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High-speed Coherence  Processing  Using the 
Sectionalized  Fourier  Transform 

Abstruct-The  sectionalized  Fourier  transform of a  band-limited s ig  

nal  (defined  as  a  Fourier  transform  which is computed  over  incremented 

temporal  sections of the  function) is  equivalent t o  basebanding,  Wter- 

ing, and  sampling  the signal  in the  time  domain.  Spectral  windowing is 

employed,  through  appropriately  summing  a  sequence  of  the  Fourier 

transform  bins, to  control  the  passband  and  leakage  characteristics  of 

the  resulting  filter.  This  in  turn  controls  the  distortion of the signal 

induced as a  result  of  the  transform  process.  The use of the  section- 

alized  Fourier  transform  is  exploited  to  conveniently  and  rapidly  map 

the  cross-correlation  envelope  of  narrow-band  signals  over  the  time- 

register  Doppler-ratio  (ambiguity)  plane. By using  the  ambiguity  kernel 

exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i2ncuft) as an  approximation  of signal time  compression  (or  ex- 

pansion),  the  coherence  between  transformed  signals  (along  the  Doppler- 

ratio  axis)  may  further  be  expedited  through use of the  discrete  Fourier 

transform.  The  resulting  error is negligible  when the  time-bandwidth 

product of the  process is less than  the  inverse of thc  maximum  Doppler 

ratio  employed.  The  resulting  algorithms  have  proved  advantageous in 

underwater  acoustic  applications.  It is concluded  that  the  sectionalized 

Fourier  Transform  has  many  applications  in  time-domain  signal  process- 

ing  using  modern  array  digital  computers. 

INTRODUCTION 

W ITH  the  advent  of  the  fast  Fourier  transform  (FFT) dgo- 

rithm  in  the  mid-1960’s [ 11 - [3] and  the  corresponding 

advances  in  digital computer  architecture (in particular, in 
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array  processors),  giant  strides  have  been  made  in the rapid 

computation of complex  functions  which  earlier  were  consid- 

ered  impractical.  More  recently,  interest has  evolved  in tech- 

niques  for  estimating  the  magnitude-squared  coherence (MSC) 

function [4] - [ 161, and  in  means  for  rapidly  mapping  this  esti- 

mate over the  two-dimensional  ambiguity  plane [ 171- [20]. 

These techniques invariably  involve computing  the  Fourier 

transform of the relevant temporal  functions  in  a piecewise 

or  sectionalized  manner,  and  algorithms  for  computing MSC 

estimates (using the  FFT  and  modern  array  processors) have 

proven  highly  successful. Unfortunately,  knowledge  of  these 

techniques (in their  entirety)  has  not been  widely  dissemi- 

nated. Nor  has the role of  the  sectionalized  Fourier  transform 

in dgnal processing  applications  been  thoroughly  undcrstood 

by  the user community.  This  report is therefore  devoted  to 

developing  the  fundamental role that  the sectionalized  Fourier 

transform  plays in temporal signal  processing,  and to  develop- 

ing a high-speed algorithm  for  estimating  the  normalized  corre- 

lation  envelope (NCE) function over the  two-dimensional 

ambiguity  surface. 

SIGNAL  TRANSFORMATION 

Two approaches will  be taken  to  demonstrate  the role  of the 

sectionalized  Fourier  transform (SFT) in temporal signal pro- 

cessing. In  either  approach it is shown  that  the SFT can serve 

to  simply  baseband,  filter,  and  sample  a  narrow-band signal. 

Due to  the filtering  action,  however,  some  degree  of signal 
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distortion is inevitable  unless the signal is a  constant  frequency 

sinusoid.  Reducing  the  distortion t o  a  tolerable level is achieved 

through  spectral  windowing; i.e., t o  appropriately  shape  and 

flatten  (or level) the  filter  response. In the first approach 

attention is given to  the  nature  and  characteristics  of  the signal 

distortion  function.  The  tradeoff  between  the signal and  SFT 

parameters is defined  to  limit  the  expected  degradation  to  a 

tolerable level.  In the revisited approach  to signal transforma- 

tion,  the basic problem  of signal distortion will. be evaded by 

assuming  that  the  spectral  power  of  the signal is bounded 

within  a  finite  section  of  the signal spectrum.  The  two  ap- 

proaches  complement  one  another  and  yield  an insight into 

the  temporal  characteristics  of  the  transformation  algorithms. 

Signal Description and Representation 

Over an  extended analysis  time  (approximately T seconds)  a 

narrow-band signal may  be  represented  as 

u(t)   =A(t)eiq(t)  (1 a> 

where  the  phase  function +(t) takes  the  form 

* ( t )  = 271 [f,t + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv(x )  dx] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt Go. (Ib) 

The  instantaneous  frequency (or inverse  wave-period) of  the 

signal is defined  as 

- \k(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, -I- u ( r )  
1 

271 
(1 c> 

where f, is the  mean  frequency  and u ( t )  is the  zero-mean  fre- 

quency  fluctuation over the analysis  interval. (A “dot” over 

the variable is used to  denote  the  time derivative.) 

In the analyses to  follow, two subintervals  of  time T1 and 

T,  are to  be  employed such that TI < T2 and T1 is much less 

than  the  extended analysis  time. 

Letting fcT2 = ko t 6 ,  (IS,l < 1/2)  and  letting r=   T2 /T1 ,  the 

time series u(mT1) becomes 

u(mT1) = A ( m ~ l )  ei*(mT1) = ei2nmko/p 
uo(mT1) ( 2 4  

where 

uo(mT1) = A ( m ~  , i I2n(m/p)go(mT,)+~ol  
1) (2b) 

and 

t 

go(t) = 6 ,  t + s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(x )  dx. (2c) 

The sampled  time series uo(mTl)  represents the baseband of 

the  time series u(mTl )  referenced to  the  frequency k0/T2,  and 

the variable go(mT1) is a  running-time average (taken  at mT1) 
of  the  instantaneous  frequency  deviation  (relative  to  base- 

band)  measured in units  of 1/T2. [The  merit  of  this  form  of 

notation will become  evident  when we consider the  scctional- 

ized Fourier  transform  of  the signal u(t).] 

Sectionalized Fourier Transform 

Over the  time  interval T2 centered  at mT,, the  sectionalized 

Fourier  transform  (SFT)  of u ( t )  is defined  as 

Um(ko + n)  = - IrnT1+T2i2 u(t)  e - i 2 n ( k ~ + n ) t / T  dt 
T2 mT1-T2/2 

J - T 2 / 2  

where 

and 

(Care must  be  exercised in the  interpretation  and use of (3b). 

The  amplitude  function Am(t )  is artificial  in  the sense that 

A(mT1) is inserted  in  the  denominator  in  order t o  factor  out 

uo(mT1) in (3a).  It is possible therefore  for A(mTl )  to  be 

zero, in which case A,(t) makes no  sense.  However, in this 

event uo(mT1) is zero,  and  the  factor Am(t )  should  rightfully 

equal  only  the  numerator  term.  For  many  practical  applica- 

tions, A(mT, t t )  will be essentially constant over the time 

interval T2, avoiding the possibility of singularities.) 

The  form  of  (3a) reveals that  the  SFT  of u( t )  yields the 

product  of  the  sampled  baseband signal uo(nzT1) and  a dis- 

tortion  factor.  The  distortion  factor is a  function  of  the  spec- 

tral selectivity  of  the  SFT  and  the  static  and  dynamic  charac- 

teristics  of  the signal. Our object will therefore be to  process 

the  SFT  to achieve  an output  transform which  approaches 

uo(mTl) over a  specified signal center-frequency  and  bandwidth. 

Spectral  Windowing 

A study  of (3) suggests the use  of a  spectral  window  com- 

prised  of J sequential  frequency  bins n, approximately  cen- 

tered  at  the  frequency ko/T2.  Therefore  let 

n=-no 

where 

is the  resulting  distortion  function  and  where J and no are 

chosen  to essentially constrain  the signal power  within  the 

spectral  window.  The  summation  within  the  above integral 

may  be  recognized as the Dirichlet  kernel [21],  [22].  The 

sum  reduces to [ 2 3 ]  

( J -  1 ) / 2  
1 + 2  cos (271nt/T2) = , 

sin (nJt/T,) 
(when J is odd) 

n= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 sln (nt/T,) 
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or 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2e+int/T2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ i 2  

cos [n(2n - l ) t /T2 ]  

- - ,kint/Tz sin (xJt /T2) 

sin (at/T2) 
(when J is even). 

(The  exponential  factor,  when J is even,  results  from the 

spectral  window  being  centered  midway  between  two  spectral 

bins of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASFT. The sign of  the  exponent  depends ,on whether 

the  center of the  window is located  one-half  bin-width  below 

or  above  the  spectral  bin ko.) 
Using the Dirichlet  kernel  in  (4b),  the  distortion  function 

becomes 

provided  that +1/2 is added  to  the  parameter 6, [in (3c)l 

when J is even.  (Assuming that u ( t )  is symmetrically  distri- 

buted,  the value 1/2 is subtracted  when 6, is positive and 

added  when 6, is negative.  This procedure is required if the 

spectral  window is to  most  efficiently  span  the  spectral  band- 

width of the signal.) 

Properties of the Distortion Function 

In addition  to  the  window  parameter J ,  the  distortion  func- 

tion is dependent on the  spectral  characteristics  of  the signal 

u(t) .  When the signal dynamic  characteristics  are  sufficiently 

slowly  varying, such  that A(t) and u ( t )  are  essentially  constant 

over time  intervals of Tz s, the  distortion  function is real and 

equal  to  the  spectral  window  function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,(X,). That is 

( 6 4  

where x, = 6, + Tzu(mT1) when J is odd  or 6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF 0.5 + 
T2u(mT1) when J is even. By expressing the Dirichlet  kernel 

by  its  equivalent  trigonometric series and  carrying  out  the  inte- 

gration  prior  to  summing, WJ(x)  may be shown to  be 

( J - 1 ) / 2  sin .(X - n)  
wJ(x> = 2 

n = - ( J - 1 ) / 2  n, 

when J is odd, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 J i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

= - cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.(X f 0.5) (- 1)" 
n - 0.5 

77 n = l  (x  k 0.5)' - (n - 0.5)' 

- I  

- 2  - - 

- - 

X = fT2 - ko 

-7 
n = k -  ko 

0.1 0.2 0.3 0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 5 0.7 1.0 1.5 
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Fig. 1. Passband  characteristics  of the spectral  window  function Wj(xj 
for J odd. 

If - lko-0.5)/T21 

Bj / 2  

Fig. 2. Passband  characteristics of the spectral  window  function wj(xj 
for J wen. 

when J is even.  (The  shift  of 1/2 in the  latter  relation is due 

to  the  fact  that  the  center of the spectral  window is + one- 

half bin-width  from  the  koth  bin.) A plot  of W J ( X )  as a  func- 

tion  of  the  normalized  frequency is displayed  in  Figs. 1 and 2 
for selected  odd  and even  values of J ,  respectively.  The  filter 

characteristics are somewhat  smoother over the filter  passband 

J/Tz when J is odd.  However, as J gets  larger, th'e difference in 

the  odd versus  even passband  characteristics  becomes  propor- 

tionately  smaller. 

In addition  to  the  static  window  characteristics,  the signal 

distortion is also a  function of the signal dynamics.  The  ex- 

pected value  of the  distortion  function  may be shown to ap- 



TABLE I 
MAGNITUDE AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPHASE OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADm(gm; J )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAS A FUYCTIOK OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAx,/J FOR 

THE IKDICATED VALUES OF J (x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) 

Phase (Deg.1 + 1 4 9 1 _ L + 0 9 4  T I 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1  f 0 2 5  +X.hl 

preach one  when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ is large and  the  spectral  bandwidth  of  the 

signal is essentially  bound  within  the  filter passband (see 

Appendix). Since the  expected value of the  distortion  func- 

tion was computed using ensemble averages, it will prove in- 

formative to  compute  this  function over the  time  interval T2 
for  a  representative case. Consider  then  that over the relevant 

T2 time  interval,  the  amplitude  factor A,(t) is constant  and 

the  frequency  fluctuation u ( t )  can  be  represented  by  the 

truncated  Taylor series 

u(mT1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt x )  = u(mTl) t c(mTl)x.  ( 7 4  

From (3c) and  the  definition  of x ,  [following (6a)l 

g,(t) = x ,  t 0.5Ax,t/T2 (7b) 

where 

Ax, = d(mT1)T:. (7c) 

(In  the  normalized  units of 1/T2 Hz, the  discrete variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, 
is a measure of the  instantaneous  frequency  deviation  from 

the  window  center-frequency,  and A x ,  is a measure of  the 

change  in instantaneous  frequency over the  SFT  interval T2.) 
From (5) then,  the  distortion  function  becomes 

Except  when A x ,  is zero  (in  which case the  distortion 

function  reduces  to  the  spectral  window  function),  the dis- 

tortion will be a complex  number,  resulting in both  amplitude 

and phase distortion. To provide an  indication of the  degree 

of  distortion  that  can  exist, (8) has been computed as a  func- 

tion of A x ,  (with x ,  = 0) for various values of  the  parameter 

J .  The results  are tabulated in Table I .  (The  ratio Ax,/J is 

the  fraction of the  spectral  window over which  the  instan- 

taneous  frequency varies in the  timc interval T2. Thus  when 

x ,  is zero,  the  frequency will be  constrained  within  the 

spectral  window  for Ax,/J less than  one.)  The  data in Table I 

indicate  that  the  distortion will be relatively minor  under  the 

stipulated  conditions.  The  distortion  has  been  computed  for 

values of x ,  other  than  zero  and  found  to be no  more  serious 

than  that  shown in the  table, as long as the  instantaneous  fre- 

quency is constrained to  fall within  the  bounds  of  the  spectral 

window.  In  the  particular case where J =  1 and x ,  = 0, the 

distortion  reduces to  

c(.\/laX,li2) t i s ( m 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Jlnsc,ll'2 

Dm(gm; 1) = ( 9 )  

where S(. . .) and C(. . e) are  the Fresnel  sine and cosine inte- 

grals of the  indicated  argument  [24]. 

SIGNAL  TRANSFORMATION  REVISITED 

Fourier  Series Representation 

To  obtain  a  deeper insight into  the  sectionalized  Fourier 

transform  method  of signal filtering,  basebanding,  and  sam- 

pling, a second  approach will be  taken  which is more  macro- 

scopic in content. Utilizing the results of sampling  theory 

[25 ] ,  [26], it has been  shown  that over the  time span of 

mT, - T2/2 < t <  mT, t T2/2,  the  function u(t)  may  be  ex- 

pressed by  the  Fourier series 

k=O 

where U,(k) is the  sectionalized  Fourier  transform of u( t )  
[(3)]  taken over the  indicated  time  interval.  Although  the 

value of U,(k) will (in general)  be nonzero over all k ,  it is 

common  practice to  set bounds  on  the range of k over which 

I U,(k)J is significant for  certain classes of signals.' If then 

u( t )  is a band-limited signal whose significant spectral  energy 

can be said to  be bounded  within a contiguous  sequence of 

J spectral  bins  centered  at  approximately k = ko, a suitable 

approximation  of u( t )  over the  indicated  temporal  span 

would be 

G ( t )  = U,(k)eiZnktiT2 
ko+J-no-  1 

k= k g -  no 

or 

- 
uo(t) = e - i2nkot/T2 

5 ( 4  

Consequently,  from  (4a)  and (1 I b j  

Go("T1) = vrn(k0; J )  = uo(mTl)Drn(gm; J ) .  (12) 

The above relation  demonstrates  that  the  sectionalized 

Fourier  transform  can serve to  baseband,  filter,  and sample a 

band-limited  function  without basically  changing the  temporal 

' Although a signal cannot be both band-  and  time-limited in  a pure 
thcoretical sense, this  concept has proven  quitc  useful in practical  ap- 
plications. An exccllent  discussion of the problem is found in 121. pp. 
121-1321. 



GERLACH:  HIGH-SPEED  COHERENCE  PROCESSING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA193 

characteristics  of the  function. In addition,  the relative  sim- 

plicity of the  FFT  algorithm  permits  these processing opera- 

tions  to  be  performed  with ease on  modern digital computers. 

The  factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD,(g,; J ) ,  given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( S ) ,  provides a  measure  of  the 

distortion  induced  by  the  process, so that  some basis is avail- 

able  for  the  selection  of  the  parameters T2 and J. The  criterion 

for  the  selection of the  sampling  rate I ITl is also  well defined. 

To  avoid undersampling,  the  sampling  rate  should  be  equal  to 

or greater  than  the  (two-sided)  filter  bandwidth BJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= J/T2, or 

Tl should  be  equal  to or less than  the  Nyquist  interval T2/J 

(271. 

Equivalent  Temporal  Window 

The  temporal  counterpart  of  spectral  filtering (or window- 

ing)  in harmonic  analysis is to  shade or to  weight the  function 

u( t )  over the  time  window mT1 - T2/2  < t < mT1 + T2/2  
[28] ,   [29] .  The  temporal  window  function,  equivalent to  the 

spectral  window zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW,(x), is simply  the inverse Fourier  trans- 

form  of w ~ ( f T 2 ) .  Therefore,  from  (6b)  and  (6c) 

ca zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W J ( ~ )  = T2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI_ W ~ ( f T 2 ) e ‘ ~ “ ~ ~  df 

( J - 1 1 1 2  
- - 1 + 2  cos (2nnt/T2) 

n = l  

- - sin (nJt/  T2) 
sin (nt/T2) 

( I4 T2/2) 

for J odd,  and 

wJ(t) = e’int1T2 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 cos [n(2n - l ) t /T2 ]  
J P  

n=l 

for J even.  (The  complex  exponential  factor  for J even is a 

consequence of the spectral  window  being  centered  midway 

between  two  spectral bins.) A plot  of the  temporal  window 

function  for  various values of J is shown in  Fig. 3. For J = 1 ,  
the  weighting is constant. For J =   2 ,  the weighting magnitude 

is a simple  cosine function. As J becomes  larger, the  temporal 

window  (Dirichlet  kernel)  more  closely  approaches  a  (sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) /x  
function over the interval T2. 

If now, over the  time  interval mT, - T2/2  < t < mTl + T2/2,  
one  defines  a  new  function v( t ) ,  where 

1.0 +$ 
0 6 .  o.8 t u 

where 

and  where no is (J - 1)/2 when J is odd,  and J/2 or J/2 - 1 when 

J is even [depending  on  the sign of the  exponent in ( I  3b)l. 

Equation ( 1  5a) is identical to (4a),  except  that  here  the spec- 

tral  bin k is general and  need  not  be  restricted to  fitting  any 

particular  center  frequency.  Thus  the  spectral  window  may 

be  incremented  across  the  frequency  band in steps of one  to J 
bin-widths.  Computationally, it is more  economical  to  imple- 

ment  the  window  function in the  spectral  domain when only 

one or a few  spectral  bands  need be examined  for signals. 

There is also merit in the  fact  that k may  be  indexed in less 

than J increments  to  smooth or effectively  eliminate  any 

“picket-fence” or “scallop”  effect  between  windows [28] .  
A study  of  the  temporal  window  function  (Fig.  3) reveals 

that  the significance  of u(t) ,  in the  formation of its  Fourier 

transform,  decreases  rapidly  as t deviates  from +T2/2  J. That 

is,  as It1 becomes  greater  than 1/2BJ, the weight given to ~ ( t )  
becomes  appreciably  reduced, so that  its significance in the 

v(t)  = wJ(t - m T 1 )  u(t),  (14) construction  of  the  resulting  Fourier  transform U,(k) is re- 

duced.  This is why  the value of Ax,, in the  distortion  func- 

tion D,(g,; J ) ,  can  become  proportionally larger with J 
without  seriously  altering  the  transform  characteristics (see 

Table I). The  restrictions  on  the  rate of  change in the  ampli- 

wJ(t  - mT1) u(t)e-i2nkt1T2 dt  tude  function A ( [ )  is also proportionally  reduced.  Another 
T 2 -  mT1-T2/2 way of looking  at it is that as Jbecomes larger,  the  bandwidth 

J -  no- 1 of the  spectral  window increases  (assuming T2 remains  fixed). 

( 1  sa) And  consequently  the signal dynamics can  be correspondingly 

its  sectionalized  Fourier  transform can  readily  be shown  to 

be 

ImT1*r212 
= c ei2nmn1vu ,(k + n) = V,(k; J )  

n = - n o  more rapid  (spreading the  power  spectral  density of the signal) 
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t o  fill the wider window,  without  seriously degrading the 

transformed  output. 

Doppler-Induced Distortion 

When a signal  source is in  motion  in  a  transmission  medium, 

the  spectral  energy  of  the signal  suffers  a  Doppler  shift.  The 

effect of the  Doppler  shift is to  compress (or expand)  the  time 

scale  of the original  signal [30]. Thus,  the signal u( t )  is trans- 

formed  into u{(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ ao) t }  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, (ao << 1) is known as the 

time  scale-factor  shift  or  Doppler  ratio.  From  (1)  and (2) it is 

easy to  show  that 

(1 6 4  

where uo((l + ao)mT1} and uo(mT1) are  the respective band- 

shifted  signals  (relative to ko/T2 Hz), and  where 

A 2 , m  =A{(1 f ao)mT1}/A(mT1) (16b) 

and 

u2(mT1) = u{(l + a0/2)mT1}.  (16c) 

When a. is sufficiently small so that mao < r/J, A 2 , m  will  be 

close to  unity. (The amplitude  distortion  factor A 2 , m  is due 

to  the  time  compression  of  the  Doppler-shifted signal.) For 

the  purposes  of  this  paper, A(t) is considered to vary  suffi- 

ciently slowly so that insignificant  error will  result  in  assuming 

that A 2 , m  = 1. 

Since the  effect of the  time  compression is to  slightly  shift 

the  spectral  power of the signal u( t )  into  a new band, it may 

be  desirable to  translate  the  Fourier  transform  sequence 

(spectral  window) to  accommodate  this  Doppler  shift. To 

optimumly  accomplish  this,  let 

a, fcT2 = n, + E ,  (where - 1/2 < e < l /2 ) .   (174  

Following  the  procedure given in  (1 l), it  may  be  verified that 

n= -no  

= u”,(mT1)e iZ?rmIE/v+aOT1VZ(mTl)l 
(1 7b) 

where U2,, (k)  is the  sectionalized  Fourier  transform  of 

u((1 + ao)t} .  The  translation  of  the  Fourier  transform se- 

quence  by E ,  has the  effect of centering  the  spectral  window 

on  the  Doppler-translated signal spectrum t o  minimize  the  out- 

put signal distortion. (If the  spectral  window is sufficiently 

broad  to  adequately  encompass  the  Doppler  shift,  this  step 

would be  unnecessary.)  Another way of looking  at  it is that 

the far left-hand side  of (17b) is the  baseband  for  the  Doppler- 

shifted signal. Although  a  frequency  translation  of ko/T2 
represents  baseband  for  the  signal u(t) ,  a  frequency  translation 

of (ko + n,)/T2 is required to  represent  baseband  for  the 

Doppler-shifted  signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu{( 1 + ao) t ] .  
For  our  purposes we shall  assume that  the  bandwidth  of  the 

spectral  window is sufficient to ignore  the  Fourier  transform 

distortion  factor  (permitting us to  drop  the  “tilde”  from  the 

functional  relations).  And we shall  assume that mao is suffi- 

ciently  small to ignore  the  amplitude  distortion  factor A 2 , m .  
(We shall  later develop  the  restrictions  on a. and  the analysis 

time to  permit this  realization.)  The  significant  relations  rela- 

tive to  Doppler-shifted  signals  are  then 

uo{(l -t admT1)  = JJ2,m(k0; J) 
- - ei2nmn Y 

- - ei2nma0fcT1V ei2nmaoTluz(mT1) 

a’ vz,m(kO+ncx;J) 

m(k0; J) 

(1 8) 

The  first  exponential  factor  in  the  right-hand side of (18) re- 

veals that  a  Doppler  shift  produces  a  linearly varying  phase 

rotation  on  the original  signal. The  rate of phase rotation is 

proportional  to  the  product of a. and  the mean  signal  fre- 

quency f,. (For  a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACW signal  this will be the  only phase  dis- 

tortion.) However, the  zero-mean  fluctuating  frequency u(t) 
introduces  a  nonlinear  phase-shift which must also be  taken 

into  consideration.  The  degradation  effect of this  latter  factor 

will be addressed  in  a  latter  section of the  paper. 

Effect of Time Shifts 

Consider  now  the  effect of a simple time  translation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT~ on 

the signal u(t). Letting T~ = (mo + el)T1 where - 1/2 < el < 
1/2, it is easy to  show  that 

uo(mT1+ 7 0 )  

=Al,muo{(m + m01T11 e 
iZnel[fc+Vl{(m+mo)T1}tT1 

( 1 9 4  

where  uo(mTl t T ~ )  and uo{(m -t mo)Tl}  are  the respective 

basebanded signals, and  where 

=A(mT,  i- 7o)/A{(m + m,)T1) = 1 (19b) 

and 

Ul(mT1) = + E1/2)Td.  (1 9c) 

(Since the  amplitude  functions  in  (19b)  differ in time  by 

less than  1/2T1, negligible error will  result  in  assuming that 

Again,  following  the  procedure given in  (1 l),  it may  be veri- 
A 1 , m  = 1.) 

fied that 

u“o(mT1 + 70) = Vl,m(ko; J) 

J -  no- 1 

= c  1,m(ko + a )  

- - e i 2 n e l ~ ~ ~ , + u l { ( m + m o ) ~ l } I ~ l  V m + m o ( b ;  J >  

ei2nmn/vu 

n= -no  

(20) 

where U1, , (k )  is the  sectionalized  Fourier  transform of 

Assuming that  the  bandwidth of the  spectral  window is suf- 

ficient to ignore the  Fourier  transform  distortion  factor [( 12)], 

the  “tilde”  may  be  dropped  from  the above  relation.  Conse- 

quently,  the  effect of the residual parameter el is to cause a 

u(t + T o ) .  
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TABLE I1 

INTEGRAL OF THE SQUARE OF THE SPECTRAL WINDOW FUNCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ~ ( J x j 2 )  
OVER THE LIMITS 0 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy [SEE (231  

J I  

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 4 5 6 7 8 9 1 0  

0.2444 0.2480 0 2513 0.2543  0.2664 0.2436 0.2043 0.2575 0.3900 0.2458 0.25 
0.2002 0 1979 0.1933 0.2031  0.2219 0.1962 0.1567  0.2040 0.3163 0 1978 0.20 
0.1559  0.1486 0.1385 0.1516 0.1727  0.1482 0.1135 0.1517 0,2398  0.1491 0.18 
0.1082 0.0995 0.0885 0.1006  0.1186 0.0994  0.0737  0.1005 0.1611 0.0997 0 IO 

0.30  0.2927  0.4602 0.3123 0 2569  0.2909 0.3075 

0.4585 0.4551 0.4593  0.4461  0.4290  0.4389  0.6459 0.4832 0 4443 0.4260 0.45 
0.4014  0.4042 0.4146 0.4003  0.3866 0.3877  0.3774 0.4255 0 5886  0.3830 0.40 
0.3446 0.3518 0.3646 0.3533  0.3468 0 3387  0.3146  0.3684 0.5266 0.3385 0.35 
0.2919  0.2994 0.3095 0 3046 

0.50 0.4674 0.6984  0.5409  0.5140  0.4927  0.4761 0.4918 0.5005 0.5034 0.5115 
0.55 0 5070 0.7459 

0.6419 0.6406 0.6350 0.6440  0.6546  0.6694  0.7210 0.7059 0.8259  0.5807 0.65 
0.6004 0.5941 0.5849 0.5893 0.5892 0.6086  0.6546  0.6531 0.7884  0.5448 0.60 
0.5584 0.5492 0.5411 0.5390  0.5294  0.5494 0.5848  0.5978 

0.75 0.6463 0.8867 0.8003  0.8361 0.7881 0.7901 0.7649 0.7581 0.7487  0.7428 
0.70  0.6145  0.8586 0.7552  0.7821 

0.8729 0.8723 0.8874 0.8820  0.9034 0.8874  0.9187  0.8749 0.9305 0.7036  0.85 
0.8065 0.8107 0.8254 0.8261  0.8516 0.8414  0.8818 0.8403 0.9106 0.6760 0.80 

0.6879 0.6916 0.6931  0.7030  0.7229  0.7300 

0.90  0.7291  0.9467 0 9038 0.9470  0.9245 0.9430  0.9278 0.9373 0.9257 0.9307 
0.98 0.7524  0.9598 0.9269 0.9673 0.9520 0.9700 0.9608 0.9708 

0.9908 0.9851 0.9888  0.9801  0.9859 0.9703  0.9808 0 9447  0.9701  0.7737 1.00 
0.9707 0.9640 

i l  

I I +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 11 0.9028 I 0.9949 1 0.9762 10.9959 1 0.9876 I 0.9967 I 0.9919 I 0.9972 1 0.9941 1 0.9976 

fixed  phase-shift (2m1f,T1) and  a  fluctuating  phase-shift  [due 

to  the  fluctuating  frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(t)]  on  a signal that  would be 

delayed an  even  multiple of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATl seconds. 

DESIGN CONSIDERATIONS 

Noise Power Output 

Since the signal channel will generally be  contaminated  by 

broad-band  noise, it  will  be  of interest  to  determine  the noise 

output of the  filter W ( f T 2 )  inherent in the  sectionalized 

Fourier  transform. Assuming a  broad-band noise power spec- 

tral  density of No watts per Hz, the  accumulated noise power 

over the  spectral window is (employing Parseval’s theorem; see 

[25, P. 651) 

=No JIT2 = NOBJ (21) 

where BJ = J/T2 is the  bandwidth  of  the  spectral  window (see 

Figs. 1 and 2). (It is also the  equivalent noise bandwidth of 

the  window [28] .) 

Output Signal-to-Noise Ratio 

If p,(f) is the signal power  spectral  density  function  and f 
is frequency,  measured relative to  the  center  of  the spectral 

window,  the  output signal power will be 

When the  signal power is uniformly  distributed over the band 

fl to  f 2 ,  the  output signal power  becomes 

where y = 2 f / B ~  and  where 

ZJ(  y )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL’’ W.?(Jx/Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx. 

The  function ZJ(Y)  is tabulated in  Table I1 for values of y 
lying  within  the main  lobe of  the  spectral  window.  From (21) 

and (23) then,  the  output signal-to-noise  power  ratio  becomes 

And, if the signal  power  spectral density is symmetrically 

located  within  the  filter  window,  the  relation  reduces to  

For  a  properly designed system, BJ should be chosen to 

efficiently  contain  the signal  power without  significant  excess 

or spillover.  Ideally, y should be one  to avoid  an  excess of un- 

wanted  noise  and  interference.  From  Table I1 (and y = l),  it 

is seen that for J greater than  one  the  output signal-to-noise 

ratio is very  nearly  ideal. Even for J equal  to  one,  the loss  in 

signal-to-noise  ratio is only slightly  in  excess of one  decibel. 

Consequently,  from  the  standpoint  of signal-to-noise ratio, 

there is no strong  motivation for choosing  a value  of .I greater 

than  one. 

Spectral  Leakage 

An important  facet  in  the design of the  spectral  window 

(selection of the  parameter J )  is the  spectral leakage  resulting 

from  the  window  sidelobes [ 2 8 ] .  These  sidelobes  will  cause 

signals remote  from  the  window  bandwidth  to  appear  at  the 

filter output, even though  they  are  attenuated.  And if the re- 
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Fig. 4. Sidelobe  leakage  characteristics of the  spectral  window  function 
W J ( X )  for odd values of the parameter J .  

mote signals are  sufficiently  strong,  they  can  seriously  inter- 

fere  with  those signals  falling within  the  filter  window.  Conse- 

quently,  it  is  important  that  the  filter  window  reject  those 

signals whose  spectral  energy  falls  outside  of  the  spectral  win- 

dow to  the degree that is practical. 

From (6) ,  the  magnitude  of  the  spectral  window  sidelobes 

is closely approximated  by 

when J is odd, ot 

(25b) 

when J is even:  where m = 1,2, . . . is the  sidelobe  index  along 

the  frequency  axis. 

For large  values of m (J << m )  

2 -- BJ (for J o d d )  (26a) 

and 

J + l + m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2 5  - -- B: (for J even) i w J ( b -  ) I  n(J+2m),  2.rrJf2 

where f is frequency  measured relative to  the  center of  the 

spectral  window.  For BJ constant,  it is seen that  the  magni- 

tude of the  remote  filter  sidelobes is inversely proportional  to 

J .  A more  interesting  fact is that  the  magnitude  of  the  side- 

lobes  decays  at  a  rate  of 12 dB/octave  of  frequency  when J is 

even,  and  only 6 dB/octave of frequency  when J is odd.  Thus, 

from  the  standpoint of interference  rejection  it will  be more 

productive to  make J even. 

Plots of the  spectral  window  characteristics  for J odd  and 

even  are shown in Figs. 4 and 5. The  frequency axis  of the 

curves is scaled in  units of the  window  bandwidth  in  each case 

for  comparison  purposes.  The  advantage of  making J even in 

lieu  of  odd is quite  apparent.  Further, since the sidelobe 

density is J lobes per window  bandwidth,  interferring signals 

whose  spectral  power is spread over one  or  more  sidelobes will 

be attenuated  approximately 4 dB  below the  indicated side- 

lobe  envelope. 

CORRELATION PROCESSING 

Magnitude-Squared  Coherence 

The  magnitude-squared  coherence  function (MSC) of two 

signals sl(t) and s 2 ( t )  is defined  as 

where S l l ( f )  and S,,( f )  are the power  spectral  densities of 

s l ( t )  and s2( t ) ,  respectively,  and SI2( f )  is the  cross-power 

spectral  density  (Fourier  transform  of  the  cross-correlation 

function).  Note  that  the MSC will range between  zero  and  one 

depending  upon  the  magnitude  of  the  cross-power  spectral 

density. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Sidelobe  leakage  characteristics of the  spectral  window  function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W J ( X )  for even  values of the  parameter J .  

Perhaps  the  most  unique  property of the MSC is its invari- 

ance  under  linear  operations.  That  is, if u l ( t )  and u 2 ( t )  are the 

result  of  linear  time-invariant operations  on s l ( t )  and s2(t) ,  
then  the MSC of u l ( t )  and u2(t) will be  identical to  the MSC 

of s l ( t )  and s2 ( t )  141. This  will be  true even though  the  corre- 

lation  coefficient  between u l ( t )  and u 2 ( t )  may  differ  radically 

from  the  correlation  coefficient  between s l ( t )  and s2(t) .  Thus, 

the  square  root of the MSC and  the  correlation  coefficient, 

although  somewhat  related,  are  truly  different  concepts. 

MSC Estimate 

The  magnitude-squared  coherence  estimate  has  been  defined 

as [41 

where the  indicated average is computed over a given analysis 

interval,  and S,(k) is the  sectionalized  Fourier  transform of 

the relevant  temporal  function  computed over time T,. 
(The  asterisk  denotes  the  complex  conjugate.) ' I n  the  nota- 

tion  above,  the  time  index is m (t  = mT1  GmT,) and  the 

frequency  index is k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f' = k/T,). The  numerator in the 

above equation  forms  the  estimate  of  the  cross-power spec- 

tral  density  between  the  two  relevant  signals s1 ( t )  and s2  (t) .  
The MSC estimate has  received  considerable attention  in  the 

literature as a  sample  test  statistic  for  coherencc  estimates [4]- 
[ 161. However, depending  upon  the  length of the analysis in- 

terval and several other  factors,  the  estimate  may  not be a 

good  estimate of the MSC. One  can  readily  perceive that  the 

estimate is no longer  invariant  with  linear  operations  on  the 

two signals, but can  vary appreciably  depending on the  nature 

of  these  operations. In fact  (as  shall  be  subsequently  shown), 

when  the  spectral  power of the  two  temporal signals is essen- 

tially bounded  within  the  spectral  bin-width  of  the  Fourier 

transform,  the  square  root  of  the MSC estimate closely  ap- 

proximates  the  normalized  envelope  correlation  function of 

the  two signals. 

Normalized  Correlation  Envelope 

Consider now  that s l ( t )  and sz(t) are two real narrow- 

band signals  present  at two  sensors.  The  normalized  two- 

dimensional  correlation  function (NC) of  the signals  (over an 

extended analysis  interval) is defined as [31] 

where  the  indicated averaging is carried  out over the  analysis 

interval.  The resulting NC can  generally  be written as the 

product of a slowly  varying correlation  envelope (NCE) func- 

tion X ( T ,  cu), and  a  sinusoidal carrier function C(7, a)  [31]. By 

repeati,ng the NC with 7 shifted  by  one-quarter  of  a cycle  of 

the  carrier  frequency,  the  resulting NC will be in quadrature 

with  the original  NC. (The  minute  shift in 7 will not signifi- 

cantly change the value of the  correlation  envelope  function.) 

Thus,  the NCE may readily be  computed  as  the  square  root of 

thc  sum  of  the  squares  of  the NC and  the  quadrature NC. 

The  indicated  procedure  for  determining  the NCE is com- 

putationally  awkward  and  inefficient.  Further, since the  de- 

sired  signals  are  generally colitaminated  by noise and  inter- 

fering  signals, some form  of  filtering is desired  around  the 

relevant  signals to  improve  their  signal-to-background  ratio 



prior to correlation.  The  technique  of  basebanding  and  low- 

pass  filtering  the  relevant signals  prior to correlation is a  suit- 

able  alternative,  but  this is computationally  unattractive i f  

carried out  in  the  normal  step-wise  fashion.  However,  the 

earlier  analyses  have  shown that basebanding  and  spectral 

filtering  may  be  accomplished  quite  readily  through  the use 

of  the  sectionalized  Fourier  transform.  This suggests that  the 

following  algorithm  may  serve  as  a  convenient  estimate of 

the NCE. 

I(eim(q/M)nVl,m-m,(k;  J)V,*,,(k; J))I 

d(lV1,m-m,(k;  J)12)(1V2,m(k; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ) I 2 )  
?k(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO) = ( 3 0 4  

where  the  symbology 

and  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnz, (an  integer)  reflects  the  time  displacenxnt  (tau 

variable), and  4  (an  integer)  reflects  the  time  scale-factor  shift 

or  Doppler  ratio  (alpha variable) between  the  two signals. The 

transforms in the  relation  are  defined  by (1 5), with  subscripts 

added  to  denote  the signals within  the  two  k-bin  channels  be- 

ing processed.  The  exponential  factor in the  numerator  of  the 

above  relation serves  as the  ambiguity  kernel  exp(i2naft) 

[32]  to  Doppler-shift  the  transform V;,,(k; J). This is sug- 

gested  from  (18) as a method of (approximately)  compensat- 

ing for  any  time  scale-factor  shift  between  the signals in  the 

two  channels.2 

The optimum choice  for T I  in  the NCE estimate is the  Ny- 

quist  interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT2 /J = 1 /BJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y = T2 /TI = J ) .  With this  choice, 

the  total analysis  time is MT1 and  the  correlation  integration 

time is 

T =  ( M -  1)Tl = ( M -  1)/BJ (3 1 4 

01 

An explicit  expression  for the r variable is, of course, 

T = m,T1 = m,fBJ.  (3  2) 

However,  the  explicit  Doppler  ratio  for a given signal will de- 

pend  on  the  mean  frequency of that signal  over the  processor 

analysis  interval  [(16a)].  A  suitable  estimate  of  the  Doppler 

ratio is  given by 

(33a) 

where fk = k/T2 is the  approximate  center-frequency  of  the 

spectral  window. When k is optimum  for a given signal (viz., 

when  the  spectral  window is most  nearly  centered  about  the 

signal spectrum),  the  error in the  estimate will  be 

211. D. Trueblood of  the Naval Ocean  Systems  Center (NOSC) em- 
ployed  this  technique  in  connection  with  the  magnitude-squarcd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOY 

herence (MSC) estimate  in  thc  early 1970’s. The results o f  his (and 
subsequently  other’s)  investigations  indicated  that  the  compensation 
was adequate f o r  the signals and  paranlctcrs  sed in the MSC estimate. 

where 6, ( 16cl < 1/2) is the  difference  between f, and  the 

nearest  harmonic  k/T2.  The  choice  of  the  index q to  vary the 

Doppler  ratio  in  increments  of  approximately  1/2f,T was 

made  to  limit  the  “picket-fence”  or  “scallop” loss  in the 

a-dimension to  less than 1 dB  [28]. 

Computation of NCE Estimate 

Computing  the  two-dimensional NCE estimate  must  cer- 

tainly be  considered a formidable  task as a  result  of  the vari- 

ables m, and  4 over  which  a  correlation  surface is mapped.  In 

practice,  the  number of points  required to  satisfactorily  map 

the  surface can  range from several thousand  to  the  tens  of 

thousands.  However,  the  present  state-of-the-art  in  computer 

technology (using modern  array  processors) is such that  ade- 

quate  computational  speed is available,  providing the process- 

ing algorithms  are  suitably  matched to  the  computer  architec- 

ture. In the case  of the  transforms Vm(k; J ) ,  these  are  ideally 

suited  for  array processing  using conventional  DFT  (discrete 

Fourier  transform)  formats.  One  may also  perceive that  the 

numerator  of  the NCE estimate  [(30)]  has  the  form  of  a  DFT 

relative to  the  Doppler-ratio variable q.  This  considerably re- 

duces  the  required  programming  and  the  computational  time 

in  the  realization  of  a  NCE  surface. 

The  variation in the  r-dimension,  although  not as expedient 

to  reproduce, involves incremental  translations of the  one 

transform Vm(k;  J )  relative to  the  other. When the  equiva- 

lent  bandwidth  of  the  desired signal spectral  power is greater 

than  one-half  the  width  of  the  spectral  window,  the  scallop 

loss (due to discrete  sampling  in  the  r-dimension)  can  exceed 

1 dB  and  may  approach 4 dB  (when  the  equivalent  bandwidth 

is equal to  the width  of  the  spectral  window).  Under  these 

circumstances,  the  scallop loss can be reduced  by  computing 

a  second series of Vm(k; J )  (for  one  of  the signals), which is 

temporally  interlaced  with  the original set.  This is equivalent 

to  choosing T,  to be 1/2BJ  for  the  one signal, and  then se- 

quentially  interlacing  the  odd  and even sets  of  resulting  sec- 

tionalized  Fourier  transforms in computingthe NCE estimate. 

Although  somewhat  complicated,  the  indicated  techniques 

(or  modified  versions  thereof)  for  computing  rather  extensive 

ambiguity  surfaces have been  accomplished  with  relative  ease 

on  suitable  array  processors  within  the  past  decade [ 181- [20], 

~ 3 1 1 .  

Vulidution of the NCE Estimate 

The  algorithm  for  estimating  the NCE [given by  (30)] can  be 

applied  in  two  ways.  First,  it  can be  used to  study  the am- 

biguity  surface  features  for a broad class of  temporal  functions. 

And  second,  it can be used to detect  (and  estimate  the  param- 

eters  for)  common signals  which  differ  in time  alignment 

and/or Doppler  ratio. 

In the first application, V1,,(k; J) = V2,m(k ;  J )  and  the 

parameters q and m, are  used to map  the  autocorrelation  en- 

velope  over the  m-plane.  Letting  the  spectral  window  be  cen- 

tered  on  (and  encompass)  the  spectral energy  of the signal 
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u( t ) ,  it is seen that (30)  closely approximates  [from  (18)  and  From (12), (1 8), and (20) then,  it  may  be verified (with  a 

(20)l little algebraic manipulation)  that 

When both m7 and q are zero,  the NCE estimate  equals  unity. 

Further, along the T axis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0), the  estimate of the NCE is 

essentially  precise.  However,  when a is nonzero,  the  estimate 

is degraded as a  consequence  of  the  nonlinear  phase-distortion 

factor.  (The degree that  this  factor  influences  the  NCE  esti- 

mate will be determined  shortly.) 

In the  second  application,  consider  that  the  common sig- 

nal is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu( t )  [see (l)] and  that sl(t) = u(t  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70) and s z ( t )  = u(t  + 
sot). In  this  application,  the  parameters T~ and a. are  un- 

known  and will need to be  estimated  from  the NCE function 

topology.  (The NCE estimate is expected  to  peak  at  the  point 

where r and CY compensate  for  the  parameters 7o and ao, re- 

spectively.)  In  practice, m7 and q are  systematically  sequenced 

over a set  of  values which will encompass  the  anticipated range 

of T~ and ao. Since  the  intent  of  the processing is to  com- 

pensate  for  time  and  Doppler  differences  in  the received sig- 

nals,  it will be  advantageous to  shift the spectral  window 

periodically  as  discussed  in  relation to  (17). (The  shift  in  the 

spectral  window  function is to  ensure that  the  two spectral 

windows  span  approximately  the same portion of the signal 

spectrum in the  common signal.) 

An algorithm  for  determining  the  bin-shift  parameter is de- 

veloped  as  follows.  With M [see (30b)l  chosen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that M/J is  
an  integer,  let q’ be a  modulo  integer  defined as 

4’ = (4 - j M / J )  Mod (2jM/J) - jM/J (3 5 4  

where j ( j < J )  is the desired number  of  Fourier  transform 

bins to be translated  with each modulo  sequence. (When J i s  
small,  it may  be  expedient  to  make j = 1; however,  when J is 

large,  computation  time can be saved by  translating  the spec- 

tral  window in  larger increments  without  seriously degrading 

the  sensitivity  of  the  correlation processor.) The  shift  param- 

eter n, is then 

‘2, = (4 - 4 ‘ )  J/2M (35b) 

or, in terms  of n,? the value of 4 is 

2M 
J 

4 = - n, t q f  

The above relation verifies that  the NCE  estimate is an  accu- 

rate  representation  of  the  NCE,  except  for  the  nonlinear 

phase-distortion  factor  in  the  numerator.  Of  course,  when 

01 = 0 (4 = 0 and a‘ = 010) the  estimate is  precise,  provided the 

spectral  energy  of both signals  falls within  the  spectral  win- 

dow. (This  results  from  the  fact  that  no  Doppler  compensa- 

tion  has  been  employed.  The  nonlinear  phase-distortion is 

due solely to  the  convenient  method  chosen  for  Doppler  com- 

pensation.) When rn,/BJ - T~ is equal  to - E ~ / B J  (- 1/2 < el < 
1/2) and cyo - qB~/2Mf ,  is equal to  e z B ~ / 2 M f ,  (- 1/2 < ez < 
1/2),  the  estimate will maximize  and  equals 

2 (r, a) = I(R e in~ l~u l (mT1) /BJ /21  ein(m/M)c2 
k0 m 

. , - i n m ~ O [ u Z ( ~ T l ) / ~ J / z ~ ) ~  
( 3 7 4  

where 

R, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIuo(rnTl)12/~1uo(mT1)12~ =Az(mT1)/(A2(rnT1))  

(37b) 

r = T~ - E ~ / B J  (- 1/2 < el < 1/2) (3 7 c) 

( Y = a o -  €zBJ/zMfc  ( -1/2<€2<1/2) (37d) 

ul(mT1) = u{(m + E1/2)Tl} (3 7 e) 

and 

uz(mT1) = u { ( l  t ao/2)mT1}.  (37f) 

Except  for  the  three  exponential  degradation  factors,  the 

above  estimate is equal  to  one  (the  desired value). The  first 

two  exponential  factors  degrade  the  estimate as a  consequence 

of sampling the NCE function  at  discrete  points  along  the 7 

and a axis  of  the  ambiguity  plane.  This  results  in  a  two- 

dimensional  scallop loss  (in the  estimate) over the  ra-plane. 

When el  and eZ are  zero,  these  factors  reduce to  one.  The 

third  exponential  factor  degrades  the  estimate  as  a  conse- 

quence of the  imperfect  method  of  compensating  for  time 

scale-factor  compression  (or  expansion)  in  the  algorithm.  The 

design considerations  which  may  be  employed  to  limit  the 

degradation of the NCE estimate will now  be  addressed. 
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The NCE estimate given by (37) is a function  of  the vari- 

ables e l ,  e,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(yo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ,  and  the design parameters M and 

BJ. The variables e l :  e,, and u are  zero-mean  random  pro- 

cesses,  while A is either  constant  or is comprised  of  a  mean 

value with  a  random  component (over the analysis  interval). 

For  purpose  of  the  analysis  to  follow, it will be reasonable 

t o  assume that  the  random pl-ocesses are all ergodic  and  sta- 

tistically  independent. 

A study  of (36) and (37) reveals that  the  amplitude  func- 

tion A(mT,) can significantly influence  the NCE estimate if 

this  function is highly unstationary.  For  example,  suppose 

that  A(mTl)  for  a particular m is much  greater  than M times 

the value for  the  remainder  of  the set of m. In this  event,  the 

value of  the  NCE  estimate given by (36) will approximately 

equal  one regardless  of the  phase  variation  over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW .  This is a 

nontrivial  problem  and  has  occurred  in  practice  in  connection 

with  transient signals of  short  duration (comparable to   the 

sample  period T I ) ,  It  can  readily  be  perceived  that  the  effect 

of relatively high-level transient  bursts  in  the  amplitude level 

is to  shorten  the  effective  (or useful)  integration  time  of  the 

NCE  estimate.  This  in  turn  reduces  (rather  than  increases)  the 

degradation  effects  under  consideration.  Consequently, to   ob-  

tain  a useful  measure  of the  degradation  effects  of  the phase 

parameters  under  consideration,  the  amplitude  parameter Rm 
will be  considered  as  constant over the  integration  time.  This 

procedure will maximize  the  phase  misalignment  degradation 

effects  of  the NCE estimate,  which is of  primary  concern in 

this  paper.  Therefore  letting R,  = 1,  the  expected  degrada- 

tion will be  determined  for  each  of  the  three  factors  in (37) 
separately. 

Degradation due to sampling error E,: Consider  first  that el 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1 ~  are  both  zero.  The value of  the  NCE  estimate  due  to 

the  error E ,  becomes [23] 

- - sin (e2n/2) sin (ne2/2)  4 
M sin (e2n /2M)  ne2/2 

< - sin (n/4) = 0.90. 
71 

Thus,  the  expected  degradation  due  to  imperfect 01 alignment 

will be less than  about 0.91 dB.  Further, since the  probability 

density  function  for e,  will be  constant  over  the range - l / 2  < 
e2 < 112, the  expected  degradation (averaging  over e2)  will be 

‘’* sin (ne2/2> Si (n/4) 
de, = ~ 

~ 1 4  
X 0.96 (-0.33 dB). 

Thus,  the  increment  sample size along  the 01 dimension  appears 

to be  suitably  chosen  for  practical  applications. 

Degvadation due to sampling error el: Consider  next  that e2 
and a0 are  both  zero.  Assuming  that 1 <<M, the  NCE  esti- 

mate  may be  closely approximated  as 

+ i J sin [2nelu(r)/BJ] d t  . 
-7’12 

Since u ( t )  is a  zero-mean  function over the analysis interval, 

the imaginary  term  of  the  NCE  estimate will be near  zero  and 

the real term  can  be  expected  to  dominate over the permis- 

sible  range of e l  and u ( t ) .  Although  the  expected value of  the 

imaginary  term will be  zero,  it  does  not  follow  that  the  ex- 

pected value  of the  NCE  estimate will be  determined  by  the 

real term  alone.  However,  it  does  follow  that  a  lower  bound 

on  the  expected value of  the  estimate  can  be  determined  by 

using only  the real term.  And as long as the real term  does 

not  become small compared  to  one,  it will closely approxi- 

mate  the  true  expected value of  the  estimate.  Thus 

I 
I 

And  letting p,(u) be the  probability  density  function  of u and 

assuming that p,(-u) = p,(u), the  lower  bound  on  the  expected 

value of  the  NCE  estimate  (when  el  is given) is 

= 2 1- p e ( e )  cos e de (39c) 

where 8 = 2ne1u/BJ and p e ( e )  = (BJ/2ne1)p,(BJ8/2.e~). 
The above  relation  has  been solved for  three  probability  den- 

sity  functions,  and  the  results  are  tabulated  in  Table 111. The 

first  probability  density is the case where u is  uniformly dis- 

tributed over a  bandwidth B,. The  second is a  Gaussian func- 

tion  whose  standard  deviation is limited t o  a  maximum  of 

BJ/4. (The  bandwidth B, is the  information  bandwidth of 

the signal (see [30, pp. 229-2361.) The  probability  density 

for  the  third case is realized when v is a  sinusoidal  fluctuation 

whose  peak-to-peak  frequency  excursion is uniformly distri- 

buted over the  bandwidth B,  [33].3 
From  the  table  one  can  observe  that  the  expected  degrada- 

tion will depend  on B, and  the  distribution  of u over BJ,  as 

well as the sampling  error e l .  For lel/ = 1/2 and B, at  its 

maximum  permitted value, the lower bound of the  expected 

3Thc  three  probability  density  functions  considered here, as wcll as 
a  number o f  other  distributions,  may  be  found  in [33] .  This carlier 
work demonstrates  that  the  coherence  degradation \vi11 depend  csscn- 
tially on  the  standard  deviation of thc B variable  (and  be  relatively 
indepcndcnt  of  thc  probability  density  function)  when 00 is less than 
one. 
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TABLE I11 

THE SAMPLING ERROR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ,  
PROBABII.ITY DENSITY  AND EXPECTED NCE ESTIMATES RELATING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘TO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I PROB.  DENSITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp , . b )  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu , / U v  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€ l i L , , [ T , 0 ) l  
1 ;  

degradation  in  each case  will be:  0.637  (-3.92 dB) in  case 1, 

0.735  (-2.68 dB)  in  case 2 ,  and  0.814  (-1.79 dB)  in  case 3. 

Since  the  error el will be  uniformly  distributed over the range 

- 112 < el < 112, the  expected  degradation  due  to  this cause  in 

each case  (averaging  over el) will be  limited to  

= 0.905 (-0.86 dB), 

and 

= 0.93  (-0.59 dB) 

where the  error  function  erf (2) is defined as [24,  pp.  295- 

3001 

This  amount of degradation  appears  tolerable  for  practical 

application.  However,  the  expected  degradation can be 

further  reduced  by  sampling  the  one  channel  at  twice  the 

Nyquist  interval  and  interlacing  the  sample  sets  in  (30)  as  de- 

scribed  earlier. In this  event, Table 111 will  still be  applicable 

with  the  understanding  that el is limited to  *1/4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Degradation due to imperfect Doppler  compensation: Fi- 

nally,  consider  that el  and e2 are both zero.  Assuming 1 << M ,  
the NCE estimate  in  this  situation  may be written 

where T =  (M - l)T1 = (M - ~)/BJ. Again, letting p,(u) be  the 

probability  density  of u and assuming that pu(- u)  = p,(u), the 

lower  bound  on  the  expected value  of the  NCE  estimate 

becomes 

1 

= 1 [2 lm p,(u) cos  (naoTux) du dx. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
(41) 

One may recognize that  the  inner  integral  in  (41) is identical 

in  form  to  (39c).  Consequently,  the  results given in  Table 111 

will  be  applicable to  this case provided  aoB,Tx/2 is substituted 

for elBv/BJ.  The  lower  bound  on  the  expected values of  the 

NCE estimate  (for  the  three given probability  densities)  may 

therefore be computed as 

Si (naoB,T/2) 

naoB,T/2 

erf (fiaoB,T/2) 

aoB;T 

and 

Since the above expectations  are  derived  from  ensemble 

averages for  the  random variable u ( t ) ,  it will be  informative 

to  determine  the  error  in  the  NCE  estimate  for specific exam- 

ples of u ( t )  for  comparison  purposes.  Two  examples  are 

chosen  which  produce  rather severe degradation  on  the  esti- 

mate. In the  first  example  let 

u( t )  = *B,t/T (-TI2 < t S T/2) ( 4 3 4  

and in the  second  example  let 

*B,/2  (for 0 < t S T/2) } 
TBJ2  (for - T/2 S t < 0) 

u(t) = 

TI 2 

’ 1’ S T , / ,  
cos [2naotu(t)] d t  

suitable  upper  bound  on  the  expected NCE degradation. 

In the first example,  the  frequency varies  linearly  from  TB,/2 

to  +B,/2 over the  integration  period T. This is representative 

of what can occur in practice.  However,  it is a severe example 

in  that u ( t )  is perfectly  correlated  with  the  integration variable 

t (which  will maximize  the  degradation  due  to  the  linear  fre- 

quency slide). In the  second  example,  the  frequency u ( t )  
remains  fixed  at  ?B,/2  for  one-half  the  integration  time  and 

then  flips to  the negative  value for  the  remainder of the  inte- 

gration  period.  This is an extreme case which will be  ap- 

proached  infrequently  in  practice.  However,  it will provide a 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Coherence  degradation  due  to  imperfect  Doppler  compensation 
as a  function  of aoB,,T. (Curves  labeled 1, 2, and 3 result  from as- 
suming  the  corresponding  probability  densities  given  in  Table 111.) 

Employing  the  two specific examples  in  (40)  and  carrying 

out  the  integration gives 

for  the first example,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(- * -) is the Fresnel  cosine inte- 

gral of the  indicated  argument  [24,  pp.  300-3041,  and 

for  the  second  example.  Graphs of  these  functions  along  with 

those given in  (42) are shown  in Fig. 6. 

The curves  (Fig. 6) illustrate that  the value  of aoB,T  should 

be  limited to  about  one if excessive degradation  due to  imper- 

fect  Doppler  compensation is to  be  avoided.  Since all of  the 

curves  are  above - 1 dB  for ctoB,T equal  to (or  less) than  0.5, 

this  value would  represent  a  conservative  choice  for Q ~ B , , T . ~  

Therefore,  a reasonable upper  bound  on  the  integration  param- 

eter M is [from  (3  I)] 

And  since the  Doppler  ratio a. is Auo/c, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnuo is the  dif- 

ference  in  source  speed  along  the  propagation  paths to  the  two 

signal  sensors  and c is the signal propagation  speed  in  the 

transmission medium [30] 

In  the case of underwater  acoustic  applications, c is approxi- 

mately  2880  knots. Assuming a  source-speed  differential of 

10  knots,  a suitable  bound  for M is less than  or  equal to  

288 BJIB,. 

SUMMARY A N D  CONCLUSIONS 

Although  the  Fourier  transform of a temporal  function is 

normally used to  decompose  the  function  into  its  complex 

spectral  components,  the  sectionalized  Fourier  transform 

(SFT)  may  be  employed in a  manner  which preserves the 

temporal  properties of the original  signal.  It  has been  demon- 

4W. 13. Marsh, [ 191 has  recommended  that ol0B,T be  limited to less 
than 0.25 in  connection  with  the MSC estimate.  However  this  appears 
t o  be  ultraconservative in light  of  the  results  displayed  in  Fig. 6. 

strated  that  when  a  contiguous  sequence of J SFT  spectral 

bins  is  appropriately  summed (J typically  being  a  small  num- 

ber): the  resulting  transform  of  a  band-limited signal is equiv- 

alent to  basebanding,  filtering,  and  sampling  the signal  in the 

time  domain.  The value  of J may be chosen to  control  the 

passband and leakage  characteristics  of  the  filter  (see  Figs. 

1-4). 

With the  advent  of  the  FFT  algorithm  and  modern  array 

processors, use of the  SFT  to  baseband,  filter,  and sample 

signals  considerably  simplifies  the  programming  of  multidi- 

mensional  correlation  processors  in  practical  applications. 

Further, using the  ambiguity kernel  as an  approximation of 

signal time  compression  (or  expansion),  the FFT algorithm 

is applicable to  correlation  mapping  along  the  Doppler-ratio 

axis  of the  ambiguity plane. The  resulting  error  has  been 

shown to be negligible when  the  product of the signal band- 

width  and  the  correlator  integration  time is  less than  the 

inverse  of the  maximum  Doppler  ratio  being  employed. Us- 

ing the  techniques  described  in  this  paper  (and  modifica- 

tion  thereof),  two-dimensional  correlation  mapping  of  low- 

frequency  acoustical signals  over long  integration  intervals  has 

been  implemented for the NCE estimate  (or  the MSC estimate) 

well in excess of real  time. 

It  may be concluded  that  the  sectionalized  Fourier  trans- 

form  has  many  applications as an  alternate  (and  convenient) 

method of time-domain processing  using modern  array digital 

computers.  Its  application is limited  only  by  the sample  rate 

which can  be processed  in  the digital computer  employed. 

APPEND I X  

EXPECTED  VALUE OF THE DISTORTION  FUNCTION 

From  (3)  and ( S ) ,  the  distortion  function  may be written  in 

the  form 

where 

A ,  =Ai(mT1 t t)/Aj(mT1) 

and 

F(t )  = sin (nJt/T2)/sin (nt/T,) (A1  d) 

and  with  the  additional provisions that Aj(mT1) > 0 and 

+1/2 is added  to 6,  when J is even [as described  in  the  text 

following (S)] . 
The  function F( t )  is deterministic, while the  functions A ,  

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUrn are  comprised of sample  functions (Ai and u k )  drawn 

from  ensembles  (or sets) with  common  statistical  characteris- 

tics. To  emphasize  this  fact,  (Ala) is rewritten as 

where  the  subscripts j and k have been  attached  to  the sample 

function A ,  and Urn to  imply  that  a  sample  member  from 
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each ensemble zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Aj} and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{uk}  is chosen  in  the  computation of 

the  distortion  function. 

The  expected value of  the  above  distortion  function is ob- 

tained by computing  the  integral averaged  over the  double 

ensemble of sample  functions. In computing  the  ensemble 

averages it will be assumed that  the  two  sample  sets  are  inde- 

pendent,  and  the  sample  functions Ai and uk from  each,  en- 

semble  are  both  ergodic  and  stationary over the  integration 

interval T2. (The  condition of stationary  does  not  apply  to 

the  functions Ami and 5,k which  are  constructed  from Ai 
and vk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.) Restrictions  on  the  properties of Ai and uk to  qualify 

as a  member of  each ensemble will be determined as we pro- 

ceed with  the analysis.  (Basically, the  members of each  en- 

semble  must  be such that  their  interrelated  power  spectral 

density is confined  to fall  essentially  within  the  spectral win- 

dow  of J/T2 Hz.)  Under  the  stipulated  conditions,  the  ex- 

pected value  of the  distortion  function  becomes 

ability  densities of A ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAir,, respectively,  the respective en- 

semble averages  can be  written 

Amp,  (A', , t )  dA, (A3b) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J- m 

At  this  point  it is important  to realize that  the  restrictions 

on  the  member  functions  of  the  two  independent  ensembles 

are  interrelated.  The  functions {Ami} are amplitude  modula- 

tions of the  carrier  functions  exp {i2n[6,/T2 + i&,&]t}. A 
member of  this  carrier  set is exp {i2n[6,/T2 + U M ] ~ } ,  where 

VM is the,  extreme  limit  of a slowly  varying fluctuation  fre- 

quency.  Therefore, since any  dynamic  variation  in  the  sample 

function Ami will produce  equal  sidebands of power on  either 

side  of the  carrier  frequency 6,/T2 + U M ,  [35]  the  carrier  fre- 

quency  must  be  restricted to lie sufficiently well within  the 

spectral  window to  accommodate  the  amplitude  modulation 

sidebands.  On  this  basis  it is evident that  when J is one  and 

6, = 1/2, A ,  tnust  be  essentially  constant over T2 if the dis- 

tortion  function is not  to  become excessive.  On the  other 

hand,  when J is  large,  the  parameter 6, will not play a signifi- 

cant role in restricting the  members of the  ensembles. Conse- 

quently,  for  1 << J ,  the  spectral  window need be  only  suffi- 

ciently  broad to  accommodate  both  the  maximum  deviation 

in the  frequency  fluctuation u ( t )  and  the  spectral  sidebands 

introduced as  .a consequence  of  the  amplitude  modulation 

(if  significant  distortion of the  resulting  transformed signal is 

to be  avoided). 

Since the  two  ensembles of sample  functions  are assumed 

independent, it will bc convenient  and  appropriate to  treat 

the  amplitude  and  frequency  fluctuation  problems  separately. 

Expected Distortion Due to Frequency Fluctuations 

Consider  first  that  the  functions {Ai(mT1 + t ) }  are essen- 

tially  constant over time  increments  of T2 seconds  such  that 

the  ensemble {Am,.} is unity.  Considering  then  the  broad class 

of ensemble  functions i jmk, it is reasonable to  assume that  for 

every member  function  there  exists  a  member  function  which 

has  its negative time  characteristics.  This is equivalent to 

assuming that p 2 (  Urn, -'t) = p2(  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUrn, t). With  these  considera- 

tions,  (Ala)  reduces  to 

. COS [2n(6, + TziJm)t/T2] di7, dt. (A41 

It is well to  note  that  the  maximum  time we need  be  con- 

cerned  with is T2/2.  However,  the  magnitude  of  the  Dirichlet 

kernel  decays  rapidly  for t greater  than T2 /2J=   T1 /2 .  Conse- 

quently,  the significance  of p2(U, ,  t )  becomes  increasingly 

less beyond t = T1/2.  
Since iimk is the  running-time average  of Uk(mT1 + t ) ,  its 

probability  density  function will depend  on  the  dynamic 

characteristics  (or  power  spectrum) of u(t) as  well  as on  the 

smoothing  time t .  It  should also be  apparent  that  the  peak 

magnitude of Fmk cannot  exceed  the  peak  magnitude of 

ficiently  small so that Uk(mT1 + t)  is approximately  equal to 

Uk(mT1) + &(mT,)t over all members of the  ensemble,  .the 

probability  density of V, will approximate  the  probability 

density  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu.  On  the  other  hand,  when t i s  large, the probabil- 

ity  density  of 5, will  be compressed  relative to  the  probability 

density  of u .  This is evident  since  the average  of a  rapidly  vary- 

ing zero-mean  function  approaches  zero over  relatively long 

time  intervals. 

Vk(mT1 + t )  (that  is, l$,kl < IUk(WT1 + t)l). When t iS SUf-  

To  exemplify  the above consideration,  let 

Uk(mT1+ t )  = UM sin (2npt + @,) 

where UM is the  frequency  deviation (UM < B J / ~  = J/2T2) and 

p is the  modulating  frequency.  Then 

Thus, ij;nk is a  delayed  (by  the  amount t /2)  and  compressed 

version of the  function vk(mT, + t) .  The  ratio uM/p is known 

as the  frequency  modulation  index of the  process,  and  the re- 

sulting  signal  spectral  energy  can  be  expressed  in  terms of 

Bessel functions. To prevent  significant  spectral  energy  of  the 

signal from  exceeding  the passband  of the spectral  window, 

this  ratio  should  be no greater  than n/2 [36].  This places  an 

upper  bound  on  the  modulating  frequency p of 2 u ~ / n  < B J / ~ .  
Using the  upper  bound  for p ,  the  function cmk becomes 
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and  for It1 less than or equal t o  T1/2 ,  the  compression  factor is 

sin (2u,vt) sin u,wT1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< < 2 sin (1/2) 0.96. 
2U&I t UM T I  

Thus,  in  the  extreme case  (for p maximum  allowable),  the 

probability  density  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, will be  approximately  the  same as 

the  probability  density  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ,  within  the  primary  lobe  of  the 

Dirichlet  kernel.  The  maximum  rate  of  change  of uk(mT1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt t )  
is 27rpu~ < 4u& < Bj  = J2/T:. This  rate  limits  the  change  in 

uk(mT1 + t)  over the  period  of T I  s to less than  the  spectral 

window  width  of BJ hertz  (or  equivalently, UT: < 1). Little 

error will therefore  result  in  assuming  that  the  probability 

density of 5, is the same  as the  probability  density  of u over 

As  a  consequence  of  the  above  analysis,  (A4) will closely 
7-2. 

approximate  [using  (6a)l 

. cos [n(6, t T2u)t]  dtdu 

where p,(u) is the  probability  density  function  for u and 

W,(. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe) is the  spectral  window  function  for  the  indicated 

argument. 

The  expected value of  the  distortion  function is therefore 

the  weighted value of the  magnitude  of  the  spectral  window 

function (see  Figs. 1 and 2). The  weighting  function is the 

probability  density  function  for  the  fluctuating  frequency u .  
When J>> 1,  WJ(x) is approximately  equal  to  one  over  the 

spectral  window  passband.  Therefore if p,(u) is zero  for 

I u /  > BJ/2,  the  expected value of  the  distortion  function is 

essentially  unity. 

Expected Distortion Due to  Amplitude Fluctuations 

To  study  the  expected  distortion  due  to  amplitude  mod- 

ulation we shall  consider  that  u(mT, + t )  is constant  over 

- T2/2  < t < T2/2,  and let x ,  = 6, t T2u(mTl). The  ensem- 

ble  average will be  taken  only  over j holding k fixed, so that 

(A3a)  becomes 

E, {Dm = ( Dmjk) (averaged over j )  

To proceed, it will prove  convenient to  perform  the  ensem- 

ble  averaging zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi n  steps.  First,  it  may  be  assumed  that  for every 

member  function A,; there  exists  a  complement  member 

function  with negative time  characteristics.  Thus,  the average 

of  the  member  and  its  complement is an even function  of 

time. As a  consequence,  the  expected value of  the  distortion 

will be real and we need  carry the averaging  process only  over 

even functions of time. Thc  symbology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAmi will henceforth 

be used to represent  an  even  function  of t ime,  with  the  under- 

standing  that  the  first  step  of  ensemble averaging has  been 

effected. 

Next,  let Aj(mTl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf t )  be  written  as Aoi[ l  t ai(t)], where 

Aoj is the  mean value  over the  time  interval T2 and ai is a 

zero-mean  function  greater  than -1 over this  interval.  Then 

Ami takes  the  form [ 1 t ai ( t ) ] / [  1 + aj(0)] .  Over the  time  in- 

terval T2,  q( t )  may  be  expanded  into  the  Fourier series 

P 
aj( t )  = bjp cos (2npt/T2) 

p = 1  

where 

P 
ai(0) = bjp > - 1 .  

p = 1  

Since no significant spectral  energy will be  permitted t o  fall 

outside  of  the  spectral  window,  the  ensemble  of  functions aj 
to  be considered will be  limited  to  those  whose  upper  limit P 
is restricted  by  the  relation 

P < J/2 - I X M ~  

where /xM/  is the  maximum  excursion  of  the  frequency  fluc- 

tuation x,, This  informs us that  when J is either less than 2 
or lxMl is J/2,  no significant  amplitude  modulation can be  per- 

mitted  without  serious  distortion  of  the  resulting  transformed 

signal. If one-half  of  the  spectral  window is reserved for fre- 

quency  modulation, P will be  limited  to values  less than J/4. 

With the  above  considerations  then,  (A6)  reduces  to 

P 
1 + bjp COS (Rpt) 

p=1 sin (nJti2) 
sin (7rt/2) 

. cos ( T X ,  t )   dt  ) 

where bi0 = 2 and W J ( * .  .) is the  spectral  window  function 

[defined  in  (6)]  for  the  indicated  argument. 

The  above  relation  shows  that  the  expected signal distortion 

due to amplitude  fluctuations will be  dependent  on  the flat- 

ness of  the  spectral  window over the  passband.  Thus,  when J 
is sufficiently large so that  the  spectral  window  can  be  assumed 

to  be  unity over the passband,  (A7)  reduces to one. 
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