IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001 641

High-Speed Architectures for Reed—Solomon
Decoders

Dilip V. Sarwate Fellow, IEEE,and Naresh R. Shanbhagember, IEEE

Abstract—New high-speed VLSI architectures for decoding ployed architectures based on the Berlekamp—MasB&¥) (
Reed-Solomon codes with the Berlekamp-Massey algorithm algorithm [1], [3], [10], presumably because the architectures
gfrle?(rae;%ntl\jis;gytQ:Zorﬁ)tiFr)r?ris iTnhfhesﬁifgtivzof:m;?ﬁfati?n g}e were found to be irregular and to have a longer critical path delay
discrepanciedollowed by the updating of the error-locator poly- that was also.dependent on the erro_r-corre_ct_lng CaF_’ab"'ty ofthe
nomial. This bottleneck is eliminated via a series of algorithmic c0de [5]. Inthis paper, we show that, in fact, itis possible to refor-
transformations that result in a fully systolic architecture in which ~ mulate theBM algorithm to achievextremelyregular decoder
a single array of processors computes both the error-locator architectures. Surprisingly, these new architectures cannot only
and the error-evaluator polynomials. In contrast to conventional operate at data rates comparable to architectures basedefh the

Berlekamp—Massey architectures in which the critical path passes ; ; ;
through two multipliers and 1 + [log,(¢ + 1)] adders, the 2!)9”(1:2?2;’“%:32? also have lower gate complexity and simpler

critical path in the proposed architecture passes through only one
multiplier and one adder, which is comparable to the critical path This paper begins with a brief tutorial overview of the en-
in architectures based on the extended Euclidean algorithm. More coding and decoding of Reed—Solomon codes in Section II.
interestingly, the proposed architecture requires approximately Conventional architectures for decoders based on BNe
25(){: fewer mtl),lltipli;ars ar?d a sirlnpler corétrcél strulc(;ure thlan thhe algorithm are described in Section Ill. In Section IV, we show
architectures based on the popular extended Euclidean algorithm. . : : : .
For block-interleaved Reed—Solomon codes, embedding thethat itis possible to algorlthm!cally transfo.rm tB& algorithm
interleaver memory into the decoder results in a further reduction SO that @ homogenous systolic array architecture for the decoder
of the critical path delay to just one xoRr gate and one multiplexer, can be developed. Finally, in Section V, we describe a pipelined
leading to speed ups of as much as an order of magnitude over architecture for block-interleaved Reed—Solomon codes that
conventional architectures. achieves an order of magnitude reduction in the critical path
Index Terms—interleaved codes, Berlekamp—Massey algorithm, delay over the architectures presented in Sections Il and IV.
pipelined decoders, Reed—Solomon codes, systolic architectures.

Il. REED-SOLOMON CODES

. INTRODUCTION We provide a brief overview of the encoding and decoding of

EED-SOLOMON codes [1], [3] are employed in nuRé&d-Solomon codes.

merous communications systems such as those for deep)
space, digital subscriber loops, and wireless systems as welf'adEncoding of Reed-Solomon Codes
in memory and data storage systems. Continual demand for eveet (dy_1,dy_2,...,d1,dy) denotek m-bit data symbols
higher data rates makes it necessary to devise very high-spémdes) that are to be transmitted over a communication channel
implementations of decoders for Reed—Solomon codes. Rer stored in memory). These bytes are regarded as elements
cently reported decoder implementations [5], [19] have quoted the finite field (also called Galois fieldiF(2™),1 and en-
data rates of ranging from 144 Mb/s to 1.28 Gb/s. These highded into &odeword¢,,_1,¢,,—2,...,¢1,¢o) of n > k bytes.
throughputs have been achieved by architectural innovatioFisese codeword symbols are transmitted over the communica-
such as pipelining and parallel processing. A majority of thi#éon channel (or stored in memory).
implementations [2], [8], [15], [19] employ an architecture based For Reed—Solomon codes ow@F(2™), n = 2™ — 1, k is
on the extended EuclideaeH) algorithm for computing the odd, and the code can correcte (n — k)/2 byte errors. The
greatest common divisor of two polynomials [3]. A key advarencoding process is best described in terms ofitite polyno-
tage of architectures based upon éiealgorithm is regularity. mial D(z) = dj_12*7 4+ dy_22*"2 + --- + dyz + do being
In addition, the critical path delay in these architectures is at béstnsformed into @odeword polynomial’(z) = ¢, 12"~ +
Tote + Todd + T Whereloue, Taad, andT, are the ¢, 22"~2 + --- 4 c1z + co. All codeword polynomials”(z)
delays of the finite-field multiplier, adder, agdx 1 multiplexer are polynomial multiples of?(z), thegenerator polynomiabf
respectively, and this is sufficiently small for most applicationshe code, which is defined as

In contrast, relatively few decoder implementations have em- 21

Manuscript received August 23, 1999; revised June 7, 2000. This work G(z) = H (z — o™t (1)
was supported in part by the National Science Foundation under Grant CCR iZo
99-79381.

The authors are with the Coordinated Science Laboratory and the DepartmeriAddition (and subtraction) iGF(2™) is the bit-by-bitxor of the bytes.
of Electrical and Computer Engineering, University of lllinois at Urbana-ChanFhe2™ — 1 nonzero elements ¢&F (2™) can also be regarded as the powers,
paign, Urbana, IL 61801-2307 USA (e-mail: sarwate@comm.csl.uiuc.eduwi, 0 < i < 2™ — 2, of aprimitive elementy (wherea®™ —! = 1 = a°) so
shanbhag@uiuc.edu). that the product of field elements’ anda? isa’ - o/ = o't/ = a! where
Publisher Item Identifier S 1063-8210(01)03895-1. =i+ jmod(2™ —1).

1063-8210/01$10.00 © 2001 IEEE

642 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

wherem, is typically zero or one. However, other choices somée calculate the error values and error locations. Definetror
times simplify the decoding process slightly. Sirkéeconsecu- locator polynomial A(z) of degreee and theerror evaluator

tive powersy™o, om0t amot2t-1 of o are roots of#(z), polynomialQ(z) of degree at most — 1 to be
andC(z) is a multiple ofG(»), it follows that e
‘ A=A -X2) =14+ z4+ 22+ + A2 (D)
Cla™t)y =0, 0<i<2t—1 (2) (2) jl;[l(?) . 2

for a_II codeword polynomia!é](z). In fact, an arbitrqry poly- Qz) = i:YiXimO ﬁ (1- X,z)
nomial of degree less thanis a codeword polynomial if and = Plegr ¥
only if it satisfies (2). 9 o1

A systematicencoding produces codewords that are com- W0 TWLF T Wzt e w1z T ©)
prised of data symbols followed kyarity-check symboland These polynomials are related$0z) through thekey equation
is obtained as follows. Lef(~) and P(») denote the quotient [1], [3]:
and remainder respectively when the polynomiat* D(z) of ot
degreen — 1 is divided byG(») of degree2t = n — k. Thus, A(2)5(7) = Q(z) mod 2. (6)
RD(2) = Q(2)G(#) + P(2) wheredeg P(2) < n — k.
Clearly, Q(2)G(») = 2" *D(z) — P(») = C(») is a mul-
tiple of G(z). Furthermore, since the lowest degree term i
2K D(z)is do2"* while P(») is of degree at most — k — 1,
it follows that the codeword is given by

Solving the key equation to determine bdtfr) andQ2(z) from
S(z) is the hardest part of the decoding process. Bikalgo-
fithm (to be described in Section Ill) and teBalgorithm can be
used to solve (6). I¢ < ¢, these algorithms find (») andQ(z),
butif e > t, then the algorithms almost always fail to findx)
(i, Cnesy- s C1s¢0) and(z). Fortunately, such failures are usually easily detected.

— (dpr, d 4 d OnceA(z) ade(z) have peen found, the decoder can find

k=l Bh=2y 05 81 B0, the error locations by checking wheth&fa—7) = 0 for each

— Pn—k—1,—Pn—k—2,- -+, —P1, —Po) 7,0 < j < n — 1. Usually, the decoder computes the value
lf(A(ofj) just before thej-th received symbot; leaves the
ecoder circuit. This process is calle@€hien searchl], [3]. If
A(a™7) = 0, thena? is one of the error locations (say;). In
other wordsy; is in error, and needs to be corrected before it
leaves the decoder. The decoder can calculate the error¥alue

Let C(z) denote the transmitted codeword polynomial ang be subtracted from; via Forney’s error value formula [3]
let R(z) denote the received word polynomial. The input to the —(mo—1) 1 .
decoder isk(z), and it assumes that Y, — X QX7 Y. C) @)

7 A (X;l) ZA/(Z)

whereA’(z) = A + 2Xoz + 3322 + - - - denotes the formal
where, ife > 0 errors have occurred during transmission, therivative of A(z). Note that the formal derivative simplifies

and consists of the data symbols followed by the parity-cheg
symbols.

B. Decoding of Reed—Solomon Codes

R(z) =C(z) + E(=»),

error polynomialE(~) can be written as to A'(z) = A+ Asz® + - since we are considering codes
overGF(2™). Thus,zA/(2) = Ay + A32% + - - -, which is just
E(2) = Y12 4 Y52 4. 4 Y 2. the terms of odd degree i(»). Hence, the value ofA’(») at

» = o~ can be found during the evaluation/fz) atz = a7

Itis conventional to say that theeror valuesY, Y2, ..., Ye have and does not require a separate computation. Note also that (7)
occurred at therror locationsX; = o™, X> =a’2,..., Xc = can be simplified by choosing, = 0.

o', Note that the decoder does not knéz); in fact, it does
not even know the value of. The decoder’s task is to deter-C. Reed—Solomon Decoder Structure
mine E(z) from its input B(z), and thus correct the errors by |, summary, a Reed-Solomon decoder consists of three
subtracting offE'(z) from R(z). If e < ¢, then such a calcula- pgcks:
tion is always possible, that is,or fewer errors can always be
corrected.

The decoder begins its task of error correction by computing
the syndrome values

* the syndrome computatio$C) block;
« the key-equation solveKES) block;
* the Chien search and error evaluat86EE) block.
These blocks usually operate in pipelined mode in which the
si = R(a™¥) = C(a™) + E(a™) = E(a™) three blqcks are _separately and simultaneously working on three
0<i<2%—1 (3 successive received words. TBE€ block computes the syn-
- = dromes via (3) usually as the received word is entering the de-
If all 2¢ syndrome values are zero, th&#iz) is a codeword and ¢oder. The syndromes are passed tda& block which solves
itis assumed thaE(z) = R(z), thatis, no errors have occurred (6) to determine the error locator and error evaluator polyno-

Otherwise, the decoder knows that 0 and uses theyndrome Mials. These polynomials are then passed toGB&E block,
polynomialS(z), which is defined to be which calculates the error locations and error values via (7) and

corrects the errors as the received word is being read out of the
S(z)=so+s12+- -+ Sop_12771 decoder.

SARWATE AND SHANBHAG: HIGH-SPEED ARCHITECTURES FOR REED-SOLOMON DECODERS 643

The throughputbottleneckin Reed—Solomondecodersisintimere time consuming than multiplications. Obviously, if these
KES blockwhich solves (6):incontrast, tB&€andCSEEblocks divisions could be replaced by multiplications, the resulting cir-
are relatively straightforward to implement. Hence, in this papeuitimplementation would have a smaller critical path delay and
we focus on developing high-speed architectures foltB& higher clock speeds would be usablé. less well-known ver-
block. As mentioned earlier, the key equation (6) can be solveibn of theBM algorithm [4], [13], has precisely this property
via theeE algorithm (see [19] and [17] for implementations), oand has been recently employed in practice [13], [5]. We focus
viatheBM algorithm (see [5] forimplementations). In this papemn this version of th&M algorithm in this paper.
we develop high-speed architectures for a reformulated versiorThe inversionles8M (iBM) algorithm is described by the
of theBM algorithm because we believe that this reformulatguseudocode shown below. TieM algorithm actually finds
algorithm can be used to achieve much higher speeds than casdsar multiples? - A(z) andg - 2(z) instead of the\(z) and
achieved by otherimplementations of Bl andeEalgorithms. €(z) definedin (4) and (5). However, itis obvious that the Chien
Furthermore, as we shall show in Section 1V-B4, these nesearch will find the same error locations and it follows from
architectures also have lower gate complexity and a simpl@)) that the same error values are obtained. Hence, we continue
control structure than architectures based oethagorithm. to refer to the polynomials computed by ti3M algorithm as

A(z) andQ(z). As a minor implementation detallp = 1in (4)
lll. EXISTING BERLEKAMP—MASSEY (BM) ARCHITECTURES and thus requires no latches for storage, buili¢ algorithm

In this section, we give a brief description of different verust storely = fj. Note also thak_., () which occurs in Steps

sions of the Berlekamp—MasseBN1) algorithm and then dis- iBM.2 andiBM.3 is a constant: it has value zero for all
cuss a generic architecture, similar to that in the paper by Regd

. . . iBM Algorithm
et al. [13] for implementation of the algorithm. Initialization:
A. The Berlekamp—Massey Algorithm Ao(0) = bo(0) = 1,A:(0) = b:(0) = Ofori = 1,2,....2. k(0) =
0 "/’(0) =1.

The BM algorithm is an iterative procedure for solving (6). ',np'ut s i=0,1,....2—1.
In the form originally proposed by Berlekamp [1], the algorithm ¢, . — step1 until 2¢ — 1 do

begins with polynomial\(0, z) = 1, ©(0,%z) = 0 and iter- begin

atively determines polynomial&(r, z) and(r, z) satisfying SEEPIBM.L 6(r) = s, Mo(r) 4501 -Aa(F)4- - s e-Ae(r)

the polynomial congruence Step BM.2 Ay(r 4+ 1) = 4(r) - Au(r) — 8(r)bs_s(r), (i =
A(r,2)8(z) = Q(r, z) mod 2" 0,1,...,t)

for r = 1,2,...2t and, thus, obtains a solutiak(2t, z) and StepiBM.3 if 6(r) # 0 and k(r) 2 0

Q(2t,) to the key equation (6). Two “scratch” polynomials then -

B(r,z) and H(r,z) with initial values B(0,z) = 1 and begin -

bi(r+1)=X(r), (i=0,1,....¢)

H(0,z) = —1 are used in the algorithm. For each successive
value ofr, the algorithm determineA(r,) and B(r, z) from
A(r—1, z)andB(r —1, z). Similarly, the algorithm determines
Q(r,z) and H(r, z) from Q(r — 1,2) and H(r — 1, z). Since end
S(z) has degre@t — 1, and the other polynomials can have else
degrees as large asthe algorithm needs to store roughdy begin ~ o
field elements. If each iteration is completed in one clock cycle, bf'(’ 1) =bia(r), (i=0,1,....1)
then 2¢ clock cycles are needed to find the error-locator and y(r+1) =7(r)
error-evaluator polynomials. Ror+1) = k() +1
In recent years, most researchers have used the formulation end
of theBM algorithm given by Blahut [3] in which onl\(r, z)
andB(r, z) are computed iteratively. Following the completion
of the 2¢ iterations, the error-evaluator polynomi(2t¢, z) is
computed as the terms of degree 1 or less in the polyno-
mial productA(2t, 2)S(z). An implementation of this version
thus needs to store only field elements, but the computation For, < ¢, StepiBM.1 includes termss_; - A1 (1), s_2 -
of 2(2t, z) requires an additionalclock cycles. Although this \) .. s,_, . A(r) involving unknown quanti-
version of theBM algorithm trades off space against time, ities s ;.5 ,,...,s,.,. Fortunately, it is known [3] that
also suffers from the same problem as the Berlekamp versiggg A(r,z) < 750 thath,y1(r) = Aga(r) = - = A(r) =0
viz. during some of the iterations, it is necessary to divide each N '
coefficient of A(r, z) by a quantitys,.. These divisions are most_ “The astute reader will have noticed that the Forney error value formula (7)
fficiently handled by first com uting—l the inverse of also involves a division. Fortunately, these divisions campipelinedbecause
emciently e y _p_ r ™1 they arefeed-forwardcomputations. Similarly, the polynomial evaluations
and then multiplying each coefficient &f(r, ») by §.-1. Unfor- needed in th€SEE block (as well as those in tH&C block) are feed-forward
tunately, regardless of whether this method is used or whetli@putations that can be pipelined. Unfortunately, the divisions irkés
.. block occur inside an iterative loop and, hence, pipelining the computation
one ConStrUCtS. S_e_parate d_'V'der C'r(?u'tls for e.aCh (_:oeff|C|ent l%?comes difficult. Thus, as was noted in Section I, the throughput bottleneck
A(r, z), these divisions, which occur inside an iterative loop, ai€in theKES block.

7(r+1) = &(r)
k(r+1)=—k(r)—1

end
for ¢ = 0 stepluntil ¢t — 1 do
StepiBM.4 w;(2t) = s;- Ao (2t) + 5,21 - A (28) + - - - +
so - As(21)
output: A;(2t),i=0,1,...,t. wi(2t),i=0,1,....¢— 1.

644 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

Syndromes from the SCblock

DC - block
ray pay
A0 A @ ese A () A (D)
To the CSEE block «
ANz Y
ELU - block (e J
10)
T
MC()

4
To the CSEE block

Q) Gn cycles 2t+1 to 30)

Fig. 1. TheiBM architecture.

and therefore the unknowsy do not affect the value of(r). [log,(¢ + 1)] to produce the discrepanéyr). Thus, the delay
Notice also the similarity between StefdM.1 andiBM.4. in computings(r) is Ts = Tt + [log,(t +1)] - Tada-
These facts have been used to simplify the architecture that we\ typical control unit such as the one illustrated in Fig. 2 has

describe next. counters for the variablesandk(r), and storage for(r). Fol-
lowing the computation of(r), the control unit computes the
B. Architectures Based on the iBM A|gor|thm OR of them bits in (5(7) to determine Whethe‘i(7) is nonzero.

D he similarity of Steri@M. 1 andiBM .4 hi This requiresn — 1 two-input OR gates arranged in a binary
uetothe similarity of StepSM.1 andiBM.4, architectures yq.q ¢ depth[log, . If the counter fork(r) is implemented

based on thiBM algor_ithm need only two major computationagn twos-complement representation, thii) > 0 if and only
structures 5_13 shown in Fig. 1. _ _ if the most significant bit in the counter is 0. The delay in gener-
» The discrepancy computatiofDC) block for imple- ating signalMC() is thusTiic = Ts + [logy m] - Loy 4 Tand-

menting StepBM.1. o Finally, once thJIC(r) signal is available, the counter fbfr)
* Theerror locator updatgELU) block which implements can be updated. Notice that a twos-complement arithmetic addi-
StepsiBM.2 andiBM.3 in parallel. tionis needed if:(r+1) = k(r)+1. Onthe other hand, negation

in two’s-complement representation complements all the bits
The DC block contains latches for storing the syndromeand then adds one and, hence, the update-1) = —k(r) — 1
s;, theGF(2™) arithmetic units for computing the discrepancyequires only the complementation of all the bits in fi{e)
§(r) and the control unit for the entire architecture. It is corcounter. We note that it is possible to useg countersfor
nected to th&LU block, which contains latches for storing forandk(r), in which casé:(r) is updated just;,,.x seconds after
A(r, z) andB(r, z) as well agGF(2™) arithmetic units for up- the MC(r) signal has been computed.
dating these polynomials, as shown in Fig. 1. During a clock Following the2t clock cycles for théBM algorithm, theDC
cycle, theDC block computes the discrepané) and passes block computes the error-locator polynomi2(z) in the next
this value together withy(+) and a control signaMC(r) to ¢ clock cycles. To achieve this, tHaS;, DS;11,...,DSa
theELU block which updates the polynomials during the samatches are reset to zero during thi¢h clock cycle, so that, at
clock cycle. Since allGF(2") arithmetic operations are com-the beginning of th&2¢ + 1)-th clock cycle, the contents of
pleted in one clock cycle, we assume thabit parallel arith- the DS register (see Fig. 2) ase, s2,...,81,0,0,...,0, so.
metic units are being employed. Architectures for such Galo#dso, the outputs of theELU block are frozen so that
field arithmetic units can be found in numerous references itiese do not change during the computationtX#). From
cluding [7] and will not be discussed here. Step iBM.4, it follows that the “discrepancies” computed
1) DC Block Architecture:The DC block architec- during the nextt clock cycles are just the coefficients
ture shown in Fig. 2 ha2t¢ latches constituting the DS wo(2¢),w1(2t),...,ws 1(2t) of (z). The architecture in
shift register that are initialized such that the latchdsig. 2 is an enhanced version of the one described in [13].

DS1,DSs,...,DSs—1,DSg contain the syndromes The latter uses a slightly different structure and different
s1,S82,...,82¢_1,S9, respectively. In each of the firse¢ initialization of the DS register in thBC block, which requires

clock cycles, thet + 1 multipliers compute the products inmore storage and makes it less adaptable to the subsequent
StepiBM.1. These are added in a binary adder tree of deptiomputation of the error-locator polynomial.

SARWATE AND SHANBHAG: HIGH-SPEED ARCHITECTURES FOR REED-SOLOMON DECODERS

Syndromes from the SCblock

CONTROL
LLLRG 2 DSt “.'.«DSZ[-I K9 DSO

oo MO MO 10) &) MC

________________ CONTROL___ . __.
; CNTIR Pr
]
&)
E
10
b LD
L AN - S
*) &n

Fig. 2. The discrepancy computatidd@) block.

Note that the total hardware requirements offiti&block are

2t m-bit latches¢ + 1 multipliers,¢ adders, and miscellaneous : A©

other circuitry (counters, arithmetic adder or ring counter, OR T

gates, inverters and latches), in the control unit. From Fig. 2,the Y®¢ 10 (] L v
1 iy 41 0y

critical path delay of thé®C block is
TDC = ﬂnult + (1 + |—10g2(t + 1)—|) - Tadd + |—10g2 m-| - Tor
+ Tand-

2) ELU Block Architecture:Following the computation of
the discrepancy(r) and theMC(r) signal in theDC block,
the polynomial coefficient updates of Stegd.2 andiBM.3
are performed simultaneously in te&U block. The processor
elementPEO (hereinafter thd®EOQ processoy that updates one M0 Ay ® A0 g
coefficient ofA(z) andB(z) is illustrated in Fig. 3(a). The com- T T T
pleteELU architecture is shown in Fig. 3(b), where we see th| | o | Lo] [o] 1]
signalss(r), v(r), andMC(r) are broadcast to all tHeEQ pro- —— (— eee 4 — —Y®

8(:)07 PEO, [8@

Byn ¢ [_-_j — B;,®

MC(D

cessors. In addition, the latches in all tREO processors are | PEO [PEOy [*®® 4 PEO; PEOg (8
initialized to zero except foPEQ,, which has its latches ini- 5]
tialized to the elemerit € GF(2™). Notice that2t + 2 latches : :
and multipliers, and + 1 adders and multiplexers are needec T 1 1 i
The critical path delay of thELU block is given by)

Trru = Tt + Tadd-
)) v IT“” @) Fig. 3. TheELU block diagram. (a) ThePEO processor. (b) The&ELU
3) iBM Architecture: Ignoring the hardware used in the conarchitecture. The latches REQ, are initialized tol € GF(2™) and those in

trol section, the total hardware needed to implementiBh@ OtherPEDs are initialized to zero.

'_IOIJ—”°4—IO| [1[4—0

MC(1)

645

646 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

algorithm is4¢ + 2 latches3¢ + 3 multipliers,2¢ + 1 adders, product
andt + 1 multiplexers. The total time required to solv_e the_key A(r,2) - S(2) = A(r, 2)
equation for one codeword & clock cycles. Alternatively, if .
Q(2t, z) is computed iteratively, the computations require only =bo(r) +61(r) - 24 +6:(r) - 2" 4.
2t clock cycles. However, since the computations required to (11)
updatef)(r, z) are the same as that &f», =), a near-duplicate
of the ELU block is needed. This increases the hardware re- -
. S utesall the coefficients ofA(r, z) (and of®(r, z) = B(r, z) -
quirements t&t + 2 latches 5t + 3 multipliers, 3¢ + 1 adders, P (r,2) ((r 2) (r, 2)

. : " (z)) even though only,.(r) is needed to computk(r + 1, z)
and2t + 1 multiplexers. In either case, the critical path delay oi : . .)
theiBM architecture can be obtained from Figs. 1, 2, and 3 asnd to decide whethe§(r + 1, z) is to be set tal(r, z) or to

Much faster implementations are possible if the decoder com-

Z - B(r, 2).
Tism = 2 - Topure + (14 [logs (2 + 1)) - Taaa (8) Suppose that at the beginning of a clock cycle, the decoder has
> 2 (Tiats + Taad) (9) available to it all the coefficients ak(r, z) and©(r, z) (and, of

o _ o course, ofA(r, z) and B(r, z) as well). Thusg(r) = 6,.(r) is
which is the delay of the direct path that begins inBl@block 4y ajlable at the beginning of the clock cycle, and the decoder can
starting from théDS; latches, through a multiplier, an addertre%omputeA(r +1,2) andB(r + 1, z). Furthermore, it follows
of height[log,(+ 1)] (generating the signal)), feedinginto fom (10) and (11) that
theELU blockmultiplierand adderbefore beinglatched. We have
assumed that the indirect path takensby) through the control ~ A(r +1)(z) = A(r + 1, 2) - 5(2)
unit (generating signdl{C(r)) feeding into théLU block mul- = [y(r) - A(r,z) — 2 - 6.(r) - B(r, 2)] - S(2)
tiplexerisfasterthanthedirectpath,iB,u, > [log, m|-To,+ =~(r) - A(r,2) — 2 6.(r) - O(r, 2)

T,nq- Thisis areasonable assumptionin mosttechnologies. Note.] .

that more than half dfig,; is due to the delay in theC block, While©(r +1,2) = B(r +1,2)- 5(z) is setto eithen(r, z) =

and thatthis contribution increases logarithmically with the errdi(") - S(z) orto z - ©(r, z) = z - B(r,) - S(z). In short,
correction capability. Thus, reducing the delay infi@blockis A(” +1,2) and®(r + 1, z) are computed iexactlythe same
the key to achieving higher speeds. manner as are&(r + 1,z) and B(r + 1, 2). Fl_thhermore, all

In the next section, we describe algorithmic reformulatiorf@Ur Polynomial updates can be computed simultaneously, and
of theiBM algorithm that lead to a systolic architecture for th@!l the polynomial coefficients as well a5, (r + 1) are thus
DC block and reduce its critical path delay Ty . available at the beginning of theextclock cyc_le. _

2) A New Error-Evaluator PolynomialThe riBM
IV. PROPOSEDREED-SOLOMON DECODERARCHITECTURES ~ &/gorithm — simultaneously updates four polynomials
N o . ~ A(r,2), B(r,2), A(r,2), and ©(r,2) with initial values

The critical path inBM architectures of the type descrlbe%(()’ 2) = B(0,z) = 1andA(0,z) = ©(0,2) = S(z).
in Section IIl passes througtwo multipliers as well as the The 2¢ jterations thus produce the error-locator polynomial
adder tree structure in thBC block. The multiplier units A(2¢, %) and also the polynomial\(2¢,). Note that since
contribute significantly to the critical path delay and hencg(%? 2) = A(2t,7) - S(z)mod 22 it follows from (11) that
redut_:e the Fhroughput achievable with tiB architecture. the low-order coefficients of\(2t, z) are just§2(2t, z), that
In this section, we propose new decoder architectures thatiheot jterations computéoththe error-locator polynomial
have a smaller critical path delay. These architectures A2t ») and the error-evaluator polynomidl(2t, »)—the
derived via algorithmic reformulation of th@&M algorithm. aqgitional ¢ iterations of StepiBM.4 are not needed. The
This reformulatedBM (riBM) algorithm computes theext pigh-order coefficients of(2¢, 2) can also be used for error
discrepancy)(r + 1) at the same time that it is computing thes,g|uation. LetA(2t,2) = Q(2¢,2) + 22 - QM (z), where
currentpolynomial coefficient updates, that is, the(» + 1)'s QM () of degree at most — 1 contains the high-order terms.
and theb;(r 4 1)'s. This is possible because the reformulategj,ce X;!is a root of A(2¢,), it follows from (11) that
discrepancy computation does not usexhe +1)’s explicitly. A2t XY =Q2t, X7 + X72QMW (X1 = 0. Thus, (7)
Furthermore, the discrepancy is computed in a block which h@sy pe rewritten as
the samestructure as th&LU block, so that both blocks have —(mo42t=1) (1 _ .)
the same critical path deld&},,.1c + Taaa- Y, — X; ot ' (Xi l) _Z* °+2t9(})(z))

’ A (XY 2N(z) fox

A. Reformulation of the iBM Algorithm (12)

U 13 Sirr?L\J/I_tan_eousS ngnl\auztatiog_Bl\(jlfa I_I)iscrepanc;iesl aNflie next show that this variation of the error evaluation formula
P gtles. |eW|ngh tegs! M.2 andiBM.3 in terms of poly- ¢ certain architectural advantages. Note that the chajce
nomials, we see that SteM.2 computes —2t = n — 2t is preferable if (12) is to be used.
Alr+1,2) =~(r)- Alr,z) — 2 - 8(r) - B(r, 2) (10) 3) Further Reformulation:Since the updating of all four
while StepiBM.3 setsB(r + 1, 2) either toA(r, z) of 10 - polynomials is identical, the discrepancies can be calculated

B(r,). Next, note that the discrepanégr) computed in Step using anELU block like the one described in Section IIl.

: :] - s " Unfortunately, forr = 0,1,...,2¢ — 1, the discrepancy,.(r)
IBM.1 is actuallys, (r), the coefficient of:" in the polynomial is computed in process®EQ,.. Thus, multiplexers are needed

3Sincedeg €2(2t, z) < t, the array has only PEO processors. to route the appropriate latch contents to the control unit and

SARWATE AND SHANBHAG: HIGH-SPEED ARCHITECTURES FOR REED-SOLOMON DECODERS 647

to theELU block that computed(r + 1, z) and B(» + 1, 2).
Additional reformulation of theBM algorithm, as described

next, eliminates these multiplexers. We use the fact that 1§ A | ©
; i X)) 8,0 G
anyé < r, ;(r) andé;(r) cannot affect the value of any later = 5 5
discrepancyé,.,;(r + j). Consequently, we need not store ¥ —iv® o] L] S
6;(r) andé;(r) for i < r. Thus, forr = 0,1,...,2t — 1,'define 8@3 45(,, S0 | PEL b 50
8;(r) = 84.(r) andé;(r) = 6,4,-(r) and the polynomials ! :
2t-1 ‘ 2t—1 L]
Z) = Z 61(7’);}2 and @ 7 7 Z 9 E > /éi(r) E Jc(r)
=0 1 1
with initial valuesA(0, z) = 6(0,2) = S(2). It follows that ~ wmce
these polynomial coefficients are updated as @)
bi(r +1) = i1l +1) T :
= ()it 14r(r) = 60(7)0itr(7) ; d CONTROL
= 7()iz1(r) = bo(r)bi(r) |30 et |
while 6;(r + 1) = @i14.(r + 1) is set either to ! =]l e ees o] [s
Sig14r(r) = bipr(r) or to Oitr(r) = 0:i(r). Note that ! —— — eee ¢ —— 9 :
the discrepancys,.(r) = éo(r) is always in a fixed | |FElo [PEly [*%° PRIy, PElpq [t
(zero-th) position with this form of update. As a f|nal (%] .y :
comment, note this form of update ultimately produce T 7
A(2t, z) = 824(2t) + 62041(20)2 + - - - = QUI(2¢, 2) and, thus, E_ __ 11
(12) can be used for error evaluatlon in tB8EE block. Y@ 8r) MC()
The riBM algorithm is described by the following pseu- (b)

docode. Note that_;(r) = 5,(r) = 0 for all values ofr, and

these quantities do not need to be stored or updated.

The riBM Algorithm

Fig. 4. TherDC block diagram. (a) ThePE1 processor. (b) TheDC
architecture.

Next, we consider architectures that implementriB&1 al-

Initialization: !
, gorithm.
Ao(0) = bo(0) = 1,X;(0) = b;(0) = 0fori = 1,2,...,¢. k(0) =
0. ~(0) = 1.
Input: s;,¢ =0,1,...,2¢ — 1. B. High-Speed Reed—-Solomon Decoder Architectures
6:(0) =6.(0)=s;, (i=0,...,2t—1)
for r = 0 step1 until 2t — 1 do As intheiBM architecture described in Section Ill, thBM
begin architecture consists of a reformulated discrepancy computation
Step iBM.1 X;(r 4+ 1) = 7(r) - Mi(r) — da(r) - bi_1(r),(: = (rDC) block connected to aBLU block.
0,1,...,1) 1) The rDC Architecture:TherDC block uses the processor
bi(r+1) = (r)-biss(r)—ba(r)-6:(r), (...2t— PE1 shown in Fig. 4(a) and theDC architecture shown in
1) Fig. 4(b). Notice that processBE1lis very similar to processor
Step iBM.2 i 8o(r) # 0 and k(r) > 0 PEOof Fig. 3(a). However, the contents of the upper latch “flow
then through” PE1 while the contents of the lower latch “recircu-
begin late”. In contrast, the lower latch contents “flow through” in
bi(r+1)=X(r), (i=0,1,...,%) processoPEQ while the contents of the upper latch “recircu-
0:(r+1)=6:11(r), (1=0,1,...,2t—1) late”. Obviously, the hardware complexity and the critical path
(1 +1) = d(r) delays of processoREOandPE1lare identical. Thus, assuming
E(r+1) = —k(r) — as before thallye > [logy m] - Tor + Tana, We get that
end Tipc = Twue + Thaa- Note that the delay is independent of
else the error-correction capabilityyof the code.
begin The hardware requirements of the proposed architecture in
bi(r+1)=bi_1(r), (i=0,1,....t) Fig. 4 are2t PE1 processors, that igd¢ latches 4t multipliers,
6;(r +1)=6;(r), (1=0,1,...,2t—1); 2t adders, an@t multiplexers, in addition to the control unit,
F(r 4+ 1) = ~(r) which is the same as that in Fig. 2.
k(r4+1) =k(r)+1 2) The riBM Architecture: The overalriBM architecture is
end shown in Fig. 5. It uses theDC block of Fig. 4 and thé&LU
end block in Fig. 3. Note that the outputs of i U block do not
Output: A\;(2¢), (i = 0,1,....1); «™(@2t) = 4(2t), ¢ = feedbackintotheDC block. Both blocks have the same critical
0,1,...,t—1) path delay ofl;pc = TerLu = Twue + Taaq and since they

648 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

b DC-block
P oD :
; - - i CONTROL| |
(oTo o) coTlL ®
L o i b oo o] 2] b— 1] f—o §
i —] (— eoe 1 ——¢ :
i | PEl, g—— PEl; {— ®®® J(PEly »[——PEly :
BIEE I fz2]| |[21] i
T T 3 I e
b o o o e e = v._:r_SF__i
! A® A @ AD AD
! T T T T :
P | o] [o] [o] L]} vo E
i —— — eee] —— :
t | PEO, [—— PEO.4 [r— ®®® <{ PEO, — PE0, «—5——— ,
' (r) !
B e | O S S O | e O] S E
E T T i i MC(r) .

Fig. 5. The systoligiBM architecture.

operate in parallel, our proposgBM architecture achieves thedelay as th&iBM architecture. However, its extremely regular
same critical path delay: structure is esthetically pleasing, and also offers some advantage
in VLSI circuit layouts.

An array of PEO processors in theBM architecture (see
which is less than half the deldysn = 2- 1m0+ (14 [log,(t+ Fig. 5) carries out the sanp@lynomialcomputation as an array
1)]) - Taaa of the enhancedBM architecture. of PE1 processors in thRiBM architecture (see Fig. 6), butin

As noted in the previous subsection, at the end ofthih it- the latter array, the polynomial coefficients shift left with each
eration, théPE1;s,i = 0,...,t — 1 contain the coefficients of clock pulse. Thus, in th®iBM architecture, suppose that the
QM (2t,) which can be used for error evaluation. Thztsslock initial loading of PE1y, PE1,, ..., PE1,y, ; is as in Fig. 4,
cycles are used to determine batf) andQ2(*)(z) as needed in while PE1,,, PE1s,,1,...,PE1;,_; are loaded with zeros,
(12). Ignoring the control unit, the hardware requirement of thend the latches ilPE13; are loaded with. € GF(2™). Then,
architecture i$t + 1 processors, that i + 2 latchesgt + 2 as the iterations proceed, the polynomidlg-,) and ©(r, z)
multipliers, 3t + 1 adders, and¢ + 1 multiplexers. This com- are updated in the processors in the left-hand end of the array
pares very favorably with thé + 2 latchespt + 3 multipliers, (effectively, A(r, z) and ©(r, z) get updated and shifted left-
3t+1adders, ang+1 multiplexers needed toimplementthe enwards). After2t clock cycles, the coefficients d@*)(z) are
hancedBM architecture of Section Illinwhich both the error-lo-in processor®E1,—PE1,_;. Next, note thaPE13, contains
catorandthe error-evaluator polynomial are computeéddatock A(0, z) and B(0, =), and as the iterations proceet{;,) and
cycles. Using only — 1 additional multipliers and additional B(r, z) shift leftwards through the processors in the right-hand
multiplexers, we have reducedthe critical path delay by more thand of the array, witt; () andb;(+) being stored in processor
50%. Furthermore, tm@BM architecture consists of two systolicPE13; .. After 2¢ clock cycles, process@®E1,; contains
arrays and is thus very regular. A:(2t) andb;(2t) fori = 0,1,...,t. Thus, the same array is

3) The RiBM Architecture:We now show that it is possible carrying out two separate computations. These computations do
to eliminate theELU block entirely, and to implement ti8M not interfere with one another. Polynomidl§r, z) and B(r, 2)
algorithm in an enhancedC block in which the array ot are stored in processors numbeBeéd- » or higher. On the other
PE1 processors has been lengthened into an arra3t ef 1 hand, sinceleg A(r, 2) = deg S(z) + deg A(r, 2), it follows
PE1 processors as shown in Fig. 6. In this completely systolibatdeg A(r, z) < 2t — 1 —r+1(r) wherel(r) = (r— k(r))/2
architecture, ainglearray computedoth A(z) and 2 (z). is known to be an upper bound deg A(r, z). It is known [3]
Since the 4 1 PEOprocessors eliminated from ti&.U block thatl(r) is a nondecreasing function ofand that it has max-
re-appear as the+ 1 additional PE1 processors, th®BM imum valuel(2t) = e if ¢ < ¢ errors have occurred. Hence,
architecture has the same hardware complexity and critical path—- 1 — » + [(r) < 3t — r forall », 0 < r < 2¢, and thus, as

TriB]\'T = 71Inult + Tadd

SARWATE AND SHANBHAG: HIGH-SPEED ARCHITECTURES FOR REED-SOLOMON DECODERS 649

A

(1)
o {1 CONTROL
®) N0 Apr® AL ®
o T | eee o (22 p— Bl
k— [— oo (] [3'—7
PEIO d—_ PEll 1_ eee Q—PEIZt-2 \]—_‘PElzt_l Q——‘
2 $2-1
T i i 1
§\7 Avallbe
@
Lo f—{ Lol eoe A o0 f— 0}
] — eee 4| q 0
PEIZt \]—_PEIZ'H_:[G— LA A <}‘—PE13t_1 G PE13t 6()
I
(o] [o] (o]
T i { { M@
Fig. 6. The homogenous systoRiBM architecture.
A(r, z) and B(r, z) shift leftwards, they do not over-write the Output: X:(2t) = 6,:(2t), (¢ = 0,1,...,1); w™(2t) =

coefficients ofA(r, z) and©(r, 2).

We denote the contents of the array in RREBM architec-
ture as polynomialsA(r, z) and ©(r, z) with initial values
A(0,2) = ©(0, 2) = S(2) + #3'. Then, theRiBM architecture

implements the following pseudocode. Note that, ; (r)

6:(2t), (i=0,1,...,t—1).

4) Comparison of ArchitecturesTable | summarizes the
complexity of the various architectures described so far. It can

=0 pe seen that, in comparison to the conventiaBMl archi-

for all values ofr, and this quantity does not need to be stored ;e (Berlekamp's version), the proposé&M and RiBM

or updated.

The RiBM Algorithm

Initialization:
65:(0) = 1; 6,(0) =0 for i = 2t,2t+1,...,3t — 1. k(0)

Input: s;,¢ =0,1,...,2t — 1.
6:(0)=6.(0)=s;, (i=0,...,2t—1)
for r = 0 step1 until 2¢ — 1 do
begin
Step RIBM.1 &;(r 4+ 1) = 7(r) - 841 (1) = 8o () - 6;(r), (3
0,...,3%)
Step RIBM.2 if 8,(7) # 0 and k(r) > 0
then

begin
0.(r +1)=6,41(r), (1=0,1,...,3%)
Y(r + 1) = bo(r)
k(r+1)=—k(r)—1

end

else

begin
0;(r +1) =6;(r), (1 =0,1,...,3t);
Y(r+1) =(r)
E(r+1)=k(r)+1

end

end

systolic architectures requite- 1 more multipliers and more
multiplexers. All three architectures require the same numbers
of latches and adders and all three architectures regtiicg-

cles to solve the key equation fot-arror-correcting code. The
riBM andRiBM architectures require considerably more gates
than the conventionaBM architecture (Blahut’s version), but
also require onl\2t clock cycles as compared to tBeé clock
cycles required by the latter. Furthermore, since the critical
path delay in thaiBM and RiBM architectures is less than
half the critical path delay in either of tiBM architectures,

we conclude that the new architectures significantly reduce
the total time required to solve the key equation (and thus
achieve higher throughput) with only a modest increase in
gate count. More important, the regularity and scalability of
the riBM and RiBM architectures creates the potential for
automatically generating regular layouts (via a core generator)
with predictable delays for various valuestaindm.

Comparison of theiBM andRiBM architectures withkeE
architectures is complicated by the fact that most recent imple-
mentations uséldedarchitectures in which each processor el-
ement in the systolic array has only a few arithmetic units, and
these units carry out all the needed computations via time-di-
vision multiplexing. For example, the hypersystodE archi-
tecture in [2] hat + 1 processor elements each containing
only one multiplier and adder. Since each iteration of the Eu-
clidean algorithm requires four multiplications, the processors

650 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

TABLE |
COMPARISON OFHARDWARE COMPLEXITY AND PATH DELAYS

Architecture Adders | Multipliers | Latches | Muxes | Clock Critical
cycles path delay
iBM (Blahut) 24+1 | 3t+3 | 4+2 | t+1 | 3t | >2- (Tmus + Toda)
iBM (Berlekamp) 3t+1 | 5t+3 6t+2 | 2641 | 2t | >2- (Toure + Toad)
riBM 3t+1 6t + 2 6t+2 | 3t+1 | 2t Tt + Tada
RiBM 3t+1 6t + 2 6t+2 | 3t+1 | 2t Troutt + Tada
Euclidean [14] 4+2 | 8t+8 | 4t+4 | 848 | 2t | Tt + Tada + Tonux
Euclidean [2](folded) | 2t +1 2t+1 106+5 | 146+ 7 | 128 | Tputr + Toda + Tinux

of [2] need several multiplexers to route the various operandsdet the same way in all the processors—therenareell-spe-

the arithmetic units, and additional latches to store one addesific control signals.

until the other addend has been computed by the multiplier, etc5) Preliminary Layout ResultsPreliminary layout results

As a result, the architecture described in [2] requires not orfiyom a core generator are shown in Fig. 7 for KIS block

many more latches and multiplexers, but aisanymore clock for a four-error-correcting Reed—Solomon code oGéf(2%).

cyclesthanthéBM andRiBM architectures. Furthermore, theThe processing elemeREL is shown in Fig. 7(a) where the

critical path delay is slightly larger because of the multiplexergper eight latches store the eleméntwhile the lower eight

in the various paths. On the other hand, finite-field multipliedstches store the elemefjt. A completeRiBM architecture is

themselves consist of large numbers of gates (possibly as mahgwn in Fig. 7(b) where the 31 processing elements are ar-

as2m?, but fewer if logic minimization techniques are used)ayed diagonally and the error locator and error evaluator poly-

and, thus, a complete comparison of gate counts for the two aomials output latches can be seen to be arrayed vertically. The

chitectures requires very specific details about the multipliersitical path delay of th&kiBM architecture as reported by the

Nonetheless, a rough comparison is thatriBM andRiBM synthesis tool in SYNOPSYS was 2.13 ns in TSMC’s 0.2%

architectures require three times as many gates as the hyper8y&y CMOS technology.

tolic eE architecture, but solve the key equation in one-sixth the In the next section, we develop a pipelined architecture that

time. further reduces the critical path delay by as much as an order of
Itis, of course, possible to implement thg algorithm with magnitude by using block interleaveatode.

more complex processor elements, as described by Shao et al.

[14]. Here, the four multiplications in each processor are com- V. PIPELINED REED—-SOLOMON DECODERS

puted using four separate multipliers. The architecture describe

in [14] uses only2t 4 1 processors as compared to thte+ 1

PEOor PE1processors needed in thiBM andRiBM architec-

tures, but each processor in [14] has 4 multipliers, four mul

plexers, and two adders. As a result, tieM andRiBM ar-

chitectures compare very favorably to teE architecture o

[14]—the new architectures achieve the same (actually sligh) . . .
higher) throughput with much smaller complexity. eed—-Solomon code is a simple and efficient technique that can

One final point to be made with respect to the compariscgﬁduce the critical path delay in the decoder by an order of mag-

between theiBM andRiBM architectures and treE architec- nitude. We describe our results for. only tR&SM architecturg
tures is that the controllers for the systolic arrays in the form(QhF S(_actlon IV, _bUt the same techniques can also be a_pplled to
are actually much simpler. In theE architecture of [14], each the nBM grchltec_ture as well as to the decoder architectures
processor also has a “control section” that uses an arithmeqﬁscr'bed in Section III.

adder, comparator, and two multiplexezflog, ¢] bits of arith-
metic data are passed from processor to processor in the arfayBlock-Interleaved Reed-Solomon Codes

and these are used to generate multiplexer control signalsin each) Block Interleaving: Error-correcting codes for use on
processor. Similarly, theE architecture of [2] has a separatechannels in which errors occur in bursts are often interleaved
control circuit for each processor. The delays in these contsm that symbols from the same codeword are not transmitted
circuits are not accounted for in the critical path delays for thmnsecutively. A burst of errors thus causes single errors in
eE architectures that we have listed in Table I. In contrat, multiple codewords rather than multiple errors in a single
the multiplexers in theiBM andRiBM architectures receive codeword. The latter occurrence is undesirable since it can
the same signal and the computations in these architecturesdsily overwhelm the error-correcting capabilities of the code
purely systolic in the sense that all processors carry out exacyd cause a decoder failure or decoder error. Two types of
the same computation in each cycle, with all the multiplexensterleavers, block interleavers and convolutional interleavers,

dI'he iterations in the origindBM algorithm were pipelined
using thelook-aheadransformation [12] by Litet al. [9], and

ﬁhe same method can be applied to ti&M and RiBM al-
gorithms. However, such pipelining requires complex overhead
; and control hardware. On the other hapiheline interleaving

so described in [12]) of a decoder forbéock-interleaved

SARWATE AND SHANBHAG: HIGH-SPEED ARCHITECTURES FOR REED-SOLOMON DECODERS 651

k_g _ I
S AT
(IS
ol
SIS
iafis S
o
Zaeellerm—
)
! =
B
B ZE g P
oy =i
iDD:E[_J
@
i amsirid

(b)
Fig. 7. TheRiBM architecture synthesized in a 3.3 V, 0.25n CMOS
technology. (a) Th®E1 processing element. (b) TIRBM architecture.

...,¢1,¢0) have the property thate,—1)ar+i, Cn—2)M+is
ceesCMyinG), 0 <4 < M — 1, is a codeword in thén, k)
code. Equivalently, a codeword of tH@eAf, kM) code is a
multichannel data streanm which each of thedM channels
carries a codeword of ther, k) code.

2) Interleaving via Memory ArraysThe usual description
(see, e.g., [16], [18]) of an encoder for the block-interleaved
(nM,kM) code involves partitioningkM data symbols
(dppr—1,dppr—2,- - -, d1, do) into M blocks of & consecutive
symbols, and encoding each block into a codeword of the
(n, k) code. Next, thesé/ codewords are stored row wise
into an M x n memory array. The memory is then read out
column wise to form the block-interleaved codeword. Notice
that the block-interleaved codeword is systematic in the sense
that the parity-check symbols follow the data symbols, but the
Reed-Solomon encoding process described in Section II-A
results in a block-interleaved codeword

(CnMA, CnM—25+++, C(n—1)M > C(n—1)M —1) «)
= (demr—1, devr—1)—15- - - dhm1, dinr—2, - - -)

in which the data symbols ar®ttransmitted over the channel
in the order in which they entered the encotéit the receiver,
the interleaving process is reversed by storingthé received
symbols column-wise into ad/ x n memory array. The
memory is then read out row wise to forfd received words
of length » that can be decoded by a decoder for thek)
code. The information symbols appear in the correct order in
the deinterleaved stream and the decoder output is passed on to
the destination.

3) Embedded InterleaversAn alternative form of block
interleaving embeds the interleaver into the encoder, thereby
transforming it into an encoder for thénM, kM) code.

For interleaved Reed-Solomon codes, the mathematical
description of the encoding process is that the generator
polynomial of the interleaved code i§(»*), where G(»)
denotes the generator polynomial of the, &) code as de-
fined in (1), and the codeword is formed as described in
Section II-A, i.e., withD(z) now denoting the data polynomial
dk]w_lzk]w_l + dk]w_QZMW_Q + oo+ diz + dy of degree
kM — 1, the polynomialz("~*M D(%) is divided by G(z™)

to obtain the remaindeP(z) of degree(n — k)M — 1. The
transmitted codeword is™~*™ D(z) — P(z). In essence, the
data streanidins—1, dkar—2, - - ., d1, do) is treated as if it were

a multichannel data strearand the stream in each channel is
encoded with thén, k) code. The output of the encoder is a
codeword in the block-interleaved Reed—-Solomon code (no
separate interleaver is needed) and it has the property that the
data symbols are transmitted over the channel in the order in
which they entered the encoder.

The astute reader will have observed already that the encoder
for the (nM, kM) code is just alelay-scaled encoddor the
(n, k) code. The delay-scaling transformation of an architec-
ture replaces every delay (latch) in the architecture with
delays, and re-times the architecture to account for the addi-

are commonly used (see, e.g., [16], [18]). We restrict our atteignal delays. The encoder treats its input as a multichannel data

tion to block-interleaved codes.

Block-interleaving ann, k) code todepth A/ results in an

(nM, kM) interleaved code whose codewofdsys—1 , ¢par—2,

stream and produces a multichannel output data stream, that

4In fact, the data symbol ordering is that which is produced by interleaving
the data stream in blocks &fsymbols to depth/.

652 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

is, a block-interleaved Reed—Solomon codeword. Note also that
while the interleaver array has been eliminated, the delay-scaled

encoder used/ times as much memory as the conventional en- f
coder. ;
Block-interleaved Reed-Solomon codewords produced by @4 @ 101, 1 (Mr+)

delay-scaled encoders contain the data symbols in the correct L coF ;

Y M) LY (Mr+)
order. Thus, adelay-scaled decodetan be used to decode ! !
the received word ofwA{ symbols, and the output of the N ;)
decoder also will have the data symbols in the correct order. BMr) A (@2 ~ O(Mr)

Note that a separate deinterleaver array is not needed at the

receiver. However, the delay-scaled decoder ukkgimes

as much memory as the conventional decoder. For example,

delay-scaling thé’E1 processors in th&iBM architecture of

Fig. 6 results in the delay-scaled procesB#E1 shown in

Fig. 8. Note that fol0 < ¢ < 2¢ — 1, the top and bottom sets

of M latches inDPEL]; are initialized with the syndrome set

S?’]w_l = [87‘,70, Silyes 87‘,7]\4_1], Where&‘,’j is theith syn-

drome of thejth C(-)deword' Foet S ¢ < 3t — 1, the latches in Fig. 8. Delay-scaledDPE1 processor. Initial conditions in the latches

DPElz are initialized to zero while the latchesPE13, are are. indicated in ovals. The deIay-scaIédBM architecture is obtained by

initialized to1 € GF(2™). After 2¢M clock cycles, processorsreplacing thePE1 processors in Fig. 6 witBPE1 processor and delay-scaling

DPE1,-DPE1,_; contain the interleaved error-evaluatoghe control unit as well.

polynomials while processo®PE1,—DPE1,, contain the

interleaved error-locator polynomials. them-bit byte (1, Zm_2, .. ., 21, o) represents the Galois
We remark that delay-scaled decoders can also be usedigf elementX = z,,— 1™ 1+ &m_2a™ 2+ -+ 2,0+ 0.

decode block-interleaved Reed-Solomon codewords producedhe pipelined multiplier architecture is based on writing the

by memory array interleavers. However, the data symbols at fh@duct of twoGF (2) elementsX andY as

output of the decoder will still be interleaved and &h x &

memory array is needed for deinterleaving the datasymbolsinto XY = X (o + y1a + y20” + -+ - y_1a™)

—————

their correct order. This array is smaller than fex n array =Xyo+(Xa)y + (Xa)a)ys + - - -

needed to deinterleave tiié codewords prior to decoding with F (X)) - -)yt

a conventional decoder, but the conventional decoder also uses

less memory than the delay-scaled decoder. Letpp; denote the sum of the firsterms in the sum above. The

Delay-scaling the encoder and decoder eliminates sepanatdtiplier processing elemeMPE; shown in Fig. 9(a) com-
interleavers and deinterleaver and is thus a natural choice futespp;,; by adding eithetX o (if 3 = 1) or O (if 4; = 0)
generating and decoding block-interleaved Reed—Solomiarpp;. SimultaneoushMPE; multiplies X ¢? by «. Sincea is
codewords. However, a delay-scaled decoder has the sanwnstant, this multiplication requires ongr gates, and can
critical path delay as the original decoder, and hence canmet computed with a delay of onlf,,, = 7T,q4q4. On the other
achieve higher throughput than the original decoder. On thand, the delay in computingp, 11 iS T, = Twux + Tadd-
other hand, the extra delays can be usegipelinethe compu- Thus, the critical path delay is an order of magnitude smaller
tations in the critical path, and this leads to significantincreast®n T,ign = Tl + Taad, @and tremendous speed gains can
in the achievable throughput. We discuss this concept next. be achieved if the pipelined multiplier architecture is used in de-
coding a block-interleaved Reed—Solomon code. Practical con-
siderations such as the delays due to pipelining latches, clock
skew and jitter will prevent the fullest realization of the speed

The critical path delay in theiBM architecture is mostly due gains due to pipelining. Nevertheless, the pipelined multiplier
to the finite-field multipliers in the processors. For the delaystructure in combination with the systolic architecture will pro-
scaled processoBPEL shown in Fig. 8, these multipliers canvide significant gains over existing approaches.
be pipelined and the critical path delay reduced significantly. The pipelined multiplier thus consists of MPE processors
We assume thal/ > m and describe a pipelined finite-field connected as shown in Fig. 9(b) with inppis = 0, X and the
multiplier with m stages. »;'s. The initial conditions of the latches at thenput are zero,

1) A Pipelined Multiplier Architecture:While pipelining a and therefore the initial conditions of the lower latches in the
multiplier, especially if it is a feedforward structure, is trivia MPEs do not affect the circuit operation. The product” ap-
it is not so in this case. This is because for RS decoders thears in the upper latch 8IPE,,, ; afterm clock cycles and
pipelining should be done in such a manner that the initial condiach succeeding clock cycle thereafter computes a new product.
tions in the pipelining latches are consistent with the syndrormtice also that during the first: clock cycles, the initial con-
values generated by ti®Cblock. The design of finite-field mul- tents of the upper latches of tMPESs appear in succession at
tipliers depends on the choice of basis for the representatitime output ofMPE,,,_;. This property is crucial to the proper
Here, we consider only the standard polynomial basis in whidperation of our proposed pipelined decoder.

B. Pipelined Delay-Scaled Decoders

SARWATE AND SHANBHAG: HIGH-SPEED ARCHITECTURES FOR REED-SOLOMON DECODERS 653

PP QJ [: It— PP;

xaitt [] p—Xa

[sim1]

XY ¢+

T(m-1)D | [m2p |

Y-t /w2 1 %
(b)

<

Fig. 9. The pipelined multiplier block diagram. (a) The multiplier processing elenRE(. (b) The multiplier architecture. Initial conditions of the latches at
the y input are indicated in ovals.

@ ized toS?’d_1 at the begininng of every decoding cycle. Hence,

the retimed latches in the control unit will need to be initialized
"""""""""""""""" to values that are a function of syndror#s” *. This is not a
problem because these syndromes will be produced bgthe
block in the beginning of each decoding cycle.

3) Pipelined Processorsif pipelined multiplier units as de-
scribed above are used in a delay-scdadtE1 processor, and
the control unit is pipelined as described above, then we get the
pipelinedPPE1; processor shown in Fig. 10 (and the pipelined
RiBM (pRiBM) architecture also described in Fig. 10). The ini-

i tial values stored in the latches are the same as were described
; earlier for theDPE1 processors. Note that some of the latches
that store the coefficients @f(r, z) are part of the latches in the
pipelined multiplier. However, the initial values in the latches in
Fig. 10. PipelinedPPE1 processor. Initial conditions in the latches arethe lower multiplier in Fig. 10 are zero. Thus, during the first
indicated in ovals. The_pipelindaiBM architecture is obtain_ed by re_pla_cingm clock CyC|eS(Si,M—m, SMe—mAls-- s Si,M—l) flow through
gheelgylicglrlt’);aei(s)g[rsollrlleli|g. 6 witRPE1processor and employing the plpellnedinto the leftmost latches vyithout ?my change. -

From the above description, it should be obvious that the

RiBM architecture based on tH&PE1 processor of Fig. 10
2) The Pipelined Control Unit:If the pipelined multiplier Easl a criticall patﬁ delay of P 9

architecture described above (and shown in Fig. 9) is used In
the DPE1 processors of Fig. 8, the critical path delayBRE1 TorieM = Tadd + Toux <€ Triem = Tadd + Tt (13)

is reduced fromiy, ¢ + Thaa tO just Thux + Taaa. Thus, the))
control unit delay in computinIC(r), which is inconsequen- Thus, thepRIBM architecture can be clocked at speeds that can

tial in the RIBM architecture (as well as in thBM andriBM be as much as an order of magnitude higher than those achiev-

architectures, and the delay-scaled versions of all these), defét€ With the unpipelined architectures presented in Sections Il

mines the largest delay in a pipelinRiBM architecture. and IV.

Fortunately, the computation 8C(r) can also be pipelined i
in (say)d = [log, m]+1 stages. This can be done by noting that- Pecoders for Noninterleaved Codes
d delays fromDPE1], in the M -delay scaledRiBM architec- The pRIBM architecture can decode a block-interleaved
ture (see Fig. 8) can be retimed to the outputs of the control undde at significantly faster rates than tR68M architecture
and then subsequently employed to pipeline it. Note, howevean decode a noninterleaved code. In fact, the difference is
that thed latches iINDPE1, that are being retimed are initial-large enough that a designer who is asked to devise a decoder

Y Mr+) ‘<: -
B(uet) :W—‘ ®)

MC(Mr+j)

654 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

for noninterleaved codes should give serious thought to the4] H. O. Burton, “Inversionless decoding of binary BCH codel§EE
following design strategy. Trans. Inform. Theoryol. IT-17, pp. 464-466, Sept. 1971.

] [5] H.-C. Chang and C. Shung, “A Reed-Solomon product code (RS-PC)
» Read inM successive received words into an block-inter- decoder for DVD applications,” ifnt. Solid-State Circuits ConfSan

leaver memory array. Francisco, CA, Feb. 1998, pp. 390-391.

. . . . 6] H.-C. Chang and C. B. Shung, “New serial architectures for the
Rgad outa_block—mtgrleaved received word into a decoder! Berlekamp-Massey algorithm/EEE Trans. Communyol. 47, pp.
with the pRiBM architecture. 481-483, Apr. 1999.

« Decode the block-interleaved word and read out the thel7] M. A. Hasan, V. K. Bhargava, and T. Le-Ngo&eed-Solomon
Codes and Their ApplicationsS. B. Wicker and V. K. Bhargava,

data Symb0|s mFO a block-deinterleaver memory arraY' Eds. Piscataway, NJ: IEEE Press, 1994. Algorithms and architectures
« Read out the deinterleaved data symbols from the deinter- for a VLSI Reed-Solomon codec.
leaver array. [8] S. Kwon and H. Shin, “An area-efficient VLSI architecture of a

. o . . . Reed-Solomon decoder/encoder for digital VCR&$EE Trans.
Obviously, similar decoder design strategies can be used inother consumer Electronpp. 1019-1027, Nov. 1997.
situations as well. For example, to decode a convolutionally in-[9] :< J.R. Liu, Ad-\r:-_ Vr\{u, A.f Raghupathyl,t _anddgl. C_hen,I “Algorith_;n-btased
. H . ow-power an Igh-performance multimedia signal processiamce.
terleaved com_de, one can flrst.delnterlea_ve the received words, IEEE, vol. 86, pp. 1155-1202, June 1998.
and then re-interleave them into block-interleaved format fofio] J.L. Massey, “Shift-register synthesis and BCH decodifgEE Trans.
decoding. Similarly, if a block-interleaved code hasy large " anﬁffr- Thiorévﬁl- IT-15, SPE- 1,325122 Még- 19?_9- . ord
. f . . . Nelson, A. Rahman, an . McQuade, “ ystolic architectures for de-
mtgrleavmg deptI:M,.thepRllﬁM architecture may be too Iarge coding Reed-Solomon codes,” Rroc. Int. Conf. Application Specific
to implement on a single chip. In such a case, one can deinter- Array ProcessorsPrinceton, NJ, Sept. 1990, pp. 67—77.
leave first and then reinterleave to a suitable depth. In fact, thB2] :<-|_K- Parhi and D. S- M?Sfﬁerschmitt, “Pipegne interleaving and paral-
WA . ” elism in recursive digital filters—Parts | and II|[EEE Trans. Acoust.
delr_lterleave and reinterleave _strategy can be u_sed_to c_onstruct Speech Signal Processingl. 37, pp. 1099-1134, July 1989,
a universal decoder around a single decoder chip with fixed ink3] 1.'s. Reed, M. T. Shih, and T. K. Truong, “VLSI design of inverse-free
terleaving depth. Berlekamp—Massey algorithmProc. Inst. Elect. Engpt. E, vol. 138,
pp. 295-298, Sept. 1991.
[14] H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen, and I. S. Reed,
“A VLSI design of a pipeline Reed—Solomon decoddEEE Trans.
VI. CONCLUDING REMARKS Comput, vol. C-34, pp. 393-403, May 1985.

. . . [15] P. Tong, “A 40 MHz encoder-decoder chip generated by a
We have shown that the application of algorithmic transfor-~ ~ reed-Solomon code compiler,Proc. IEEE Custom Integrated

mations to the Berlekamp—Massey algorithm result i s Circuits Conf, pp. 13.5.1-13.5.4, May 1990.

andRiBM architectures whose critical path delay is less thari'6] R o Vf”ifé‘;‘giﬁg Rci\?edri”,% J.aS?e,{{i‘l‘;r_ﬂiﬂ"fgggeory for Engi-
half that of conventional architectures such asi8i archi- [17] s R Whﬁgker, J. A. Canaris, and K. B. Cameron, “Reed-Solomon
tecture. ThaiBM andRiBM architectures use systolic arrays VLSI codec for advanced televisionEEE Trans. Circuits Syst. Video
o denical pocessor elements.For blocknterleave codes, g, oMol Lip2o 2o e tsst
deinterleaver can be embedded in the decoder architecture via™ siorage Englewood Cliffs, NJ: Prentice-Hall, 1995.

delay scaling. Furthermore, pipelining the multiplications in the[19] W. Wilhelm, “A new scalable VLS| architecture for Reed—Solomon de-
delay-scaled architecture result in an order of magnitude reduc- ~ ¢0dersIEEE J. Solid-State Circuitsiol. 34, pp. 388-396, Mar. 1999.
tion in the critical path delay. In fact, the high speeds at which

the pRIBM architecture can operate makes it feasible to use it

to decodenoninterleavedtodes by the simple stratagem of in-

ternally interleaving the received words, decoding the resulting

interleaved word using thgRiBM architecture, and then de-in-
terleaving the output.

Future work is being directed toward integrated circuit imple
mentations of the proposed architectures and their incorporat
into broadband communications systems such as those for v
high-speed digital subscriber loops and wireless systems.

Dilip V. Sarwate (S'68-M'73-SM'78-F'90)
received the Bachelor of Science degree in physics
and mathematics from the University of Jabalpur,
Jabalpur, India, in 1965, the Bachelor of Engineering
degree in electrical communication engineering from
the Indian Institute of Science, Bangalore, India, in
1968, and the Ph.D. degree in electrical engineering
from Princeton University, Princeton, NJ, in 1973.
Since January 1973, he has been with the Univer-
sity of lllinois at Urbana-Champaign, where he is cur-
rently a Professor of Electrical and Computer Engi-
The authors would like to thank the reviewers for their comeering and a Research Professor in the Coordinated Science Laboratory. His

structive criticisms which has resulted in significant improv esearch interests are in the general areas of communication systems and in-
ormation theory, with emphasis on multiuser communications, error-control

ments in the manuscript. coding, and signal design.
Dr. Sarwate has served as the Treasurer of the IEEE Information Theory
Group, as an Associate Editor for Coding Theory of the IEEANSACTIONS
REEERENCES ON INFORMATION THEORY, and as a member of the editorial board of IEEE
PROCEEDINGS He was a Co-Chairman of the 18th, 19th, 31st, and Famtlal
[1] E.R.BerlekampAlgebraic Coding Theory New York: McGraw-Hill, Allerton Conferences on Communication, Control, and Compiaigin 1980,
1968. (revised ed.—Laguna Hills, CA: Aegean Park, 1984). 1981, 1993, and 1994, respectively. In 1985, he served as a Co-Chairman of the
[2] E. R. Berlekamp, G. Seroussi, and P. ToRged-Solomon Codes andArmy Research Office Workshop on Research Trends in Spread Spectrum Sys-
Their ApplicationsS. B. Wicker and V. K. Bhargava, Eds. Piscatawaytems. He has also been a member of the program committees for the IEEE Sym-
NJ: IEEE Press, 1994. A hypersystolic Reed—Solomon decoder. posia on Spread Spectrum Techniques and Their Applications (ISSSTA) and the
[3] R. E. Blahut,Theory and Practice of Error-Control CodesReading, 1998 and 2001 Conferences on Sequences and Their Applications (SETA), as
MA: Addison-Wesley, 1983. well as of several advisory committees for international conferences.

ACKNOWLEDGMENT

SARWATE AND SHANBHAG: HIGH-SPEED ARCHITECTURES FOR REED-SOLOMON DECODERS

Naresh R. Shanbhag(S’87-M'93) received the
B.Tech. degree from the Indian Institute of Tech-
nology, New Delhi, India, in 1988, the M.S. degree
from the Wright State University, Dayton, OH, in
1990, and the Ph.D. degree from the University of
Minnesota, Minneapolis, in 1993, all in electrical
engineering.

From July 1993 to August 1995, he worked
at AT&T Bell Laboratories, Murray Hill, NJ,
where he was responsible for the development
of VLSI algorithms, architectures, and imple-
mentation of broad-band data communications transceivers. In particular,
he was the lead chip architect for AT&T's 51.84 Mb/s transceiver chips
over twisted-pair wiring for asynchronous transfer mode (ATM)-LAN and
broad-band access chip sets. Since August 1995, he has been with the
Department of Electrical and Computer Engineering and the Coordinated
Science Laboratory, where he is presently an Associate Professor and the
Director of the lllinois Center for Integrated Microsystems. At the University
of lllinois, he founded the VLSI Information Processing Systems (ViPS) Group
(http://www.icims.csl.uiuc.edu/~shanbhag/vips), whose charter is to explore
issues related to low-power, high-performance, and reliable integrated circuit
implementations of broad-band communications and digital signal processing
systems spanning the algorithmic, architectural, and circuit domains. He has
published more than 90 journal articles/book chapters/conference publications
in this area and holds three U.S. patents. He is also a coauthor of the research
monograptPipelined Adaptive Digital FiltergNorwell, MA: Kluwer, 1994).

Dr. Shanbhag received the |IEEERANSACTIONS ON VERY LARGE SCALE
INTEGRATION (VLSI) SYSTEMS Best Paper Award, the 1999 IEEE Leon K.
Kirchmayer Best Paper Award, the 1999 Xerox Faculty Award, the National
Science Foundation CAREER Award in 1996, and the 1994 Darlington Best
Paper Award from the IEEE Circuits and Systems Society. Since July 1997,
he has been a Distinguished Lecturer for the IEEE Circuits and Systems
Society. From 1997 to 1999, he served as an Associate Editor for the IEEE
TRANSACTION ON CIRCUITS AND SYSTEMS: PART Il. He has also served on the
technical program committee of various international conferences.

655

