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Abstract—New high-speed VLSI architectures for decoding
Reed–Solomon codes with the Berlekamp–Massey algorithm
are presented in this paper. The speed bottleneck in the
Berlekamp–Massey algorithm is in the iterative computation of
discrepanciesfollowed by the updating of the error-locator poly-
nomial. This bottleneck is eliminated via a series of algorithmic
transformations that result in a fully systolic architecture in which
a single array of processors computes both the error-locator
and the error-evaluator polynomials. In contrast to conventional
Berlekamp–Massey architectures in which the critical path passes
through two multipliers and 1 + log

2
( + 1) adders, the

critical path in the proposed architecture passes through only one
multiplier and one adder, which is comparable to the critical path
in architectures based on the extended Euclidean algorithm. More
interestingly, the proposed architecture requires approximately
25% fewer multipliers and a simpler control structure than the
architectures based on the popular extended Euclidean algorithm.
For block-interleaved Reed–Solomon codes, embedding the
interleaver memory into the decoder results in a further reduction
of the critical path delay to just oneXOR gate and one multiplexer,
leading to speed ups of as much as an order of magnitude over
conventional architectures.

Index Terms—Interleaved codes, Berlekamp–Massey algorithm,
pipelined decoders, Reed–Solomon codes, systolic architectures.

I. INTRODUCTION

REED–SOLOMON codes [1], [3] are employed in nu-
merous communications systems such as those for deep

space, digital subscriber loops, and wireless systems as well as
in memory and data storage systems. Continual demand for ever
higher data rates makes it necessary to devise very high-speed
implementations of decoders for Reed–Solomon codes. Re-
cently reported decoder implementations [5], [19] have quoted
data rates of ranging from 144 Mb/s to 1.28 Gb/s. These high
throughputs have been achieved by architectural innovations
such as pipelining and parallel processing. A majority of the
implementations [2], [8], [15], [19] employ an architecture based
on the extended Euclidean (eE) algorithm for computing the
greatest common divisor of two polynomials [3]. A key advan-
tage of architectures based upon theeE algorithm is regularity.
In addition, the critical path delay in these architectures is at best

, where , and are the
delays of the finite-field multiplier, adder, and multiplexer
respectively, and this is sufficiently small for most applications.
In contrast, relatively few decoder implementations have em-
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ployed architectures based on the Berlekamp–Massey (BM )
algorithm [1], [3], [10], presumably because the architectures
were found to be irregular and to have a longer critical path delay
that was also dependent on the error-correcting capability of the
code [5]. In this paper, we show that, in fact, it is possible to refor-
mulate theBM algorithm to achieveextremelyregular decoder
architectures. Surprisingly, these new architectures cannot only
operate at data rates comparable to architectures based on theeE
algorithm, but they also have lower gate complexity and simpler
control structures.

This paper begins with a brief tutorial overview of the en-
coding and decoding of Reed–Solomon codes in Section II.
Conventional architectures for decoders based on theBM
algorithm are described in Section III. In Section IV, we show
that it is possible to algorithmically transform theBM algorithm
so that a homogenous systolic array architecture for the decoder
can be developed. Finally, in Section V, we describe a pipelined
architecture for block-interleaved Reed–Solomon codes that
achieves an order of magnitude reduction in the critical path
delay over the architectures presented in Sections III and IV.

II. REED–SOLOMON CODES

We provide a brief overview of the encoding and decoding of
Reed–Solomon codes.

A. Encoding of Reed–Solomon Codes

Let denote -bit data symbols
(bytes) that are to be transmitted over a communication channel
(or stored in memory). These bytes are regarded as elements
of the finite field (also called Galois field) ,1 and en-
coded into acodeword of bytes.
These codeword symbols are transmitted over the communica-
tion channel (or stored in memory).

For Reed–Solomon codes over is
odd, and the code can correct byte errors. The
encoding process is best described in terms of thedata polyno-
mial being
transformed into acodeword polynomial

. All codeword polynomials
are polynomial multiples of , thegenerator polynomialof
the code, which is defined as

(1)

1Addition (and subtraction) inGF(2 ) is the bit-by-bitXOR of the bytes.
The2 � 1 nonzero elements ofGF(2 ) can also be regarded as the powers,
� ; 0 � i � 2 � 2, of aprimitive element� (where� = 1 = � ) so
that the product of field elements� and� is � � � = � = � where
l � i + jmod (2 � 1).

1063–8210/01$10.00 © 2001 IEEE
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where is typically zero or one. However, other choices some-
times simplify the decoding process slightly. Sinceconsecu-
tive powers of are roots of ,
and is a multiple of , it follows that

(2)

for all codeword polynomials . In fact, an arbitrary poly-
nomial of degree less than is a codeword polynomial if and
only if it satisfies (2).

A systematicencoding produces codewords that are com-
prised of data symbols followed byparity-check symbolsand
is obtained as follows. Let and denote the quotient
and remainder respectively when the polynomial of
degree is divided by of degree . Thus,

where .
Clearly, is a mul-
tiple of . Furthermore, since the lowest degree term in

is while is of degree at most ,
it follows that the codeword is given by

and consists of the data symbols followed by the parity-check
symbols.

B. Decoding of Reed–Solomon Codes

Let denote the transmitted codeword polynomial and
let denote the received word polynomial. The input to the
decoder is , and it assumes that

where, if errors have occurred during transmission, the
error polynomial can be written as

It is conventional to say that theerror values have
occurred at theerror locations

. Note that the decoder does not know ; in fact, it does
not even know the value of. The decoder’s task is to deter-
mine from its input , and thus correct the errors by
subtracting off from . If , then such a calcula-
tion is always possible, that is,or fewer errors can always be
corrected.

The decoder begins its task of error correction by computing
thesyndrome values

(3)

If all syndrome values are zero, then is a codeword and
it is assumed that , that is, no errors have occurred.
Otherwise, the decoder knows that and uses thesyndrome
polynomial , which is defined to be

to calculate the error values and error locations. Define theerror
locator polynomial of degree and theerror evaluator
polynomial of degree at most to be

(4)

(5)

These polynomials are related to through thekey equation
[1], [3]:

(6)

Solving the key equation to determine both and from
is the hardest part of the decoding process. TheBM algo-

rithm (to be described in Section III) and theeEalgorithm can be
used to solve (6). If , these algorithms find and ,
but if , then the algorithms almost always fail to find
and . Fortunately, such failures are usually easily detected.

Once and have been found, the decoder can find
the error locations by checking whether for each
, . Usually, the decoder computes the value

of just before the -th received symbol leaves the
decoder circuit. This process is called aChien search[1], [3]. If

, then is one of the error locations (say ). In
other words, is in error, and needs to be corrected before it
leaves the decoder. The decoder can calculate the error value
to be subtracted from via Forney’s error value formula [3]

(7)

where denotes the formal
derivative of . Note that the formal derivative simplifies
to since we are considering codes
over . Thus, , which is just
the terms of odd degree in . Hence, the value of at

can be found during the evaluation of at
and does not require a separate computation. Note also that (7)
can be simplified by choosing .

C. Reed–Solomon Decoder Structure

In summary, a Reed–Solomon decoder consists of three
blocks:

• the syndrome computation (SC) block;
• the key-equation solver (KES) block;
• the Chien search and error evaluator (CSEE) block.

These blocks usually operate in pipelined mode in which the
three blocks are separately and simultaneously working on three
successive received words. TheSC block computes the syn-
dromes via (3) usually as the received word is entering the de-
coder. The syndromes are passed to theKES block which solves
(6) to determine the error locator and error evaluator polyno-
mials. These polynomials are then passed to theCSEE block,
which calculates the error locations and error values via (7) and
corrects the errors as the received word is being read out of the
decoder.
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Thethroughputbottleneck inReed–Solomondecoders is in the
KESblockwhichsolves(6): incontrast, theSCandCSEEblocks
are relatively straightforward to implement. Hence, in this paper
we focus on developing high-speed architectures for theKES
block. As mentioned earlier, the key equation (6) can be solved
via theeEalgorithm (see [19] and [17] for implementations), or
via theBM algorithm(see [5] for implementations). In thispaper,
we develop high-speed architectures for a reformulated version
of theBM algorithm because we believe that this reformulated
algorithm can be used to achieve much higher speeds than can be
achieved byother implementationsof theBM andeEalgorithms.
Furthermore, as we shall show in Section IV-B4, these new
architectures also have lower gate complexity and a simpler
control structure than architectures based on theeEalgorithm.

III. EXISTING BERLEKAMP–MASSEY(BM) ARCHITECTURES

In this section, we give a brief description of different ver-
sions of the Berlekamp–Massey (BM ) algorithm and then dis-
cuss a generic architecture, similar to that in the paper by Reed
et al. [13] for implementation of the algorithm.

A. The Berlekamp–Massey Algorithm

The BM algorithm is an iterative procedure for solving (6).
In the form originally proposed by Berlekamp [1], the algorithm
begins with polynomials and iter-
atively determines polynomials and satisfying
the polynomial congruence

for and, thus, obtains a solution and
to the key equation (6). Two “scratch” polynomials
and with initial values and

are used in the algorithm. For each successive
value of , the algorithm determines and from

and . Similarly, the algorithm determines
and from and . Since

has degree , and the other polynomials can have
degrees as large as, the algorithm needs to store roughly
field elements. If each iteration is completed in one clock cycle,
then clock cycles are needed to find the error-locator and
error-evaluator polynomials.

In recent years, most researchers have used the formulation
of theBM algorithm given by Blahut [3] in which only
and are computed iteratively. Following the completion
of the iterations, the error-evaluator polynomial is
computed as the terms of degree or less in the polyno-
mial product . An implementation of this version
thus needs to store only field elements, but the computation
of requires an additionalclock cycles. Although this
version of theBM algorithm trades off space against time, it
also suffers from the same problem as the Berlekamp version,
viz. during some of the iterations, it is necessary to divide each
coefficient of by a quantity . These divisions are most
efficiently handled by first computing , the inverse of ,
and then multiplying each coefficient of by . Unfor-
tunately, regardless of whether this method is used or whether
one constructs separate divider circuits for each coefficient of

, these divisions, which occur inside an iterative loop, are

more time consuming than multiplications. Obviously, if these
divisions could be replaced by multiplications, the resulting cir-
cuit implementation would have a smaller critical path delay and
higher clock speeds would be usable.2 A less well-known ver-
sion of theBM algorithm [4], [13], has precisely this property
and has been recently employed in practice [13], [5]. We focus
on this version of theBM algorithm in this paper.

The inversionlessBM (iBM ) algorithm is described by the
pseudocode shown below. TheiBM algorithm actually finds
scalar multiples and instead of the and

defined in (4) and (5). However, it is obvious that the Chien
search will find the same error locations and it follows from
(7) that the same error values are obtained. Hence, we continue
to refer to the polynomials computed by theiBM algorithm as

and . As a minor implementation detail, in (4)
and thus requires no latches for storage, but theiBM algorithm
must store . Note also that which occurs in Steps
iBM.2 andiBM.3 is a constant: it has value zero for all.

The iBM Algorithm

Initialization:

� (0) = b (0) = 1; � (0) = b (0) = 0 for i = 1; 2; . . . ; t. k(0) =

0. 
(0) = 1.

Input: s ; i = 0; 1; . . . ; 2t � 1.

for r = 0 step1 until 2t � 1 do

begin

Step iBM.1 �(r) = s �� (r)+s �� (r)+� � �+s �� (r)

Step iBM.2 � (r + 1) = 
(r) � � (r) � �(r)b (r); (i =

0; 1; . . . ; t)

Step iBM.3 if �(r) 6= 0 and k(r) � 0

then

begin

b (r + 1) = � (r); (i = 0; 1; . . . ; t)


(r + 1) = �(r)

k(r + 1) = �k(r)� 1

end

else

begin

b (r + 1) = b (r); (i = 0; 1; . . . ; t)


(r + 1) = 
(r)

k(r + 1) = k(r) + 1

end

end

for i = 0 step1 until t � 1 do

Step iBM.4 (2 ) = (2 )+ (2 )+ +

(2 )

Output: � (2t); i = 0; 1; . . . ; t. ! (2t); i = 0; 1; . . . ; t � 1.

For , StepiBM.1 includes terms
involving unknown quanti-

ties . Fortunately, it is known [3] that
so that

2The astute reader will have noticed that the Forney error value formula (7)
also involves a division. Fortunately, these divisions can bepipelinedbecause
they are feed-forwardcomputations. Similarly, the polynomial evaluations
needed in theCSEE block (as well as those in theSC block) are feed-forward
computations that can be pipelined. Unfortunately, the divisions in theKES
block occur inside an iterative loop and, hence, pipelining the computation
becomes difficult. Thus, as was noted in Section II, the throughput bottleneck
is in theKES block.
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Fig. 1. TheiBM architecture.

and therefore the unknown do not affect the value of .
Notice also the similarity between StepsiBM.1 and iBM.4.
These facts have been used to simplify the architecture that we
describe next.

B. Architectures Based on the iBM Algorithm

Due to the similarity of StepsiBM.1 andiBM.4, architectures
based on theiBM algorithm need only two major computational
structures as shown in Fig. 1.

• The discrepancy computation(DC) block for imple-
menting StepiBM.1.

• Theerror locator update(ELU ) block which implements
StepsiBM.2 andiBM.3 in parallel.

The DC block contains latches for storing the syndromes
, the arithmetic units for computing the discrepancy

and the control unit for the entire architecture. It is con-
nected to theELU block, which contains latches for storing for

and as well as arithmetic units for up-
dating these polynomials, as shown in Fig. 1. During a clock
cycle, theDC block computes the discrepancy and passes
this value together with and a control signal to
theELU block which updates the polynomials during the same
clock cycle. Since all arithmetic operations are com-
pleted in one clock cycle, we assume that-bit parallel arith-
metic units are being employed. Architectures for such Galois
field arithmetic units can be found in numerous references in-
cluding [7] and will not be discussed here.

1) DC Block Architecture:The DC block architec-
ture shown in Fig. 2 has latches constituting the DS
shift register that are initialized such that the latches

contain the syndromes
, respectively. In each of the first

clock cycles, the multipliers compute the products in
Step iBM.1. These are added in a binary adder tree of depth

to produce the discrepancy . Thus, the delay
in computing is .

A typical control unit such as the one illustrated in Fig. 2 has
counters for the variablesand , and storage for . Fol-
lowing the computation of , the control unit computes the
OR of the bits in to determine whether is nonzero.
This requires two-input OR gates arranged in a binary
tree of depth . If the counter for is implemented
in twos-complement representation, then if and only
if the most significant bit in the counter is 0. The delay in gener-
ating signal is thus .
Finally, once the signal is available, the counter for
can be updated. Notice that a twos-complement arithmetic addi-
tion is needed if . On the other hand, negation
in two’s-complement representation complements all the bits
and then adds one and, hence, the update
requires only the complementation of all the bits in the
counter. We note that it is possible to usering countersfor
and , in which case is updated just seconds after
the signal has been computed.

Following the clock cycles for theBM algorithm, theDC
block computes the error-locator polynomial in the next

clock cycles. To achieve this, the
latches are reset to zero during theth clock cycle, so that, at
the beginning of the -th clock cycle, the contents of
the DS register (see Fig. 2) are .
Also, the outputs of theELU block are frozen so that
these do not change during the computation of . From
Step iBM.4, it follows that the “discrepancies” computed
during the next clock cycles are just the coefficients

of . The architecture in
Fig. 2 is an enhanced version of the one described in [13].
The latter uses a slightly different structure and different
initialization of the DS register in theDC block, which requires
more storage and makes it less adaptable to the subsequent
computation of the error-locator polynomial.
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Fig. 2. The discrepancy computation (DC) block.

Note that the total hardware requirements of theDC block are
-bit latches, multipliers, adders, and miscellaneous

other circuitry (counters, arithmetic adder or ring counter, OR
gates, inverters and latches), in the control unit. From Fig. 2, the
critical path delay of theDC block is

2) ELU Block Architecture:Following the computation of
the discrepancy and the signal in theDC block,
the polynomial coefficient updates of StepsiBM.2 and iBM.3
are performed simultaneously in theELU block. The processor
elementPE0 (hereinafter thePE0 processor) that updates one
coefficient of and is illustrated in Fig. 3(a). The com-
pleteELU architecture is shown in Fig. 3(b), where we see that
signals , , and are broadcast to all thePE0pro-
cessors. In addition, the latches in all thePE0 processors are
initialized to zero except for , which has its latches ini-
tialized to the element . Notice that latches
and multipliers, and adders and multiplexers are needed.
The critical path delay of theELU block is given by

3) iBM Architecture: Ignoring the hardware used in the con-
trol section, the total hardware needed to implement theiBM

(a)

(b)

Fig. 3. The ELU block diagram. (a) ThePE0 processor. (b) TheELU
architecture. The latches inPE0 are initialized to1 2 GF(2 ) and those in
otherPE0s are initialized to zero.



646 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

algorithm is latches, multipliers, adders,
and multiplexers. The total time required to solve the key
equation for one codeword is clock cycles. Alternatively, if

is computed iteratively, the computations require only
clock cycles. However, since the computations required to

update are the same as that of , a near-duplicate
of the ELU block is needed.3 This increases the hardware re-
quirements to latches, multipliers, adders,
and multiplexers. In either case, the critical path delay of
the iBM architecture can be obtained from Figs. 1, 2, and 3 as

(8)

(9)

which is the delay of the direct path that begins in theDC block
starting from the latches, through a multiplier, an adder tree
of height (generating the signal ), feeding into
theELU blockmultiplierandadderbeforebeinglatched.Wehave
assumed that the indirect path taken by through the control
unit (generating signal ) feeding into theELU block mul-
tiplexer is faster thanthedirectpath, i.e.,

. This is a reasonable assumption in most technologies. Note
that more than half of is due to the delay in theDC block,
and that this contribution increases logarithmically with the error
correction capability. Thus, reducing the delay in theDC block is
the key to achieving higher speeds.

In the next section, we describe algorithmic reformulations
of the iBM algorithm that lead to a systolic architecture for the
DC block and reduce its critical path delay to .

IV. PROPOSEDREED–SOLOMON DECODERARCHITECTURES

The critical path iniBM architectures of the type described
in Section III passes throughtwo multipliers as well as the
adder tree structure in theDC block. The multiplier units
contribute significantly to the critical path delay and hence
reduce the throughput achievable with theiBM architecture.
In this section, we propose new decoder architectures that
have a smaller critical path delay. These architectures are
derived via algorithmic reformulation of theiBM algorithm.
This reformulatediBM (riBM ) algorithm computes thenext
discrepancy at the same time that it is computing the
currentpolynomial coefficient updates, that is, the ’s
and the ’s. This is possible because the reformulated
discrepancy computation does not use the ’s explicitly.
Furthermore, the discrepancy is computed in a block which has
thesamestructure as theELU block, so that both blocks have
the same critical path delay .

A. Reformulation of the iBM Algorithm

1) Simultaneous Computation of Discrepancies and
Updates: Viewing StepsiBM.2 and iBM.3 in terms of poly-
nomials, we see that StepiBM.2 computes

(10)

while StepiBM.3 sets either to or to
. Next, note that the discrepancy computed in Step

iBM.1 is actually , the coefficient of in the polynomial

3Sincedeg
(2t; z) < t, the array has onlyt PE0 processors.

product

(11)

Much faster implementations are possible if the decoder com-
putesall the coefficients of (and of

) even though only is needed to compute
and to decide whether is to be set to or to

.
Suppose that at the beginning of a clock cycle, the decoder has

available to it all the coefficients of and (and, of
course, of and as well). Thus, is
available at the beginning of the clock cycle, and the decoder can
compute and . Furthermore, it follows
from (10) and (11) that

while is set to either
or to . In short,

and are computed inexactlythe same
manner as are and . Furthermore, all
four polynomial updates can be computed simultaneously, and
all the polynomial coefficients as well as are thus
available at the beginning of thenextclock cycle.

2) A New Error-Evaluator Polynomial:The riBM
algorithm simultaneously updates four polynomials

, and with initial values
and .

The iterations thus produce the error-locator polynomial
and also the polynomial . Note that since

it follows from (11) that
the low-order coefficients of are just , that
is, the iterations computeboth the error-locator polynomial

and the error-evaluator polynomial —the
additional iterations of StepiBM.4 are not needed. The
high-order coefficients of can also be used for error
evaluation. Let , where

of degree at most contains the high-order terms.
Since is a root of , it follows from (11) that

. Thus, (7)
can be rewritten as

(12)

We next show that this variation of the error evaluation formula
has certain architectural advantages. Note that the choice

is preferable if (12) is to be used.
3) Further Reformulation:Since the updating of all four

polynomials is identical, the discrepancies can be calculated
using anELU block like the one described in Section III.
Unfortunately, for , the discrepancy
is computed in processor . Thus, multiplexers are needed
to route the appropriate latch contents to the control unit and
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to theELU block that computes and .
Additional reformulation of theiBM algorithm, as described
next, eliminates these multiplexers. We use the fact that for
any and cannot affect the value of any later
discrepancy . Consequently, we need not store

and for . Thus, for , define
and and the polynomials

and

with initial values . It follows that
these polynomial coefficients are updated as

while is set either to
or to . Note that

the discrepancy is always in a fixed
(zero-th) position with this form of update. As a final
comment, note this form of update ultimately produces

and, thus,
(12) can be used for error evaluation in theCSEE block.

The riBM algorithm is described by the following pseu-
docode. Note that for all values of , and
these quantities do not need to be stored or updated.

The riBM Algorithm

Initialization:

� (0) = b (0) = 1; � (0) = b (0) = 0 for i = 1; 2; . . . ; t. k(0) =

0. 
(0) = 1.

Input: s ; i = 0; 1; . . . ; 2t � 1.

�̂ (0) = �̂ (0) = s ; (i = 0; . . . ; 2t � 1)

for r = 0 step1 until 2t � 1 do

begin

Step riBM.1 � (r + 1) = 
(r) � � (r) � �̂ (r) � b (r); (i =

0; 1; . . . ; t)

�̂ (r+1) = 
(r)��̂ (r)��̂ (r)��̂ (r); (i = 0; . . . ; 2t�

1)

Step riBM.2 if �̂ (r) 6= 0 and k(r) � 0

then

begin

b (r + 1) = � (r); (i = 0; 1; . . . ; t)

�̂ (r + 1) = �̂ (r); (i = 0; 1; . . . ; 2t� 1)


(r + 1) = �̂ (r)

k(r + 1) = �k(r)� 1

end

else

begin

b (r + 1) = b (r); (i = 0; 1; . . . ; t)

�̂ (r + 1) = �̂ (r); (i = 0; 1; . . . ; 2t� 1);


(r + 1) = 
(r)

k(r + 1) = k(r) + 1

end

end

Output: � (2t); (i = 0; 1; . . . ; t); ! (2t) = �̂ (2t); (i =

0; 1; . . . ; t � 1)

(a)

(b)

Fig. 4. The rDC block diagram. (a) ThePE1 processor. (b) TherDC
architecture.

Next, we consider architectures that implement theriBM al-
gorithm.

B. High-Speed Reed–Solomon Decoder Architectures

As in theiBM architecture described in Section III, theriBM
architecture consists of a reformulated discrepancy computation
(rDC ) block connected to anELU block.

1) The rDC Architecture:TherDC block uses the processor
PE1 shown in Fig. 4(a) and therDC architecture shown in
Fig. 4(b). Notice that processorPE1 is very similar to processor
PE0of Fig. 3(a). However, the contents of the upper latch “flow
through” PE1 while the contents of the lower latch “recircu-
late”. In contrast, the lower latch contents “flow through” in
processorPE0 while the contents of the upper latch “recircu-
late”. Obviously, the hardware complexity and the critical path
delays of processorsPE0andPE1are identical. Thus, assuming
as before that , we get that

. Note that the delay is independent of
the error-correction capabilityof the code.

The hardware requirements of the proposed architecture in
Fig. 4 are PE1 processors, that is, latches, multipliers,

adders, and multiplexers, in addition to the control unit,
which is the same as that in Fig. 2.

2) The riBM Architecture:The overallriBM architecture is
shown in Fig. 5. It uses therDC block of Fig. 4 and theELU
block in Fig. 3. Note that the outputs of theELU block do not
feed back into therDC block. Both blocks have the same critical
path delay of and since they
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Fig. 5. The systolicriBM architecture.

operate in parallel, our proposedriBM architecture achieves the
same critical path delay:

which is less than half the delay
of the enhancediBM architecture.

As noted in the previous subsection, at the end of the-th it-
eration, the s, contain the coefficients of

whichcan be used for errorevaluation. Thus,clock
cycles are used to determine both and as needed in
(12). Ignoring the control unit, the hardware requirement of this
architecture is processors, that is, latches,
multipliers, adders, and multiplexers. This com-
pares very favorably with the latches, multipliers,

adders,and multiplexersneededto implement theen-
hancediBM architectureofSection III inwhichboth theerror-lo-
catorandtheerror-evaluatorpolynomialarecomputed inclock
cycles. Using only additional multipliers and additional
multiplexers,wehavereducedthecriticalpathdelaybymorethan
50%.Furthermore, theriBM architectureconsistsof twosystolic
arrays and is thus very regular.

3) The RiBM Architecture:We now show that it is possible
to eliminate theELU block entirely, and to implement theBM
algorithm in an enhancedrDC block in which the array of
PE1 processors has been lengthened into an array of
PE1 processors as shown in Fig. 6. In this completely systolic
architecture, asinglearray computesboth and .
Since the PE0processors eliminated from theELU block
re-appear as the additionalPE1 processors, theRiBM
architecture has the same hardware complexity and critical path

delay as theriBM architecture. However, its extremely regular
structure is esthetically pleasing, and also offers some advantage
in VLSI circuit layouts.

An array of PE0 processors in theriBM architecture (see
Fig. 5) carries out the samepolynomialcomputation as an array
of PE1 processors in theRiBM architecture (see Fig. 6), but in
the latter array, the polynomial coefficients shift left with each
clock pulse. Thus, in theRiBM architecture, suppose that the
initial loading of is as in Fig. 4,
while are loaded with zeros,
and the latches in are loaded with . Then,
as the iterations proceed, the polynomials and
are updated in the processors in the left-hand end of the array
(effectively, and get updated and shifted left-
wards). After clock cycles, the coefficients of are
in processors – . Next, note that contains

and , and as the iterations proceed, and
shift leftwards through the processors in the right-hand

end of the array, with and being stored in processor
. After clock cycles, processor contains

and for . Thus, the same array is
carrying out two separate computations. These computations do
not interfere with one another. Polynomials and
are stored in processors numbered or higher. On the other
hand, since , it follows
that where
is known to be an upper bound on . It is known [3]
that is a nondecreasing function ofand that it has max-
imum value if errors have occurred. Hence,

for all , and thus, as
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Fig. 6. The homogenous systolicRiBM architecture.

and shift leftwards, they do not over-write the
coefficients of and .

We denote the contents of the array in theRiBM architec-
ture as polynomials and with initial values

. Then, theRiBM architecture
implements the following pseudocode. Note that
for all values of , and this quantity does not need to be stored
or updated.

The RiBM Algorithm

Initialization:
~� (0) = 1; ~� (0) = 0 for i = 2t; 2t + 1; . . . ; 3t � 1. k(0) =

0. 
(0) = 1.

Input: s ; i = 0; 1; . . . ; 2t � 1.
~� (0) = ~� (0) = s ; (i = 0; . . . ; 2t � 1)

for r = 0 step1 until 2t � 1 do

begin

Step RiBM.1 ~� (r + 1) = 
(r) � ~� (r) � ~� (r) � ~� (r); (i =

0; . . . ; 3t)

Step RiBM.2 if ~� (r) 6= 0 and k(r) � 0

then

begin
~� (r + 1) = ~� (r); (i = 0; 1; . . . ; 3t)


(r + 1) = ~� (r)

k(r + 1) = �k(r)� 1

end

else

begin
~� (r + 1) = ~� (r); (i = 0; 1; . . . ; 3t);


(r + 1) = 
(r)

k(r + 1) = k(r) + 1

end

end

Output: � (2t) = ~� (2t); (i = 0; 1; . . . ; t); ! (2t) =
~� (2t); (i = 0; 1; . . . ; t � 1):

4) Comparison of Architectures:Table I summarizes the
complexity of the various architectures described so far. It can
be seen that, in comparison to the conventionaliBM archi-
tecture (Berlekamp’s version), the proposedriBM andRiBM
systolic architectures require more multipliers and more
multiplexers. All three architectures require the same numbers
of latches and adders and all three architectures requirecy-
cles to solve the key equation for a-error-correcting code. The
riBM andRiBM architectures require considerably more gates
than the conventionaliBM architecture (Blahut’s version), but
also require only clock cycles as compared to the clock
cycles required by the latter. Furthermore, since the critical
path delay in theriBM and RiBM architectures is less than
half the critical path delay in either of theiBM architectures,
we conclude that the new architectures significantly reduce
the total time required to solve the key equation (and thus
achieve higher throughput) with only a modest increase in
gate count. More important, the regularity and scalability of
the riBM and RiBM architectures creates the potential for
automatically generating regular layouts (via a core generator)
with predictable delays for various values ofand .

Comparison of theriBM andRiBM architectures witheE
architectures is complicated by the fact that most recent imple-
mentations usefoldedarchitectures in which each processor el-
ement in the systolic array has only a few arithmetic units, and
these units carry out all the needed computations via time-di-
vision multiplexing. For example, the hypersystoliceE archi-
tecture in [2] has processor elements each containing
only one multiplier and adder. Since each iteration of the Eu-
clidean algorithm requires four multiplications, the processors
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TABLE I
COMPARISON OFHARDWARE COMPLEXITY AND PATH DELAYS

of [2] need several multiplexers to route the various operands to
the arithmetic units, and additional latches to store one addend
until the other addend has been computed by the multiplier, etc.
As a result, the architecture described in [2] requires not only
many more latches and multiplexers, but alsomanymore clock
cycles than theriBM andRiBM architectures. Furthermore, the
critical path delay is slightly larger because of the multiplexers
in the various paths. On the other hand, finite-field multipliers
themselves consist of large numbers of gates (possibly as many
as , but fewer if logic minimization techniques are used)
and, thus, a complete comparison of gate counts for the two ar-
chitectures requires very specific details about the multipliers.
Nonetheless, a rough comparison is that theriBM andRiBM
architectures require three times as many gates as the hypersys-
tolic eEarchitecture, but solve the key equation in one-sixth the
time.

It is, of course, possible to implement theeE algorithm with
more complex processor elements, as described by Shao et al.
[14]. Here, the four multiplications in each processor are com-
puted using four separate multipliers. The architecture described
in [14] uses only processors as compared to the
PE0orPE1processors needed in theriBM andRiBM architec-
tures, but each processor in [14] has 4 multipliers, four multi-
plexers, and two adders. As a result, theriBM andRiBM ar-
chitectures compare very favorably to theeE architecture of
[14]—the new architectures achieve the same (actually slightly
higher) throughput with much smaller complexity.

One final point to be made with respect to the comparison
between theriBM andRiBM architectures and theeEarchitec-
tures is that the controllers for the systolic arrays in the former
are actually much simpler. In theeE architecture of [14], each
processor also has a “control section” that uses an arithmetic
adder, comparator, and two multiplexers. bits of arith-
metic data are passed from processor to processor in the array,
and these are used to generate multiplexer control signals in each
processor. Similarly, theeE architecture of [2] has a separate
control circuit for each processor. The delays in these control
circuits are not accounted for in the critical path delays for the
eE architectures that we have listed in Table I. In contrast,all
the multiplexers in theriBM andRiBM architectures receive
the same signal and the computations in these architectures is
purely systolic in the sense that all processors carry out exactly
the same computation in each cycle, with all the multiplexers

set the same way in all the processors—there areno cell-spe-
cific control signals.

5) Preliminary Layout Results:Preliminary layout results
from a core generator are shown in Fig. 7 for theKES block
for a four-error-correcting Reed–Solomon code over .
The processing elementPE1 is shown in Fig. 7(a) where the
upper eight latches store the elementwhile the lower eight
latches store the element. A completeRiBM architecture is
shown in Fig. 7(b) where the 13PE1processing elements are ar-
rayed diagonally and the error locator and error evaluator poly-
nomials output latches can be seen to be arrayed vertically. The
critical path delay of theRiBM architecture as reported by the
synthesis tool in SYNOPSYS was 2.13 ns in TSMC’s 0.25m
3.3 V CMOS technology.

In the next section, we develop a pipelined architecture that
further reduces the critical path delay by as much as an order of
magnitude by using ablock interleavedcode.

V. PIPELINED REED–SOLOMON DECODERS

The iterations in the originalBM algorithm were pipelined
using thelook-aheadtransformation [12] by Liuet al. [9], and
the same method can be applied to theriBM and RiBM al-
gorithms. However, such pipelining requires complex overhead
and control hardware. On the other hand,pipeline interleaving
(also described in [12]) of a decoder for ablock-interleaved
Reed–Solomon code is a simple and efficient technique that can
reduce the critical path delay in the decoder by an order of mag-
nitude. We describe our results for only theRiBM architecture
of Section IV, but the same techniques can also be applied to
the riBM architecture as well as to the decoder architectures
described in Section III.

A. Block-Interleaved Reed–Solomon Codes

1) Block Interleaving: Error-correcting codes for use on
channels in which errors occur in bursts are often interleaved
so that symbols from the same codeword are not transmitted
consecutively. A burst of errors thus causes single errors in
multiple codewords rather than multiple errors in a single
codeword. The latter occurrence is undesirable since it can
easily overwhelm the error-correcting capabilities of the code
and cause a decoder failure or decoder error. Two types of
interleavers, block interleavers and convolutional interleavers,
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(a)

(b)

Fig. 7. The RiBM architecture synthesized in a 3.3 V, 0.25�m CMOS
technology. (a) ThePE1processing element. (b) TheRiBM architecture.

are commonly used (see, e.g., [16], [18]). We restrict our atten-
tion to block-interleaved codes.

Block-interleaving an code todepth results in an
interleaved code whose codewords

have the property that
, is a codeword in the

code. Equivalently, a codeword of the code is a
multichannel data streamin which each of the channels
carries a codeword of the code.

2) Interleaving via Memory Arrays:The usual description
(see, e.g., [16], [18]) of an encoder for the block-interleaved

code involves partitioning data symbols
into blocks of consecutive

symbols, and encoding each block into a codeword of the
code. Next, these codewords are stored row wise

into an memory array. The memory is then read out
column wise to form the block-interleaved codeword. Notice
that the block-interleaved codeword is systematic in the sense
that the parity-check symbols follow the data symbols, but the
Reed–Solomon encoding process described in Section II-A
results in a block-interleaved codeword

in which the data symbols arenot transmitted over the channel
in the order in which they entered the encoder.4 At the receiver,
the interleaving process is reversed by storing the received
symbols column-wise into an memory array. The
memory is then read out row wise to form received words
of length that can be decoded by a decoder for the
code. The information symbols appear in the correct order in
the deinterleaved stream and the decoder output is passed on to
the destination.

3) Embedded Interleavers:An alternative form of block
interleaving embeds the interleaver into the encoder, thereby
transforming it into an encoder for the code.
For interleaved Reed-Solomon codes, the mathematical
description of the encoding process is that the generator
polynomial of the interleaved code is , where
denotes the generator polynomial of the code as de-
fined in (1), and the codeword is formed as described in
Section II-A, i.e., with now denoting the data polynomial

of degree
, the polynomial is divided by

to obtain the remainder of degree . The
transmitted codeword is . In essence, the
data stream is treated as if it were
a multichannel data streamand the stream in each channel is
encoded with the code. The output of the encoder is a
codeword in the block-interleaved Reed–Solomon code (no
separate interleaver is needed) and it has the property that the
data symbols are transmitted over the channel in the order in
which they entered the encoder.

The astute reader will have observed already that the encoder
for the code is just adelay-scaled encoderfor the

code. The delay-scaling transformation of an architec-
ture replaces every delay (latch) in the architecture with
delays, and re-times the architecture to account for the addi-
tional delays. The encoder treats its input as a multichannel data
stream and produces a multichannel output data stream, that

4In fact, the data symbol ordering is that which is produced by interleaving
the data stream in blocks ofk symbols to depthM .
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is, a block-interleaved Reed–Solomon codeword. Note also that
while the interleaver array has been eliminated, the delay-scaled
encoder uses times as much memory as the conventional en-
coder.

Block-interleaved Reed–Solomon codewords produced by
delay-scaled encoders contain the data symbols in the correct
order. Thus, adelay-scaled decodercan be used to decode
the received word of symbols, and the output of the
decoder also will have the data symbols in the correct order.
Note that a separate deinterleaver array is not needed at the
receiver. However, the delay-scaled decoder usestimes
as much memory as the conventional decoder. For example,
delay-scaling thePE1 processors in theRiBM architecture of
Fig. 6 results in the delay-scaled processorDPE1 shown in
Fig. 8. Note that for , the top and bottom sets
of latches in are initialized with the syndrome set

, where is the th syn-
drome of the th codeword. For , the latches in

are initialized to zero while the latches in are
initialized to . After clock cycles, processors

– contain the interleaved error-evaluator
polynomials while processors – contain the
interleaved error-locator polynomials.

We remark that delay-scaled decoders can also be used to
decode block-interleaved Reed–Solomon codewords produced
by memory array interleavers. However, the data symbols at the
output of the decoder will still be interleaved and an
memory array is needed for deinterleaving the data symbols into
their correct order. This array is smaller than the array
needed to deinterleave the codewords prior to decoding with
a conventional decoder, but the conventional decoder also uses
less memory than the delay-scaled decoder.

Delay-scaling the encoder and decoder eliminates separate
interleavers and deinterleaver and is thus a natural choice for
generating and decoding block-interleaved Reed–Solomon
codewords. However, a delay-scaled decoder has the same
critical path delay as the original decoder, and hence cannot
achieve higher throughput than the original decoder. On the
other hand, the extra delays can be used topipelinethe compu-
tations in the critical path, and this leads to significant increases
in the achievable throughput. We discuss this concept next.

B. Pipelined Delay-Scaled Decoders

The critical path delay in theRiBM architecture is mostly due
to the finite-field multipliers in the processors. For the delay-
scaled processorsDPE1 shown in Fig. 8, these multipliers can
be pipelined and the critical path delay reduced significantly.
We assume that and describe a pipelined finite-field
multiplier with stages.

1) A Pipelined Multiplier Architecture:While pipelining a
multiplier, especially if it is a feedforward structure, is trivial,
it is not so in this case. This is because for RS decoders the
pipelining should be done in such a manner that the initial condi-
tions in the pipelining latches are consistent with the syndrome
values generated by theSCblock. The design of finite-field mul-
tipliers depends on the choice of basis for the representation.
Here, we consider only the standard polynomial basis in which

Fig. 8. Delay-scaledDPE1 processor. Initial conditions in the latches
are indicated in ovals. The delay-scaledRiBM architecture is obtained by
replacing thePE1 processors in Fig. 6 withDPE1 processor and delay-scaling
the control unit as well.

the -bit byte represents the Galois
field element .

The pipelined multiplier architecture is based on writing the
product of two elements and as

Let denote the sum of the firstterms in the sum above. The
multiplier processing element shown in Fig. 9(a) com-
putes by adding either (if ) or 0 (if )
to . Simultaneously, multiplies by . Since is
a constant, this multiplication requires onlyXOR gates, and can
be computed with a delay of only . On the other
hand, the delay in computing is .
Thus, the critical path delay is an order of magnitude smaller
than , and tremendous speed gains can
be achieved if the pipelined multiplier architecture is used in de-
coding a block-interleaved Reed–Solomon code. Practical con-
siderations such as the delays due to pipelining latches, clock
skew and jitter will prevent the fullest realization of the speed
gains due to pipelining. Nevertheless, the pipelined multiplier
structure in combination with the systolic architecture will pro-
vide significant gains over existing approaches.

The pipelined multiplier thus consists of MPE processors
connected as shown in Fig. 9(b) with inputs and the

’s. The initial conditions of the latches at theinput are zero,
and therefore the initial conditions of the lower latches in the
MPEs do not affect the circuit operation. The product ap-
pears in the upper latch of after clock cycles and
each succeeding clock cycle thereafter computes a new product.
Notice also that during the first clock cycles, the initial con-
tents of the upper latches of theMPEs appear in succession at
the output of . This property is crucial to the proper
operation of our proposed pipelined decoder.



SARWATE AND SHANBHAG: HIGH-SPEED ARCHITECTURES FOR REED–SOLOMON DECODERS 653

(a)

(b)

Fig. 9. The pipelined multiplier block diagram. (a) The multiplier processing element (MPE). (b) The multiplier architecture. Initial conditions of the latches at
they input are indicated in ovals.

Fig. 10. PipelinedPPE1 processor. Initial conditions in the latches are
indicated in ovals. The pipelinedRiBM architecture is obtained by replacing
thePE1processors in Fig. 6 withPPE1processor and employing the pipelined
delay-scaled controller.

2) The Pipelined Control Unit:If the pipelined multiplier
architecture described above (and shown in Fig. 9) is used in
theDPE1 processors of Fig. 8, the critical path delay ofDPE1
is reduced from to just . Thus, the
control unit delay in computing , which is inconsequen-
tial in theRiBM architecture (as well as in theiBM andriBM
architectures, and the delay-scaled versions of all these), deter-
mines the largest delay in a pipelinedRiBM architecture.

Fortunately, the computation of can also be pipelined
in (say) stages. This can be done by noting that

delays from in the -delay scaledRiBM architec-
ture (see Fig. 8) can be retimed to the outputs of the control unit
and then subsequently employed to pipeline it. Note, however,
that the latches in that are being retimed are initial-

ized to at the begininng of every decoding cycle. Hence,
the retimed latches in the control unit will need to be initialized
to values that are a function of syndromes . This is not a
problem because these syndromes will be produced by theSC
block in the beginning of each decoding cycle.

3) Pipelined Processors:If pipelined multiplier units as de-
scribed above are used in a delay-scaledDPE1 processor, and
the control unit is pipelined as described above, then we get the
pipelined processor shown in Fig. 10 (and the pipelined
RiBM (pRiBM ) architecture also described in Fig. 10). The ini-
tial values stored in the latches are the same as were described
earlier for theDPE1 processors. Note that some of the latches
that store the coefficients of are part of the latches in the
pipelined multiplier. However, the initial values in the latches in
the lower multiplier in Fig. 10 are zero. Thus, during the first

clock cycles flow through
into the leftmost latches without any change.

From the above description, it should be obvious that the
pRiBM architecture based on thePPE1 processor of Fig. 10
has a critical path delay of

(13)

Thus, thepRiBM architecture can be clocked at speeds that can
be as much as an order of magnitude higher than those achiev-
able with the unpipelined architectures presented in Sections III
and IV.

C. Decoders for Noninterleaved Codes

The pRiBM architecture can decode a block-interleaved
code at significantly faster rates than theRiBM architecture
can decode a noninterleaved code. In fact, the difference is
large enough that a designer who is asked to devise a decoder
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for noninterleaved codes should give serious thought to the
following design strategy.

• Read in successive received words into an block-inter-
leaver memory array.

• Read out a block-interleaved received word into a decoder
with thepRiBM architecture.

• Decode the block-interleaved word and read out the the
data symbols into a block-deinterleaver memory array.

• Read out the deinterleaved data symbols from the deinter-
leaver array.

Obviously, similar decoder design strategies can be used in other
situations as well. For example, to decode a convolutionally in-
terleaved code, one can first deinterleave the received words,
and then re-interleave them into block-interleaved format for
decoding. Similarly, if a block-interleaved code hasvery large
interleaving depth , thepRiBM architecture may be too large
to implement on a single chip. In such a case, one can deinter-
leave first and then reinterleave to a suitable depth. In fact, the
“deinterleave and reinterleave” strategy can be used to construct
a universal decoder around a single decoder chip with fixed in-
terleaving depth.

VI. CONCLUDING REMARKS

We have shown that the application of algorithmic transfor-
mations to the Berlekamp–Massey algorithm result in theriBM
andRiBM architectures whose critical path delay is less than
half that of conventional architectures such as theiBM archi-
tecture. TheriBM andRiBM architectures use systolic arrays
of identical processor elements. For block-interleaved codes, the
deinterleaver can be embedded in the decoder architecture via
delay scaling. Furthermore, pipelining the multiplications in the
delay-scaled architecture result in an order of magnitude reduc-
tion in the critical path delay. In fact, the high speeds at which
thepRiBM architecture can operate makes it feasible to use it
to decodenoninterleavedcodes by the simple stratagem of in-
ternally interleaving the received words, decoding the resulting
interleaved word using thepRiBM architecture, and then de-in-
terleaving the output.

Future work is being directed toward integrated circuit imple-
mentations of the proposed architectures and their incorporation
into broadband communications systems such as those for very
high-speed digital subscriber loops and wireless systems.
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