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ABSTRACT

Sequence alignment is a long standing problem in
bioinformatics. The Basic Local Alignment Search
Tool (BLAST) is one of the most popular and fun-
damental alignment tools. The explosive growth of
biological sequences calls for speedup of sequence
alignment tools such as BLAST. To this end, we de-
velop high speed BLASTN (HS-BLASTN), a parallel
and fast nucleotide database search tool that ac-
celerates MegaBLAST––the default module of NCBI-
BLASTN. HS-BLASTN builds a new lookup table us-
ing the FMD-index of the database and employs an
accurate and effective seeding method to find short
stretches of identities (called seeds) between the
query and the database. HS-BLASTN produces the
same alignment results as MegaBLAST and its com-
putational speed is much faster than MegaBLAST.
Specifically, our experiments conducted on a 12-core
server show that HS-BLASTN can be 22 times faster
than MegaBLAST and exhibits better parallel per-
formance than MegaBLAST. HS-BLASTN is written
in C++ and the related source code is available at
https://github.com/chenying2016/queries under the
GPLv3 license.

INTRODUCTION

Identifying sequences (in a target database) having statis-
tically significant local alignments with a given query is
routine in computational biology. BLAST (1,2), a heuris-
tic search tool developed for this purpose, has found sub-
stantial applications in protein science (3) such as secondary
and tertiary structure prediction (4), functional annotation
(5) and orthology mapping (6), and in nucleotide science
including human genome variation detection (7) and gene
prediction (8). BLAST builds a lookup table for the query,
and scans the database for seeds, which are heuristic points
for significant local alignments. These seeds are then ex-

tended to longer ungapped alignments and finally to gapped
alignments.

Searching homologous sequences in a target database is a
bottleneck in bioinformatics due to the exponential growth
in the number of biological sequences (3). As a result, the
acceleration of BLAST is an important problem. Over the
past years, many methods were proposed to address this is-
sue. They can be divided into two categories: hardware ac-
celeration and improved indexing.

Hardware methods may either utilize parallel comput-
ing (9,10) or use custom-designed hardware such as field-
programmable gate arrays (FPGAs) (11,12) and graphic
processing units (GPUs) (13,14) to increase speed.10

The second category, improved indexing, creates an index
for the database (15), instead of indexing the query as in
BLAST. Widely used software packages belonging to this
category include SSAHA (16), miBLAST (17), BLAT (18),
indexed MegaBLAST (19), usearch (20) and DIAMOND
(21).

MegaBLAST is currently the default module called from
the program NCBI-BLASTN, which is a local nucleotide
database search tool from the NCBI BLAST software dis-
tribution. Among the many solutions mentioned above, in-
dexed MegaBLAST (19) and G-BLASTN (14) are dedi-
cated to accelerating MegaBLAST and producing the same
alignment results as MegaBLAST. Indexed MegaBLAST
accelerates MegaBLAST by building an index for the target
database. It stores the locations of each k-mer (w ≥ k) that
ends at every s-th (s = w − k + 1) position in the database
(19). The seed search algorithm first identifies k-seeds by us-
ing the index, and then checks if each k-seed is contained
in a w-seed. The experiments conducted in (19) showed
that it is 2–4 times faster than MegaBLAST. However,
the checking procedure can be time-consuming when the
queries are long and the database is large. The other search
tool, G-BLASTN is an open-source GPU alternative. It uti-
lizes GPUs in parallelizing the scanning stage of NCBI-
BLASTN. Compared with the sequential MegaBLAST, G-
BLASTN is 14.8 times faster.
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The goal of this paper is to introduce HS-BLASTN, a
parallel nucleotide sequence alignment tool that produces
the same outputs as MegaBLAST with much faster com-
puting speed. Formally, HS-BLASTN is a Burrow-Wheeler
Transform (BWT) based solution to sequence alignment
(see (22) for the definition of BWT). Over the past years,
the BWT has been used intensively in next-generation se-
quencing (NGS) analysis. Many packages, such as Bowtie2
(23), BWA (24), cushaw2 (25), use the BWT as an index-
ing technique to map the NGS sequences (always con-
tained in FASTQ format files) to the reference genomes.
We adopt this indexing technique for the field of ge-
nomic database search––identifying all the statistically sig-
nificant local alignments between a nucleotide query and
a nucleotide database. Precisely, we use this data structure
to accelerate MegaBLAST and produce the identical re-
sults. To do this HS-BLASTN employs a new database-
derived lookup table based on the FMD-index introduced
recently in (26), and uses an accurate and effective seeding
method. This seeding method finds all seeds identified by
MegaBLAST. HS-BLASTN is especially suitable for align-
ing a huge number of queries against a large database. Our
experiments on searching two large query sets against the
human genomic database show that HS-BLASTN achieves
a significant speedup over MegaBLAST and much better
parallel performance.

In this paper, we first review the procedure of
MegaBLAST and the definitions of the FMD-index,
and then describe the implementation of HS-BLASTN,
including the lookup table, the seeding algorithm and
the ungapped extension method. Finally, we compare
the performances of HS-BLASTN and MegaBLAST by
conducting experiments.

MATERIALS AND METHODS

The MegaBLAST search procedure consists of three stages:
the setup stage, the preliminary search stage and the trace-
back stage. At the setup stage, MegaBLAST prepares the
options, queries and database, and then builds the lookup
table for the queries. At the preliminary search stage, it scans
each subject, finds seeds using the lookup table and per-
forms a gap-free alignment algorithm on these seeds. The
gap-free alignments exceeding a threshold score will trig-
ger a gapped alignment. Those gapped alignments, whose
scores exceed another threshold, will be saved as prelim-
inary matches. Finally, the traceback stage considers the
ambiguous nucleotides from the preliminary matches and
returns them with the traceback information added. The
traceback information includes the number and positions
of insertions, deletions and matching letters.

The lookup table in MegaBLAST is a hash table. Each
entry of the lookup table is an offset list that stores for one
k-mer the offsets from the queries where the k-mer occurs.
Since each letter is taken from {A, C, G, T}, the lookup ta-
ble has 4k entries. In the second stage, MegaBLAST walks
through each subject to find w-seeds. Here it scans each
of the subject’s k-mer, calculates the k-mer’s hash value,
queries the lookup table and fetches the corresponding off-
set list. Each offset in the list yields a k-seed, which is
a match of k consecutive nucleotides between the query

and the subject. If w is larger than k, we must also deter-
mine if this k-seed is contained in a w-seed. In that case,
MegaBLAST scans the database in strides. The maximum
stride that ensures that we can find all seeds is s = w − k +
1. See (27,19,14) for more details.

The execution time of BLAST scales linearly in the size of
the target sequence dataset. However, the sequence datasets
grow exponentially making the acceleration of BLAST a
pressing issue.

Many profiling studies (13,14) have revealed that the pre-
liminary stage is the most computationally intensive stage
among the three stages in BLAST and therefore the most
promising place to accelerate BLAST. As mentioned in the
‘Introduction’ section, there are currently two major ap-
proaches in the literature to achieve this goal, one of which
is to use different kinds of custom-designed hardware. For
example, GPU-BLAST (13) (resp. G-BLASTN (14)) uses
GPUs to parallelize the preliminary stage of BLASTP (1,2)
(resp. BLASTN (28)). Another way, suggested by many
studies (15), is to replace the query-index used in BLAST by
a database-derived index. There are several software pack-
ages that employ such an index. However, these packages
are either less sensitive than BLAST, due to k-mers missing
from the index, or suffer from poor performance on long
queries and large databases due to their indexing and seed-
ing methods.

The key idea underlying HS-BLASTN is to replace the
seeding step of MegaBLAST with a new lookup table and
seeding algorithm. To this end, we build an FMD-index of
the genomic database. We note that searching the database
using its FMD-index gives us a bi-interval for each k-mer
(see (26) for its definition). Thus, using the FMD-index we
build a new lookup table storing the bi-intervals of all the
k-mers, which are then used by a new seeding algorithm to
find seeds. There are two advantages of HS-BLASTN over
the other packages mentioned above. First, HS-BLASTN
finds all the w-seeds (w ≥ k). Second, HS-BLASTN checks
whether a set of k-seeds are contained in w-seeds all at the
same time, which makes it faster than indexed MegaBLAST
that checks only each k-seed one at a time. Finally, we note
that HS-BLASTN utilizes the same ungapped and gapped
extension algorithms as used in MegaBLAST.

In the remainder of this section, we introduce the no-
tations to be used later, and then describe our database-
derived lookup table, seeding algorithm and ungapped ex-
tension stage that are used in HS-BLASTN.

Notations

We use the finite order set � = {$,A, C, G, T} with $<A
< C < G < T to represent the alphabet of DNA sequences.
The letter $ is a sentinel that is used to mark the end of a
sequence. For convenience, we also treat $, A, C, G, T as
integers 0, 1, 2, 3, 4, respectively. Let S be a sequence with
length |S|. For 0 ≤ i ≤ j < |S|, we denote by S[i] the ith symbol
in S and S[i, j] the substring of length (j − i + 1) starting at
the ith-position and ending at the jth-position. We call Si
:= S[i, |S| − 1] the ith suffix of S. For two strings P and W,
we write PW as their concatenation. We also define S as the
reverse complement of S. In addition, given a symbol a ∈
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�, we denote by a the complement of a. As defined in (29),
a string terminated with $ is called a text.

A sequence in the database is called a subject. A k-mer
is a subsequence of length k. A w-hit, or w-seed, between a
query Q and a subject S is a triplet (q, s, w) such that Q[q,
q + w − 1] matches S[s, s + w − 1]. When the value of w is
known from the context, we simply call a w-hit (w-seed) a
hit (seed).

HS-BLASTN processes non-A/C/G/T symbols (also
called ambiguous symbols) the same way as MegaBLAST.
Ambiguous symbols in the subjects are replaced randomly
by nucleotides when the FMD-index is constructed, and
will be recovered in the traceback stage. During the search,
a symbol from the subject may be aligned to an ambiguous
symbol from the queries. This case will be simply treated
as a mismatch. See the Supplementary File for more details
about treating ambiguous symbols.

The lookup table for database

In this subsection, we describe the lookup table in HS-
BLASTN. Because our lookup table is built atop the FMD-
index and relies on the concept of the bi-interval, we first
introduce the FMD-index and the bi-interval. Here, S rep-
resents a given text, n := |S| denotes its length and P repre-
sents a given string with length m := |P|.

Given a text S, as defined in (26), the FMD-index of S is
the FM-index built for SS. The FM-index was introduced
in (30) as a fast string matching tool. FM-index is a com-
pressed representation of the suffix array, the BWT and the
occurrence array built upon S. We discuss these concepts
below.

The suffix array SA of S is an array of integers in the
range [0, n − 1] specifying the lexicographic ordering of the
n suffixes of S, that is, a permutation of the integers {0, 1,
. . . , n − 1} such that SSA[0] < SSA[1] < ··· < SSA[n − 1]. The
suffix array interval [Il(P), Iu(P)] of a given string P in S is
defined to be the interval in SA such that P is a prefix of
SSA[k] for all Il(P) ≤ k ≤ Iu(P), but not a prefix of any other
suffix of S. For convenience, we also denote by Is(P) the size
of this interval, that is, Is(P) := Iu(P) − Il(P) + 1.

The Burrows–Wheeler Transform, or BWT, is a data com-
pression technique introduced in (22). The BWT of S is a
sequence B computed by B[i] = S[SA[i] − 1] for SA[i] >
0 and B[i] =$ otherwise. We need another two arrays C[a]
and O[a][i] for any a ∈ � and 0 ≤ i < n, where C[a] stores
the number of symbols in S that are strictly smaller than a,
and O[a][i] is called the occurrence array, which is a two-
dimensional array that stores the occurrence of a in B[0,
i]––the substring of B that consists of the first i + 1 symbols
of B.

We now introduce the bi-interval of P in S. Given
the FMD-index of S, it holds that Is(P) = Is(P)
where we define the bi-interval of P in S as
ω(P) := [Il (P), Il (P), Is(P)]. Once we know the bi-
interval of P, we can use the backward extension algorithm
(Algorithm 2 in (26)) to get the bi-interval of aP and use
the forward extension algorithm (Algorithm 3 in (26)) to
get the bi-interval of Pa, for any a ∈ �.

We build a lookup table for the database based on the
FMD-index. Our lookup table is also a hash table. Un-

Figure 1. Bi-interval Identification: the first step of the seed search algo-
rithm in HS-BLASTN.

like the lookup tables used in MegaBLAST or in indexed
MegaBLAST, each cell in our lookup table stores the bi-
interval of one k-mer. The number of entries in the lookup
table is 4k. Our lookup table has three advantages. One,
we do not have to build the lookup table each time when
searching against the database. Two, our lookup table occu-
pies much less space than that in indexed MegaBLAST. Fi-
nally three, our lookup table is more effective than the ones
used in MegaBLAST and indexed MegaBLAST, as showed
by our experimental results presented in ‘Experimental Re-
sults’ section.

The seed search algorithm

Our seed search algorithm will find all the w-seeds between
the query and the database. It consists of two steps: bi-
interval identification and occurrence position detection.

The first step, which determines the bi-intervals of w-
seeds, is described in Figure 1. Given a query to an HS-
BLASTN search, we scan the query in strides (line 33). As
in MegaBLAST, the maximum stride which ensures that all
the w-seeds will be found is w − k + 1 (line 1). For each
k-word from the query encountered, we calculate its hash
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Figure 2. Occurrence Position Detection: the second step of the seed search
algorithm in HS-BLASTN.

value (line 6) and fetch its bi-interval in the lookup table
(line 7). For this bi-interval, we use the backward extension
algorithm BackwardExt to conduct the backward search
(line 9). If Is(Q[j, i + k − 1]) is smaller than Is(Q[j + 1, i
+ k − 1]) (line 10), then we know that some (k + i − j)-seeds
cannot be extended in the left direction to yield (k + i − j +
1)-seeds. In this case, we extend it to the right, using the for-
ward extension algorithm ForwardExt (line 25) and check
if the bi-interval of Q[j + 1, j + w] is not empty (line 29).

The second step is illustrated in Figure 2. It takes the bi-
intervals produced by step 1 as input to determine the exact
positions of all the occurrences of w-seeds in the database.
To this end, for each bi-interval [l, u, s] and each k ∈ [l, u,
s], we find SA[k]. In practice, the suffix array SA may be
too large to reside in RAM. To overcome this difficulty, the
implementation of the FMD-index in (26) stores explicitly
only SA[0], SA[r], SA[2r], . . . , SA[|S|/r − 1], where r ≥ 1 is a
fixed integer and is referred to as the suffix array interval. If
k is a multiple of r, then SA[k] is available and it can be used
immediately. Otherwise, we must iteratively call the Last-to-
First column mapping (LF-mapping) (lines 7-8, see (30) for
details) until we reach the position x that is divisible by r
(line 6), and get SA[k] = SA[x] + iter (line 11), where iter
is the number of iterations. The choice of the value of r is
a tradeoff between efficiency and memory usage. In (26), r
is set to be 32 so that the FMD-index built for the human
genome database can reside in 8GB RAM.

We now analyze the time complexity of our seeding algo-
rithm. The BackwardExt and ForwardExt are calledO(|Q|)
times in step 1, where |Q| denotes the length of query Q.
A calling of BackwardExt or ForwardExt involves invok-
ing the LF-mapping four times (see Algorithm 2 of (26)).
Since the LF-mapping can be computed in constant time,
step 1 can be finished in O(|Q|) time. In step 2, we denote
the longest time needed to retrieve SA[k] by tmax , which is
also a constant. If the number of w-seeds is s, then step 2
can be conducted in O(stmax) = O(s) time.

From seeds to ungapped alignments

Both HS-BLASTN and MegaBLAST use the same un-
gapped extension algorithm to extend a subset of the
seeds to ungapped alignments. However, MegaBLAST
finds seeds and performs ungapped alignments at the same
time, while HS-BLASTN triggers ungapped alignments af-
ter all the seeds have been found. In what follows, we first re-
view the scanning stage in MegaBLAST and then introduce
the ungapped extension stage in HS-BLASTN. For this pur-
pose, we need another two notions. Given a seed (q, s, w),
the number d := s − q is referred to as its diagonal. A seed
is said to lie on diagonal d if its diagonal is d. If two seeds
lie on the same diagonal, the one with a smaller subject off-
set will be extended first. The ungapped alignment of a seed
can also be identified by a triplet (q start, s start, L), where
q start, s start represent the start offsets in the query and
in the subject, respectively, and L is the length of the align-
ment. The end subject offset, s start + L − 1, of this align-
ment is called the diagonal offset produced by the seed.

At the preliminary search stage, MegaBLAST maintains
a hash table. Each entry of the table corresponds to one di-
agonal and contains the diagonal offset produced by the last
seed that lies on the diagonal. When MegaBLAST finds a
seed, it calculates the seed’s diagonal and fetches the corre-
sponding diagonal offset from the hash table. If the diago-
nal offset exceeds the seed’s subject offset, then no ungapped
extension is necessary. Otherwise, an ungapped extension is
performed on the seed and the diagonal offset in the corre-
sponding hash cell will be replaced by the one produced by
the seed.

Once HS-BLASTN finds all the seeds, it sorts them using
the quick sort algorithm (31). After sorted, the seeds that
lie on the same diagonal cluster together and those having
smaller subject offsets lie on the left hand side of those hav-
ing larger subject offsets. According to (31), the computing
time required for the sort is O(s log s), where s is the number
of seeds. Our experiments show that the sort is very fast in
practical computation. In fact, the sorting procedure occu-
pies <1% of the total execution time.

For seeds that lie on the same diagonal, the ungapped ex-
tension process begins with the left most seed. At the same
time, we keep track of a number D, where D is initialized to
be the diagonal offset produced by the left most seed. If the
next seed’s subject offset is less than D, then we know that
it can be discarded. Otherwise it will trigger an ungapped
extension and D will be updated with the seed’s diagonal
offset.

IMPLEMENTATION

We now describe the implementation of HS-BLASTN, in-
cluding the implementation of the FMD-index, the parallel
design and the usage of HS-BLASTN.

The implementation of the FMD-index

We modify the implementation of the FMD-index in (26).
The first modification is that the lookup table is built for the
target database and is integrated into the FMD-index. The
lookup table plays a crucial role in our seeding algorithm.
The second is that the value of the suffix array interval r is
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Figure 3. When searching against the human genome database, the run-
ning time of step 2 of the seeding algorithm and the size of the FMD-index
under different values of r. One CPU thread is used. The choice of r is a
tradeoff between efficiency and memory usage: the smaller value of r, the
less execution time, and the larger value of r, the smaller size of the FMD-
index.

changed from 32 in (26) to 8. When a query is long and the
database is large, many bi-intervals of w-seeds will be ob-
tained, which implies that the time-consuming LF-mapping
will be repeatedly called many times. As a result, the perfor-
mance of HS-BLASTN deteriorates. To settle this problem,
a smaller value of r should be used.

It is a challenge to choose the value of r. There are two
factors that must be considered: efficiency and memory us-
age. To pick up an appropriate r, we build several FMD-
indices for the human genomic database. These indices are
constructed with different values of r. We then search a set
of queries (these queries consist of the first 200 000 queries
of query set 0 and query set 1, details of query sets 0 and 1
can be found in ‘Experimental Results’ section) using these
indices and examine the execution time of step 2 of the seed-
ing algorithm (Figure 2). The execution time and the sizes
of the indices are shown in Figure 3, From the figure we
can see that, a small value of r yields high performance but
requires large memory occupation, while a large value of r
yields slow speed and needs small memory usage. We choose
r = 8 due to the fact that under this value, HS-BLASTN is
feasible to run on a computer equipped with 16GB RAM
and is fast enough, as showed by the experiments.

Parallel design

To make full use of the computational power provided by
multi-core computers, we parallelize HS-BLASTN by us-
ing multiple CPU threads. Users are allowed to specify a
desired number of searching threads (option-num threads,
as in blastn). HS-BLASTN first prepares the database
and the queries. Because the search (the preliminary search
stage and the traceback stage) on different queries are in-
dependent, HS-BLASTN distributes the queries across the
searching threads. Each thread launches the search engine

Figure 4. The whole HS-BLASTN search procedure.

concurrently. The searching threads synchronize with each
other when they finish their tasks. Finally, HS-BLASTN
merges the results from all the threads into a single output.
The whole HS-BLASTN search with N threads proceeds as
Figure 4.

During the search, the memory image of the FMD-index
is shared by all threads. As a result, the memory footprint
will not grow substantially when multiple threads are used.

The usage of HS-BLASTN

Using HS-BLASTN to conduct a database search involves
two steps. The first step is to build the FMD-index for the
target database, using the index command. The command
to build the FMD-index for database human.fa looks like
the following.
$hs-blastn index human.fa
The second step is to use the align command to search

against the target database. HS-BLASTN supports a fre-
quently used subset of the options in blastn. For example,
we use the following command line to run HS-BLASTN in
our experiments.
$hs-blastn align -db <database> \
-query <file> -outfmt 7 -dust yes \
-num threads <Integer> \
-window masker db <masker db>

EXPERIMENTAL RESULTS

To assess the execution time of HS-BLASTN and
MegaBLAST we run HS-BLASTN and MegaBLAST
on two query sets under different numbers of CPU threads.
We will also compare their parallel performance when
multiple CPU threads are used. The output results of the
two alignment tools are the same in the two query sets. We
first introduce the general setup, datasets and test methods,
and then discuss the experimental results.

Due to the large size of the FMD-index, before lunching
the search engine, HS-BLASTN spends some time (about
6 s on our server) to load the index into RAM (step 2 of
Figure 4). However, because the index is loaded only once,
there is an overall performance benefit when aligning a large
number of queries. As a result, compared to the long search-
ing time, the time spent on loading the index can be almost
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Figure 5. Logarithm of the execution time and speedup on searching against the human genomic database. Left: Each curve shows on a specific query
set the logarithm of the execution time of HS-BLASTN or MegaBLAST as a function of CPU threads. The execution time of HS-BLASTN in each test
includes about 6 s that are used for loading the FMD-index into RAM. Right: Each curve represents the speedup S(q, n) (see Equation (1)) achieved by
HS-BLASTN in comparison to MegaBLAST when both alignment tools run on the same query set under the same number of CPU threads. On each
query set, the execution time decreases when the number of CPU threads is raised. When both are running under 12 CPU threads, HS-BLASTN is 22 and
18 times faster than MegaBLAST on query set 0 and query set 1, respectively. On each query set, as we raise the number of CPU threads, the execution
time of HS-BLASTN drops faster than that of MegaBLAST, which indicates improved performance with increasing thread number.

neglected. Hence, to demonstrate the performance advan-
tage of HS-BLASTN over MegaBLAST, we compare their
execution time of searching two very large query sets.

General setup and datasets

The experiments are all conducted on a Linux server with
two six-core Intel Xeon E5-2620 CPUs and has more than
16GB of RAM. The MegaBLAST that we use is the 64-
bit build and is built from the source code of BLAST ver-
sion 2.2.30+. Both the source codes of BLAST and HS-
BLASTN are compiled with GCC version 4.4.6. The code
of HS-BLASTN is compiled with the -O3 level of optimiza-
tion set. The command lines used for building BLAST and
HS-BLASTN are given in the Supplementary File.

Database. The database that we choose is the hu-
man build 38 (http://hgdownload.soe.ucsc.edu/downloads.
html#human). We mask the database with the Window-
Masker (32). The size of the FMD-index built for the
database is about 12.2GB.

Queries. The queries are all Homo Sapience sequences.
We extract two query sets from the file Hs.seq.all (ftp://ftp.
ncbi.nih.gov/repository/UniGene/). Query set 0 consists of
2 millions of short queries with length ranging from 100 to
500. Query set 1 consists of about 870 000 long queries with
length being 800–4000.

Test methods

We run both HS-BLASTN and MegaBLAST on each
query set in the batch mode under different numbers of
CPU threads. That is, each command line call of HS-
BLASTN or MegaBLAST takes a query set as input. Our
test method is different from that in (19,14), in which each
command line call handles only one query at a time. Be-
fore the experiments are conducted, the FMD-index, which

is constructed only once, has been built (the index com-
mand). The time spent on building the FMD-index is not
included in the HS-BLASTN running time. The running
time of HS-BLASTN and MegaBLAST that we record is
the wall clock time and is measured by the standard time
utility. We run each test five times and report the average
execution time.

Results

In this subsection, we compare the performance of HS-
BLASTN with that of MegaBLAST on each query set un-
der different numbers of CPU threads. To this end, we use
TH(q, n) (resp. TM(q, n)) to represent the execution time of
HS-BLASTN (resp. MegaBLAST) running on query set q
under n CPU threads. We define,

S(q, n) := TM(q, n)
TH(q, n)

(1)

as the relative speedup achieved by HS-BLASTN in com-
parison to MegaBLAST when both alignment tools run-
ning on query set q under n CPU threads.

The experimental results are depicted in Figure 5. The
running time of HS-BLASTN is close to 0 in comparison
with that of MegaBLAST. For the sake of comparison, we
demonstrate the logarithm of the execution time instead.
The execution time can be found in the Supplementary File.
Figure 5 also shows the speedup S(q, n). In each test, HS-
BLASTN loads the FMD-index into RAM before running
the searching procedure. On our server, this overhead costs
about 6 s, which are included in the execution time of HS-
BLASTN.

HS-BLASTN is faster than MegaBLAST in all the tests,
especially on query set 0. When both running under 12
CPU threads, HS-BLASTN is 22 and 18 times faster than
MegaBLAST on query set 0 and query set 1, respectively.
The speedup on query set 0 is larger than that on query
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set 1 under all the CPU threads. This is because on short
queries, the seed identification step in MegaBLAST con-
sumes a larger percentage of the total execution time.

HS-BLASTN exhibits much better parallel performance
than MegaBLAST. Although the execution time of the
two aligners on all query sets decreases as we raise the
number of CPU threads, HS-BLASTN scales better than
MegaBLAST. The execution time of HS-BLASTN de-
creases more rapidly than that of MegaBLAST and the
speedup S(q, n) becomes larger, which can be seen from Fig-
ure 5.

CONCLUSIONS

We have introduced HS-BLASTN, a nucleotide database
search tool that shows a computational speed improve-
ment compared to MegaBLAST. HS-BLASTN accelerates
MegaBLAST by creating a lookup table that stores the bi-
intervals of all the k-mers and uses a seeding method that
scans the queries in strides. We have demonstrated by exper-
iments that HS-BLASTN exhibits a great performance ad-
vantage over MegaBLAST and a much better parallel per-
formance than MegaBLAST. Because the number of bio-
logical sequences grows exponentially, HS-BLASTN, with
its improved execution speed (10–20×) over MegaBLAST,
is an important advance for bioinformatics genomic search.
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