 2-D distributed filter will be 
presented. Section III describes a minimum-cycle-time filter 
architecture, which has a data throughput rate indepen- 
dent of the order of the filter [14]. Such an approach is 
different from other implementation schemes, in the sense 
that “a maximum number of arithmetic operations are 
performed in one clock cycle.” In Section IV, a new 
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TABLE1 
IMPORTANCEOF SPEEDINAVARIETYOFIMAGE-PROCESSING 

APPLICATIONS 

multiprocessing-element architecture will be developed for 
the realization of 2-D recursive digital filters for high-speed 
image processing. The new architecture is developed by 
applying the “Divide and Conquer” [15] algorithm to the 
2-D kernel matrix. Section V describes a modular VLSI 
architecture based on the decomposition of the kernel 
matrix of a 2-D transfer function. It has been shown that a 
general 2-D real rational transfer .function can be ex- 
panded in term of low-order 2-D polynomials [16]. In this 
approach, each one of these 2iD polynomials is imple- 
mented in a modular manner by a VLSI chip using a 
bit-sliced technique [17], [IS]. This provides a cost-effective 
way, of implementing many costly and complex algorithms. 
So far ‘we have considered only linear filter architectures. 
However, nonlinear filters such as median and homomor- 
phic have been used extensively for noise reduction and 
image restoration. In Section VI, the implementation of a 
new class of nonlinear 2-D digital filters, based on matrix 
decompositions will be presented. These 2-D quadratic 
filters are an extension of one-dimensional (1-D) quadratic 
filters [19], [20], which can be represented by the second 
term of the discrete Volterra series. It is shown that these 
nonlinear filters can be easily implemented using linear 
filter architectures. 

II. DISTRIBUTED ARITHMETICARCHITECTUR~Z 

The implementation of 1-D recursive filter structures 
using distributed arithmetic was first introduced by Reled 
and Liu [21]. This approach requires storing the finite 
number of possible outcomes of an arithmetic operation, 
as well as using them to obtain the next output sample 
through repeated additions and shifting operations. In this 
section, an extension of the distributed arithmetic ap- 
proach to the implementation of high-speed 2-D recursive 

filters is described. Specifically, an implementation scheme 
for a second-order section is presented. 

A 2-D recursive digital filter is described by the linear 
difference equation 

Y m,n = Z 2 ai,jXm-i,n-j- ki!o ,$obk,lYm-k,n-l Cl) 

i-0 j=O 

kil 20 

where x, n and y,,, n are the input and output image 
arrays, respectively, ‘and a,, j’s and bk,,‘s are the filter 
coefficients. For a second-order filter ( Ni = Nj = Nk = N, = 
2), the direct-form realization requires 17 multiplications, 
15 additions, and 1 subtraction for each output sample. 
Assuming all signals to be bounded by +l and defining 
the input and output signals in two’s complement code, B 
bits of accuracy including the sign bit, we have 

B-l 

Xm-i,n-j= C x~-i,n-j2-s-x~-i,.-j (2a) 

and 
B-l 

Ym-k,n-I= c Yi-k,n-,2-S- Y:-k,n-, (2’4 
s=l 

where x&-~, n-j and yAPk, n-, are binary variables. Sub- 
stituting (2) into (l), we rearrange the summations and 
define two functions 

= a,xi,, + aolxL,,-l + * f * + a22xi-2,n-2 (3a) 

and 

t;2s(Y~,n-l,Y~,n-2,.“,Y~-2,n-2) 

= h,ly;,,z-1+ bo&,,n-2 + - - - + b,,ytL,n-2. W 

It is possible to write (l), for a second-order filter, in terms 
of the two functions F;( .) and F;( .) as follows: 

B-l B-l 

Y m,n = c F,“(.)2-“-qy)- c F;(*)2-“+&y*) 
s=l s=l 

(4 

where Ff( a) and F;( .) have a finite number of possible 
outcomes (29 and 2*, respectively). 

The distributed arithmetic realization of (4) consists 
mainly of four building blocks: 1) mask bit-shifters, 2) 
memories, 3) summers, and 4) subtractor. A schematic 
block diagram is shown in Fig. 1. All linear combinations 
of the nine coefficients a,, j’s in (1) are stored in the 512 x t 
memories. Similarly, all possible combinations of the eight 
b,, ,‘s are stored in the 256 x t memories. 

Consider the implementation shown in Fig. 1 for an 
image of 512 X 512 pixels. The coefficients are quantized to 
16 bits. All computations are done with t = 16 bits of 
precision and the input and output signals are represented 
by B = 8 bits. Each of the mask bit-shifters consists of two 
(512x 1) shift registers and six ,single bit shift ,registers. 
These can be configured from TRW TDC1006J [22], (256 
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Fig. 1. Schematic block diagram of the distributed arithmetic implementation of a second-order section. 

x 1) shift registers and TTL SN74S174, hex D-type flip- 
flops. The memories can be constructed from AM27S191 
(~Kx 8) PROMS. The summers and subtractor can be 
configured from,TTL 74S181’s.and TTL 74S182’s. 

The inherent parallelism of the architecture reduces the 
data rate to a memory fetch, log, B + 1 additions, and 
register’s delays (due to recursive part). Using the compo- 
nents mentioned above, the time for a 16-bit addition is 19 
ns and that of a memory access is 50 ns [23], [24]. In 
addition, the minimum set up time and maximum propa- 
gation delay of the shift registers are 0 ns and 30 ns, 
respectively [22]. This gives a maximum cycle time of 
(4 x 19) + 50 + 30 = 156 ns or a minimum data rate of 6.41 
Mpixels/s. This data rate is close to the real-time require- 
ment for a 512 X 512 pixels image. Higher throughput rates 
can be attained if faster logic families, such as ECL, are 
used. With such logic families, the penalty for state-of-the- 
art performance is increased cost and power consumption. 

When the order of the filter increases, the memory 
requirement of this structure increases as 2 B(2(K”)2) X t, 
where K is the order of the filter. However, the memory 
address partition, which trades off memory with extra 
additions, can be used to reduce the amount of memory 
required. With this modification, the effective memory size 
decreases while the number of memory addresses remains 
the same. For example, 216 X t (K = 3) bits of memory can 
be implemented using two 28 x t bits of memory plus one t 
bits adder. Hence, with an extra addition, the effective 
memory size is reduced considerably. 

A prototype of the distributed arithmetic implementa- 
tion of a 2-D recursive filter [13], which can process images 
of size up to 256X256, has been built using mainly TTL 
components. In this prototype, serial additions, rather, than 
parallel additions, were used in order to reduce the hard- 
ware size. The prototype assumes the input and output 
samples are 8 bits in length, while all the intermediate 
computations are done in 16-bit precision. The X and Y 
mask bit shifters are constructed using TTL 748174 hex 

Fig. 2. Photograph of the 2-D second-order distributed filter. 

D-type flip flops and MOS AM2856 dual 256X1 static 
shift registers. The memories are configured from 2716 
2Kx 8 EPROMs (Erasable Progammable Read Only 
Memories). With serial addition, an accumulator-type cir- 
cuit is required. A photograph of the prototype is shown in 
Fig. 2. The distributed filter is linked to the host computer 
(VAX 11/780) via a 6809 microprocessor. The prototype 
cost approximately $350 U.S. in 1984 dollars and operates 
at a speed of 350x10’ pixels/s. 

III. MINIMUM-CYCLE-T&E (MCT) FILTER 

ARCHITECTURE 

For 1-D filters, a configuration for which the critical 
path contains no more than one multiplication and one 
addition has been proposed [25]. The critical path of a 
digital filter is defined as the longest one among all possi- 
ble paths from the output of a delay element to the input 
of the next one. An extension of this idea to 2-D recursive 
digital filters will be presented. 
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The digital filter described by (1) has the transfer func- building blocks. This regularity property provides a simple 
tion hardware structure for the implementation of the filter. 

N. N, . , We now outline the hardware of a second-order 2-D 

H(z,',z,')= 

N( z;', z;') 
iFo jFoai, jzlizTj recursive,digital filter for the filtering of images of sizes up 

-1 _ = 
to 512X512 pixels in real-time with a TV scan rate of 30 

DC" ') 1 9z2 
1+ 2 &,,,z;kz;’ 

frames/s. For a reasonable gray level resolution, the input 
and the final output signals are represented in 8 bits. All 

kkf(: ‘2 intermediate results have 16 bits of accuracy. Multipliers 

(5) 
can be eliminated through the use of memories. The mem- 

where z;’ and z;’ represent a unit column delay and a 
ories can be constructed from AM 27820 (256 x 4) PROM’s, 

unit row delay, respectively. 
which have a memory access time of 45 ns [26]. The adders 

For a 2-D filter, the optimal critical path should contain 
are the same as those used in distributed arithmetic imple- 
mentation. 

one more addition than that of the 1-D filter [14]. The 
extra addition is required for adding the intermediate 

The z;l blocks can be configured from SN74S174 (hex 

results from the z;’ and z;l blocks. In order to obtain the 
D-type flip-flop), which has a maximum propagation delay 

desired critical path, the original 2-D transfer function 
of 17 ns and a minimum set up time of 5 ns [23]. The z;’ 

should be modified so that the new transfer function 
blocks, which consist of 16 parallel 512-bit shift registers, 

H(z,,z,) has the form 
can be configured from TRW TDC 10065. It requires two 
TDC 10062 chips for the implementation of one 512-bit 

Iqz;l,z; 1) = H( z;l, z;l)z;pz;q (6) shift register. Since the sum of the propagation delay and 

with p and q being nonnegative integers. It is-desirable to 
the set up time of SN 7415174 is shorter than that of TDC 

have the minimum possible latency. This can be achieved 
10065, it is desirable to drive the two different shift reg- 

by setting p = 0 and q = 1. Thus, the output of the new 
isters with two different clock signals, one being the de- 

filter jjm, n is delayed by only one pixel compared with the 
layed version of the other, so that the outputs of the two 

original filter output y,,. (i.e., jjm’,,. = Y,,,-~). With the 
different shift registers will be available almost simulta- 

chosen values for p and q, the new equation describing the 
neously. From the specifications of the shift registers, the 

input and output relationship is 
clock signal driving the single bit shift register should be 
the one driving the 512-bit shift register delayed by 5 to 13 
ns. 

The cycle time of the new filter, built with the above 
components, consists of one memory access time, two 

- +;‘, z;l) ; 2 bk,,zckz;*. (7) 

addition times, and the sum of the propagation delay and 
set up time of the 512-bit shift register. The new filter can 

kk f 7 ‘2 
process images at a data throughput rate of one pixel every 
113 ns (i.e., 2 x 19 + 45 + 30), which is less than the maxi- 
mum allowable time 127 ns required for real-time 
processing. 

We now propose the new filter structure for the modified 
2-D filter transfer function. Let 

A = x( zp, z;l ) 2 $ ai,iz;iZ;j 

C = a,,,X( z;l, z;l) D=A+B+C 

E = - b,,,Y( z;‘, ~1’) F= z;l(D + E) 

Nk 4 
G = - Y( z;‘, z;‘) c c bk,,z;kz;’ I=F+G. (8) 

B = - Y(z;l, z;‘) 2 bo,,Z;(~-l) 
I=2 

k=l I=0 

The relationships among all these signals of a second-order 
filter are shown in Fig. 3(a) and (b). It can be easily proven 
that Y( z; ‘, z;l) = 1. With the assumption that a multipli- 
cation takes at least twice the amount of time required for 
an addition, the critical path is the one shown in bold lines 
and contains only one multiplication and two additions. 
This critical path is independent of the order of the filter. 
The new filter has a very regular structure, with identical 

IV. MULTIPROCE$SING-ELEMENT (MPE) 
ARCHITECTURE 

The “Divide and Conquer” algorithm [15] is frequently 
used to solve a complex problem through a recursive 
method. The motivation of applying this algorithm to 
image filtering is to provide a general implementation 
method by the use of simple identical processing elements. 
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(4 (b) 
Fig. 3. (a) Modified nonrecursive block of a second-order 2-D digital filter. (b) Modified recursive block of a second-order 

2-D digital filter. 

Consider a FIR filter The extension of this method to 2-D case will be pre- 
sented as follows. A 2-D FIR filter can always be written 
as 

N(z-l)=[ao,al e-e aM] 

Equation (9) can be rewritten as 

. (9) N( zi5 z 2’) = P,( z;l) + zl’P1( 111) , 

+ zC2P2( z;l) + . . . + z;“P,( z;l) (12) 

where Pm(z;‘), m = 0,l; . . , Ni, corresponds to the pdly- S 
nomial of z;’ associated with the. factor z;‘. Thus, 

where N(z;‘, z;l) can also be written in the form of (10) as 

if M is odd 
N( zp, z;l) 

a2[!.!$1+2=\aM ifMiseven’ (11) 

As we can see, (10) is a recursive form of [p q r] 

where p, q, and r are the corresponding filter coefficients. I 
If a processing element (PE) can perform the above oper- 
ation, the use of multiprocessors can solve the original 
problem in (9). An all-pole 1-D filter can be implemented 
with a FIR filter in the feedback path. 
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(a) 

Fig. 4. MPE architecture. (a) Nonrecursive block. (b) Recursive block. 

Equation (13) suggests that the 2-D computation can also 
be evaluated recursively. Similarly, the denominator 

D(z ;‘, z;l) of the filter transfer function H(z;‘, zi’) can 
be also written as 

D(z;‘, z; ‘) =l+ D1(z;l,z;l) 04 

with 

Dl( z;l, z;l) = Q,( z,‘) + z;‘Q,( z;l) 

+ z,‘Q,( z;‘) + . . . + zcNkQNk( zil) (15) 

and Q,( z;‘) is a polynomial with no constant term. In 
order to reduce the critical path length, the original trans- 
fer function must be modified. Fig. 4(a) and (b) show the 
MPE architecture for the nonrecursive and recursive blocks, 
respectively. From Fig. 4(b), the modified transfer function 
E?(i;l, zTi) is - 

I?( z;l, z; ‘) = H( z;l, z2 -‘)zi21?1 (16) 

and the critical path length is one multiplication and four 
NI + 1 

additions. The total latency is 2 - 
I 1 2 

cycle times + 2 
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addition times + shift registei propagation delay. As 
illustrated, besides having a regular structure with identical 
PE’s, the MPE architecture provides a high throughput 
rate suitable for high-speed digital image processing. 

V. VLSI ARCHITECTURES BY DECOMPOSITION 

A general 2-D rational transfer function of the form in 
(5) can be expressed by the terms of the form (z;’ - ali) 
and (z;l- u,~) only, where ali, a2j are constants and 
i=l,2;.. ,max(N,, Nk), j=1,2;.., max(Nj, N,) [16]. 
The numerator polynomial N(z;‘, z;‘) can be written in 
the form 

where 

z, = 

N( z;l, z; ‘) = Z,TAZ, (17) 

‘O>N, ‘LN, . . (18) 
L aN,,a ‘N,,l :I ‘N,,N, 

The polynomial in (17) can be written equivalently as 

ao,o 

I: 

al,, 
A= . 

ao,1 

al.1 

1 
-1 

z2 1: -3 12 

. . . 

. . . 

. . . 

1 
-1 

Zl 

-N, 
Zl 

7 z2= 

N( z;‘, z;‘) = Z;rRSZ, 09) 

by writing the matrix Q as a product of two other matrices 

R, S. The matrix R might be chosen arbitrarily as a 
nonsingular (Ni +1)X (N, + 1) matrix. In this case, the 
matrix S is determined by 

S=R-‘Q (20) 

and has the dimension ( Ni + 1) x ( Nj + 1). ZITR is a 1 X Ni 
matrix, which is a function of the first variable zcl and 
SZ, is a Nj X 1 matrix, which is a function of the other 
variable z; ‘. Thus, N(z;l, z;l) can be expressed as a sum 
of products of first-order terms, each one of which is a 
function of only one of the two variables. The denomina- 
tor polynomial can also be decomposed in the same 
manner. In order to eliminate the complex first-order 
terms in the decomposition as a result of complex con- 
jugate pairs and to save on hardware, a building block 
implementing a second-order 2-D FIR filter was chosen 

[171- 
In this section, the VLSI implementation of a second- 

order first quadrant 2-D digital filter is considered. The 
filter, referred to as the “Slice,” has the following specifi- 
cations: 

(9 it implements either all-pole or all-zero transfer 
function in 4-bit slices; the wordlength is indefi- 
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nitely expandable in an expansion chain, the only 
penalty being the speed of operation, 

(ii) it operates on 512 X 512 pixel images, 
(iii) it is easily cascadable in a pipeline to implement 

more complex functions, with the same through- 
put as a single Slice, and 

(iv) it uses 512 X 8 bits of external scratchpad memory 
and a host controller to program the filter coeffi- 
cients, present input data, and store the results. 

The filter was implemented in 5-pm NMOS VLSI technol- 
ogy (available at the University of Toronto) on two chips: 
the “Datapath” and the “Sequencer.” 

The Datapath contains all the circuitry to carry out the 
arithmetic functions and the registers to hold the data and 
filter coefficients. Since a second-order filter requires an 
array support of eight values, there are nine (one for the 
input) 4-bit data registers and nine 4-bit coefficient reg- 
isters. Multiplications and additions are carried out by the 
Arithmetic Logic Unit (ALU). The ALU uses a 4-bit adder 
with internal carry-look-ahead and external fast carry, for 
word-length expansion. The output of the adder is fed to 
an accumulator which is internal to the ALU. In addition 
to data input/output (I/O) for the Slice, the Datapath has 
I/O port for the scratchpad RAM. As mentioned earlier, 
the Slice is switchable between all-zero and all-pole filter- 
ing, and selection is carried out by setting a control signal 
on the Datapath. Within the Datapath, the regularity of 
the filter structure enabled this section to be broken into 
eight basic blocks. Of these, five were further divided into 
subblocks, the lowest hierarchical level in the Datapath. It 
was at this point that the actual circuit design was started. 
Once the subblocks had been designed, they were simply 
connected together to form the basic blocks, and these 
were interconnected to form the Datapath. Due to this 
design technique,. there is very little random logic in the 
Datapath. This is essential as the implementation of ran- 
dom logic in VLSI is extremely inefficient and time con- 
suming. 

The Sequencer is responsible for interfacing with the 
host and other Slices in a cascade or expansion chain, 
Datapath coefficient programming, scratchpad RAM 
management, data blanking control, global processing con- 
trol, multiply-bit bus control, and Datapath ALU control: 
The Sequencer was broken into two blocks, a two-output, 
18-bit counter, and a large PLA (programmable-logic- 
array). The PLA generates all the control signals required 
by the filter. Each of these two blocks were further broken 
down into subblocks. The circuit design started at this 
point. 

In the Slice, column by column recursion [17] was 
chosen for its smaller buffer requirements (2 N + 2 output 
values must be buffered for an N x N pixel image) and 
simpler recursion algorithm. Fixed two’s complement 
arithmetic was used because of the simplicity of addition 
and subtraction, ease of detecting overflows, and correct 
final output (if the final output is within the output 
dynamic range) even if intermediate results have over- 
flowed. 

IV. TWO-DIMENSIONALQUADRATIC DIGITAL 
FILTER ARCHITECTURE 

In recent years, nonlinear filters have been used exten- 
sively in image processing. It is well known that linear 
filtering techniques are simplier to implement but have the 
disadvantage that they blur the edges. They also do not 
perform well in the presence of signal-dependent noise 
[27]. Examples of nonlinear filters include homomorphic 
filters for restoration of an image which is subject to 
multiplicative degradation, and median filters for remov- 
ing impulse noise. In this section, we propose a new type 
of 2-D nonlinear filter based on a second-order character- 
istic. More importantly, it is shown that these filters can be 
implemented using linear 2-D FIR filters. One application 
of these nonlinear filters is for texture discrimination. It is 
shown that the coarseness of the texture is proportional to 
the spread of the autocorrelation function and, hence, the 
second-order moment [28]. 

One way to describe the input and output relationship 
of a 1-D nonlinear system and whose design requires only 
a limited amount of knowledge of higher order statistics is 
to use a discrete Volterra series representation [29]. In 
particular, the first and second terms of this series describe 
the linear and quadratic parts of the nonlinear system. The 
1-D quadratic digital filter [19] is defined as 

N N 

Yn'C Ch. I, jxn-ix,-j 
i=Oj=O 

(20 

where x, and y,, are the input and output sequences and 
hi, j is the quadratic kernel which can be assumed to be a 
symmetric function of its indices without loss of generality. 
The direct implementation of (21) requires a large number 
of computation. It has been shown that (21) can be imple- 
mented using 1-D FIR filters and some extra multipliers 
[20], [30]. In particular, using the singular-value decom- 
position on the quadratic kernel hi, j (21) can be rewritten 
as follows: 

y,= i Ai f r. .x [ 1 2 1.1 n-j 9 k<q (22) 
i=l j=O 

where q is the rank of kernel matrix {hi, j}, and Xi’s are 
the eigenvalues resulting from the singular value decom- 
position. Hence, the implementation of second-order non- 
linear filters is equivalent to the implementation of 1-D 
linear filters with some extra operations. 

Based on the 1-D quadratic filter of (21), we define a 
2-D quadratic digital filter as follows: 

N, Ni Nk Ni 
Y m,n = C C C C hi,j,k,lXm-i,n-jXm-k,n-l (23) 

i=O j=O k-0 /co 

where x, n and y, n 
and hij;, 

, are the input and output image pixels 
is the 2-D quadratic kernel. We can assume 

without loss of generality that Ni = Nk and Nj = N!. The 
2-D quadratic kernel can be represented by the following 
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“ordered-pair” matrix: 

h oo,ofJ h 
O&O1 

It should be obvious that the “ordered-pair” kernel matrix X.9&,” - 
H is a symmetric matrix due to the permutations of the 
product terms x,,,-~,~-~ and x,-~+-,. Hence, (23) can be 
rewritten as follows: 

m,n= z z ~-&,!, 
Y r,/,k,lX,-i,n-jX,-k,n-I (25) 

i=o j=O k=i I= j 

where 
Fig. 5. Matrix decomposition realization of 2-D quadratic digital filter. 

i=k, j=l 

otherwise ’ (26) 

Equation (25) can be realized as follows: 

Y m,n = ~ ~ Wi,j,m,nX,-i,n-j (27) 

i=l) j-0 

where 

wi j m n 1.. = 2 I? hi,j,k,Pm-k,n-/* (28) 

From (27) and (28), we observe that each output requires 
the generation of a new set of coefficients wi, j, m, n, which 
will then be used to determine the final output by convolv- 
ing with the input again. This implies a large number of 
computations is required especially when the order of the 
filter increases. 

In order to reduce the amount of computations, a matrix 
decomposition [16] approach on the “ordered-pair” kernel 
matrix is proposed. In this, approach, the “ordered-pair” 
matrix is viewed as a 2-D matrix. As in the 1-D case, using 
the singular-value decomposition, the quadratic filter of 
(23) can be rewritten as 

Y m,n = $ hi[vk,n]29 P64 (29) 
i-l 

where 

(30) 
k=O I-O 

q is the rank of the “ordered-pair” matrix of (24), r;,, is 
the element of the decomposed matrix, and Xi’s are the 
eigenvalues resulting from the singular-value decomposi- 
tion. Hence, by choosing p smaller than q, the number of 
coefficients can be reduced. In other words, ofie can retain 
only the most significant stages of the decomposition 
depending on the accuracy required. In addition, with the 
decomposition, a modular structure as shown in Fig. 5 can 
be obtained. Therefore, 2-D quadratic filters can be imple- 

TABLE II 
COMPARISONS AMONG VARIOUS FILTER ARCHITECTURES 

Minimum- 

Cycle-Time 
Architecture 

- 
Cycle Time L&IUy 

- 

T. -AdditionTim 
T” - t”lcmuy Access Tll 
T. - MultiplicUion Tii 

T, . Shift Rgiser Set Up Time 

T,, - Shift Register Fnpa@tion E-day Tim? 

- 

I 

mented using 2-D FIR filter with only some extra multipli- 
cations. This is analogous to the implementation of 1-D 
quadratic filter described earlier. The 2-D FIR filters of 
Fig. 5 ‘can be implemented using the various architectures 
described in previous sections. Alternatively, each of the 
2-D FIR filters can be decomposed to further reduce the 
hardware complexity. Finally, it should be noticed that 
different types of matrix decompositions can be applied to 
the “ordered-pair” matrix of (24) to accomplish different 
objectives such as minimum number of coefficients, etc. 

VII. CONCLUSIONS 

This paper has presented some state-of-the-art architec- 
tures for high-speed image processing. High throughput 
rate is achieved through a high degree of parallelism and 
pipelining of arithmetic operations. Modular structures are 
shown to be very suitable for efficient VLSI implementa- 
tion. Table II provides comparisons among the various 
architectures in terms of speed, latency, hardware complex- 
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ity, and modularity. From the comparisons, the following 
comments are in order. 

1) 

2) 

3) 

4) 

The distributed arithmetic architecture is very suit- 
able for low-order filter. It offers’a savings in both 
cost and power consumption when compared to the 
direct implementation. 
The MCT filter architecture has the shortest cycle 
time among the four architectures. The cycle time 
and latency are also independent of the filter order. 
The MPE architecture features a very short cycle 
time and is very modular. It is suitable for high-order 
filters. 
The VLSI architecture by decomposition is very 
modular and flexible. High-order filters can be im- 
plemented by cascading of second-order 2-D filter 
chip sets. 

The implementation of 2-D quadratic digital filters can 
be simplified by decomposing the “ordered-pair” kernel 
matrix. The resulting structure is composed of identical 
stages where each stage consists of a linear 2-D filter and 
two multipliers. 

High-speed image processing and, in particular, real-time 
image processing is still in its infancy. More research is 
needed for this field to reach maturity. The advances in 
microelectronics technology will remain a major factor in 
the implementation of high-speed image processors. 
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