
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at IEEE HPSR 2021.

Citation for the original published paper:

Girondi, M., Chiesa, M., Barbette, T. (2021)
High-speed Connection Tracking in Modern Servers
In: 2021 IEEE 22nd International Conference on High Performance Switching and
Routing (HPSR) (IEEE HPSR'21)
https://doi.org/10.1109/HPSR52026.2021.9481841

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295413

High-speed Connection Tracking in Modern Servers

Massimo Girondi Marco Chiesa

KTH Royal Institute of Technology

Tom Barbette

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The rise of commodity servers equipped with high-
speed network interface cards poses increasing demands on the
efficient implementation of connection tracking, i.e., the task of
associating the connection identifier of an incoming packet to
the state stored for that connection. In this work, we thoroughly
investigate and compare the performance obtainable by different
implementations of connection tracking using high-speed real
traffic traces. Based on a load balancer use case, our results show
that connection tracking is an expensive operation, achieving
at most 24 Gbps on a single core. Core-sharding and lock-free
hash tables emerge as the only suitable multi-thread approaches
for enabling 100 Gbps packet processing. In contrast to recent
beliefs, we observe that newly proposed techniques to “lazily”
delete connection states are not more effective than properly
tuned traditional deletion techniques based on timer wheels.

Index Terms—Connection tracking, load balancer, high-speed
networking, multi-core processing, hash table

I. INTRODUCTION

Connection tracking is a critical task for many modern high-

speed network applications including load balancers, stateful

firewalls, network address translators, and general-purpose

networking stacks. The goal of connection tracking is to

associate the connection identifier of a packet to a connection

state (i.e., the data that an application stores and uses to

process all the packets belonging to a specific connection). It

is therefore essential to design the underlying data structures

and algorithms used for connection tracking efficiently, so that

network applications can operate at multi-gigabits speeds and

with minimal latency.

The most common data structures used for connection

tracking are hash tables. These data structures efficiently

map each input key to its associated value. Different hash

table implementations exist and vary in their performance

guarantees. The Linux TCP networking stack tracks TCP

connections using “chained” hash tables [1]. An eBPF program

uses the same type of hash table to share data with user-level

programs [2]. The Facebook Katran Load Balancer [3] relies

on the eBPF’s implementation to map incoming packets to the

correct back-end server. CUCKOOSWITCH [4], Krononat [5]

and MemC3 [6], use “cuckoo” hash tables [7].

This is the accepted version published on IEEE HPSR 2021. The final
version is available at https://ieeexplore.ieee.org/document/9481841, DOI:
10.1109/HPSR52026.2021.9481841

The rise of network card speeds up and above 100 Gbps [8–

10] poses some unique requirements on the design of the con-

nection tracking component (and its hash tables). We focus on

network functions and stacks running on commodity servers,

which is the prevalent deployment approach in the emerging

SDN/NFV-based modern networks [3, 11–16]. The following

properties should be supported: i) efficient operations into the

table as packets arrive at high-speed networking interface cards

in the order of tens (or hundreds) of nanoseconds, ii) low

memory utilization as efficient packet processing requires to

keep the data structures in the memory caches to the largest

extent possible, iii) scale to multiple cores as a single core

cannot cope with all the incoming traffic, and iv) handling

up to millions of flows, a common requirement for datacenter

load balancers [17].

Contributions: In this work, we embark upon a compre-

hensive measurement study of the performance of different

hash table data structures for supporting the above high-speed

networking requirements. All our experiments stress these data

structures with traffic up to 100 Gbps using real-world traffic

traces.

Our work could be divided as follows:

• We first measure the throughput and performance of inser-

tion and lookup operations with five different types of hash

tables that run on a single core. We carefully selected some

of the most efficient implementations already available in

the literature or used in open source projects.

• We then quantify the scalability bottlenecks of six different

techniques that can be used to scale a data structure in a

multi-core environment.

• We compare different thread-safe hash table implementa-

tions with the widely adopted core sharding approach [5,

18–21] where each core is assigned its own hash table and

the network card sends each incoming packet to the core

that has the connection state to process that packet.

• We finally focus on deletion operations on the hash table.

Deletion operations are typically performed after the appli-

cation does not receive a packet of a certain connection for

a certain (configurable) amount of time.

We note that deletion operations on general hash tables have

received fewer attentions [22–24] than insertion and lookup

operations [4, 6, 18]. Deletion operations are however per-

formed as often as insertion operations and must therefore

be implemented efficiently. Deletions are also key to achieve

low memory utilization (by promptly evicting non-active con-978-1-6654-4005-9/21/$31.00 ©2021 IEEE

nections flows) and avoid the well-known performance degra-

dation that arises when the number of elements in a hash table

approaches it maximum limit. We focus our measurement of

deletion techniques on three different mechanisms. In a multi-

thread application, the deletion is even more cumbersome:

other threads may access the connection table while an entry

is deleted, requiring further controls.

We derive the following main findings for any developer

seeking to develop a connection tracking application:

• Recently proposed hash tables improve throughput per-

formance by around 15% in multiple scenarios over a

traditional “chained” hash table. The performance how-

ever sharply degrades as the utilization of the tables get

close to its maximum.

• Relatively simple multi-core scaling solutions such as

spinlock, mutexes, or hierarchical locking scale extremely

poorly, not being able to take advantage of more than

three cores for a load balancer use case.

• Core-sharding is the easiest scaling approach for multi-

core network applications. Lock-free techniques achieve

similar performances of core-sharding at the cost of an

increased complexity for deletion operations.

• Traditional deletion techniques based on a “timer wheel”

performs equivalently to recently proposed “lazy” dele-

tions without making insertion operations more complex,

and scales better. Scanning the table to evict connections

should be avoided.

We have published all the code, data, reproducibility tools,

and supplementary figures omitted for space constraints (la-

tency, cache misses, . . .) on our GitHub repository [25].

II. DATA-STRUCTURES FOR CONNECTION TRACKING

Connection tracking applications rely on a connection table

to perform the association between the connection identifier of

a packet (e.g., the TCP/IP 5-tuple, a QUIC connection iden-

tifier, the GTP TEID of mobile traffic) and the corresponding

stored connection state.

As modern network applications must process packets

within a very strict time budget to avoid packet queuing

(and consequently packet drops), the implementation of the

connection table has received much attention in the past. On

a 100 Gbps link, the time budget for processing a packet can

be in the same order of magnitude of a memory access.1 It

is therefore of paramount importance to keep the connection

table small so that it better fits in the CPU memory caches.

Binary trees and hash tables [28, 29] can both be used

to implement a connection table. Binary trees offer good

performance when used to classify packets based on general

filtering policies (possibly including wildcard matches), but

suffer from costly updates and inserts. When the classification

task is performed on a specific set of fields with an exact

match, as it is the case for connection tracking, hash tables

provide better performance (i.e., constant-time lookup and

1On a 100 Gbps link, minimum size packets arrive each 6.72 ns, while a
memory access requires around 60 ns [26, 27].

average constant-time insertions). We therefore focus only on

hash table data structures.

Hash tables. In its easiest form, a hash table stores elements

based on an index obtained by hashing the key of the element.

When two keys are hashed to the same index, a collision

happens. The major difference between different hash table

implementations is the technique used to handle such colli-

sions. In this work, we focus on the following hash tables:

• Chained hash tables handle collisions using an open hashing

strategy. Each bucket in the hash table stores all colliding

elements in a linked list. A lookup operation simply entails

accessing the linked list indexed by the hash of the element

key and scan all its elements. Chained hash tables may

lead to slow lookup operations as linked lists may grow

arbitrarily large (containing all the inserted elements in the

worst case).

• Cuckoo hash tables [7] implement a closed hashing ap-

proach, where collisions are resolved by assigning two

(or more), independent, buckets to a given key. During a

colliding insertion, all the buckets for that key are checked

and, if all are occupied, a swap process is started. The

incoming element is inserted in any of the buckets and the

insertion procedure is repeated for the replaced element.

The main advantage of this algorithm is the constant-

time lookup operation, which is independent of the table

utilization. Several improvements have been proposed upon

the original schema, such as partial hashing [6], concurrent

optimizations [30], and pre-fetching predictions [18, 30].

Cuckoo hash table implementations are broadly available

in many data-plane libraries, such as DPDK [31]. We

evaluate the implementation offered by DPDK [32], using a

traditional design enhanced with buckets that can store up

to K elements instead of only one.

• Cuckoo++ [18] improves the cuckoo baseline by adding a

Bloom filter [33] to each bucket. This filter indicates whether

a key is certainly not stored in the other possible bucket,

saving one unnecessary memory access to that bucket.

• Hopscotch [34] is a closed hashing scheme where entries are

relocated closely to the original location of a key. It resolves

collisions by storing the colliding entries in a neighborhood

of the initial location. If the neighborhood fits in a cache

line, the cost to access any colliding entry will be close to

finding an entry in the primary location.

• Robin-hood [35] is a closed hashing scheme that relocates

entries using a linear-probing approach: when a collision

is found, the following adjacent entries are iteratively in-

spected, swapping the entries if the inspected entry is closer

to its original location than the one that needs to be inserted.

All of these implementations behave similarly on a global

scale. However, the slightly different implementation details

induce distinct performance when employed in a high speed

environment.

Multi-core approaches. As networking speeds have grown at

a much faster pace than CPU core clock frequencies, handling

full line-rate traffic on a single CPU core had become an

2

increasingly elusive feat. Consequently, it is paramount to

distribute the network application processing among several

CPU cores. In connection tracking applications, this typically

requires to share the data structure used as connection table.

To operate consistently and reliably, the different processes

(or threads) of the application must coordinate their read and

write operations to keep the table in a consistent state. The

main existing approaches to share a data structure are:

• Lock-based methods provide mutually exclusive access to a

data structure through an explicit synchronization primitive,

called a lock. A lock on a data structure can be acquired

or released by one process and relies on hardware atomic

primitives to avoid race conditions. Different types of locks

exist that differentiate on how the lock is acquired.

A spinlock is a locking mechanism that performs a busy-wait

loop on the lock acquisition operation until it succeeds (i.e.,

the lock on the resource has been released). This approach

minimizes the accessing time for a usually-free resource but

it wastes CPU cycles when waiting for the lock.

A mutex, or mutually exclusive lock, is an improvement

upon spinlocks. When waiting for a lock to be released,

processes are moved to a waiting state, allowing the CPU

to schedule other tasks. While this mechanism reduces the

CPU usage, the transition from one state to another one

introduces additional latency. Both spinlocks and mutex can

be acquired either on an entire data structure (i.e., the entire

connection table) or on a smaller portion (e.g., per-bucket

granularity). In this work, we refer to these fine-grained

locking mechanisms as hierarchical locks.

• Lock-free methods [36, 37] solves a pressing problem of

lock-based mechanisms in which a failed process that holds

a lock may indefinitely stuck the progress of the other

processes. A way to implement lock-free data structures

is to keep one or more version counters that are updated

whenever the data structure (or some parts of it) are updated.

Other processes check the initial and final version number to

verify whether their read/write operations were performed

correctly or should be corrected (or reverted).

• Core sharding is a well-known technique to completely

overcome issues related to sharing a resource by assigning

a distinct instance of a resource to each process. In modern

network cards, RSS [38] distributes incoming packets to

each core deterministically based on the connection identi-

fier, i.e., it sends packets with the same connection identifier

to the same core using a hash-based load balancer. In the

context of connection tracking, each process only stores the

connection state for the connections that it receives from

RSS, thus eliminating any need to share resources. For some

connection tracking applications such as NATs, one may

want to guarantee that packets belonging to a connection

are delivered to the same core in both directions.

Flow aging and deletions. Handling connection termination

is a delicate task in a connection tracking application. Most

network protocols are time-based, relying on timing to update

their status. For instance, even after sending the last FIN, a

TCP connection must wait for a certain amount of time before

being closed. Therefore, connection tracking applications most

often recognize expired connections using a time interval: if

packets have not been seen for a certain connection for a given

amount of time, the connection is considered expired and its

state can be deleted.

When deleting an entry, especially in a multi-thread sce-

nario, attention should be paid in controlling that other threads

are not accessing it, either simultaneously or after the deletion.

In particular, the deletion process may interleave with a

read-access by another thread: while the deleting thread is

proceeding to delete an expired entry, the reading thread would

prevent the deletion.2 Thus, the deletion must be protected

with some additional mechanisms, always leaving the table in

a consistent state.

In this work, we take three approaches to delete entries

from the connection table: a scanning-based, a timer wheel,

and lazy-deletion.

• Scanning-based deletion is the simplest approach that

merely consists in periodic scanning of the connection table:

when we find an expired entry, we remove them from

the connection table. The ratio between the scan interval

I (i.e., how frequently the connection table is parsed)

and the timeout t (i.e., what is the maximum age for a

flow before being deleted) determines the aggressiveness of

the algorithm: lower t will delete flows sooner (possibly

incorrectly), while higher I will increase the number of

flows that are deleted at a single round and requiring a larger

table size.

Aggregating more deletions at a single round may be more

efficient for some connection table implementations: if the

deletion requires a lock of the connection table, this may

be kept during the entire maintenance process. While all

the other packets will be delayed, the deletion can proceed

faster thanks to the absence of interleaved accesses, speeding

up the entire operation.

• Timer Wheels are abstractions to efficiently maintain a set

of timers in software, used also in major software projects

like the Linux kernel [39–41]. At high level, we associate

a timer to every entry in the connection table, triggering

the deletion of the entry on expiration. We implement it

by keeping a set of timebuckets for different time ranges,

and we store a connection identifier in a bucket with time

range [T ;T + δ) if the connection should be deleted in that

time range. At regular time intervals, the timers registered

in the current bucket are fired, deleting the corresponding

connections.

• Lazy deletion follows a similarly proposed approach in

Cuckoo++ [18], where an extra last_seen field is added

to the hash table. The field is updated every time an entry

is read from the hash table. During the insertion of a new

entry, we detect a collision if the existing resident entry has

not yet expired. We evict the expired entry otherwise.

2In that case, the entry would not be expired anymore.

3

III. EVALUATION

We now evaluate the performance of different hash table

designs using a simple L4 Load Balancer (LB) implemented

in FastClick [42], a faster version of the Click Modular

Router [43]. We use the different hash table implementations

to store the connection identifiers (i.e., the TCP/IP 5-tuple).

The data-structures will then return an integer identifier which

is used as an index to access the connection states. This array,

pre-allocated during the start-up, contains the states of every

connection. For the load balancer (LB), the state is the selected

destination server. While we limit our analysis to a LB, the

results are not closely related to the chosen application and

could be generally applied to a multitude of other connection

tracking application such as middleboxes, networking stacks,

and key-value stores.

A. Test methodology

We perform our evaluation using two server-grade ma-

chines, interconnected via a 100 Gbps NoviFlow switch. One

machine logically acts as a Traffic Generator (both client and

server sides) while the other acts as a LB. The first machine is

equipped with two Intel® Xeon® Gold 6246R CPUs, 192 GB

of RAM and a Mellanox® ConnectX®-5Ex NIC, while the LB

machine is equipped with a Intel® Xeon® Gold 6140, 192 GB

of RAM and a Mellanox® ConnectX®-5 NIC. The LB receives

and transmits the traffic on the same NIC port. FastClick uses

DPDK 20.11 to access the network cards, with each thread

statically assigned to a physical core, polling one receiving

queue. The application runs on the NUMA node where the

network card is connected, accessing only local resources on

the same node. Tests are repeated 5 times to show the average

value and the standard deviation in the figures.

1) Traffic generation: We use FastClick to replay a traffic

trace recorded at our campus router (with ∼ 200k connections)

and, in some experiments, we also rely on traffic traces

from CAIDA [44], which has roughly twice the number of

connections and represents traffic transiting at a tier-1 router.

To achieve 100 Gbps, we replay up to 32 different windows

of the trace simultaneously, shifting the IP and port pairs.

This method has the advantage of keeping temporal spacing

between the arrival of new flows and subsequent packets. Thus,

the resulting traffic looks like the connections generated by a

campus up to 32 times bigger or an IXP router with higher

speed ports.

2) CPU cycle measurement: We measure CPU cycles for

different types of operations by performing differences of the

TSC counter, whose values are read before and after each

operation on the hash table. While this may introduce an

additional cost and for each packet processing operation, this

is constant across all the analyzed implementations, giving a

fair comparison between all methods.

B. Single core performances

We conduct our research on six different hash table im-

plementations, adopting the schemes already introduced in

Section II.

• Chained: two chained hash table using per-bucket lists to

handle colliding entries, which are stored at the head of

the list. We report the performance of the implementation

distributed with FastClick, and C++’s unordered map im-

plementation from the standard library.

• Cuckoo: a cuckoo based hash table offered by the DPDK

framework [32]. It improves the original cuckoo idea with

partial hashing [6] and pre-fetching of the buckets [30].

• Cuckoo++: a cuckoo based hash table optimized with bloom

filters [18].

• HopScotch: an Open Source hopscotch hash table imple-

mentation [45].

• RobinMap: an Open Source hash table implementation

based of robin-hood hashing [46].

20

30

40

50

Th
ro

ug
hp

ut
 (G

bp
s)

28.9

44.2

32.6

48.3

30.9

47.1

30.6

47.2

25.3

43.9

23.2

39.5

Cuckoo
Cuckoo++

HopScotch
RobinMap

Chaining (FC)
Chaining (STL)

CAIDA Campus0

Figure 1. Performance of the 6 methods using a single core, under 2 different
traffic scenarios. Both cases shows identical trends, with up to 28% difference
in performance.

25 50 75 100
Average load (%)

0

200

400

600

800

1000

In
se

rt
cy

cle
s/

pa
ck

et
s

Cuckoo
Cuckoo++

HopScotch
RobinMap

Chaining (FC)
Chaining (STL)

25 50 75 100
Average load (%)

0

200

400

600

800

1000
Lo

ok
up

 c
yc

le
s/

pa
ck

et
s

Cuckoo
Cuckoo++

HopScotch
RobinMap

Chaining (FC)
Chaining (STL)

Figure 2. Number of cycles to insert and lookup entries, campus trace 16x,
2M entries. Chained hash table cost increases linearly but performs worst than
other methods.

Figure 1 shows the throughput of the LB when processing

traffic with only one core using the six implementations

with 16 windows of both traces (∼55 Gbps), ensuring the

throughput is only limited by the performance of the LB. All

hash-tables are provisioned with 4M entries that fit the 10

seconds of trace replayed (as we do not bring up recycling at

this stage). The CAIDA traces contain twice more flows than

the campus trace, exhibiting around 33% worse performance.

However, despite those very different conditions, the trend

between the methods is identical: Cuckoo++ performs best,

up to ∼ 28% better than FastClick’s (FC) chaining hash table.

The hash table from the C++ standard library (STL) performs

4

up to ∼ 15% worst than FastClick’s due to heavier memory

management while the later relies on memory pools and a

simpler, more efficient API instead. HopScotch and RobinMap

perform similarly, slightly below Cuckoo++. DPDK’s Cuckoo

implementation performs, averagely, 7 − 10% worse than

Cuckoo++.

Figure 2 reports the number of cycles required to process

a packet under an increasing table load factors. We do not

report load below 10%: at this network speed rate as the load

grows to 5% in a fraction of seconds and shows unstable

results. While all the implementations slowly increase the

number of cycles required to lookup for entries when the tables

are becoming full, HopScotch and RobinMap lookup times

become unsustainable earlier whereas Cuckoo and Cuckoo++

maintain an almost constant lookup time complexity. Recall

that the lookup operation in Cuckoo searches an element in at

most two buckets while RobinMap and HopScotch may have

to search through more than two adjacent buckets, possibly

through the entire table. The number of cycles for Cuckoo

and Cuckoo++ lookups slowly increases despite an expected

constant complexity: when storing more connections in the

table, only a small fraction of them can fit in the cache. We

note the chaining method is always more costly up to 80%

of capacity, but does not degenerate. The reader should not

extrapolate that chaining is a safer solution, the trivia here is

that tables should be provisioned big enough to ensure load

does not go beyond 75% of their maximum capacity.

C. Multi-core scaling

We study the scaling of the connection table across multiple

cores using six methods:

• Spinlock: all the access operations to the connection table

are protected with a spinlock.

• Mutex: readers and writers are protected in a Single-

Writer, Multiple-Reader schema. We use C++17 [47]

std::mutex, acquiring an exclusive lock around any

write operation on the flow-table. A shared lock is instead

acquired by the readers.

• Hierarchical Locking: we adopt this schema to protect

the chained hash table, locking either the whole table, the

bucket, or the single entry depending on the operation.

The STL implementation does not support such mechanism,

hence we only study hierarchical locking with the FastClick

implementation.

• Cuckoo LB: the table is shared among different threads

using the locking mechanism offered by the DPDK Cuckoo

hash table implementation. This mechanism offers multiple-

reader, single-writer protection using a lock [48] around

critical operations on the table, with a strict integration with

the hash table code.

• Cuckoo LF: the table is shared among different threads

using the lock-free mechanism offered by the DPDK Cuckoo

hash table implementation, based on a version counter and

atomic operations [49, 50], similar to the idea discussed in

Section II.

• Core Sharding: we duplicate the connection table data

structures per each thread, exploiting RSS and assigning one

receiving queue to each processor, as discussed in Section II.

1 2 3 4 5 6 7 8
Number of cores

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Cuckoo++
HopScotch
RobinMap
Cuckoo
Chaining (FC)
Chaining (STL)

Figure 3. Scaling of the connection tracker using core-sharding: one hash-
table per core, campus trace 32x. All the implementations scale linearly until
network bottleneck.

Figure 3 shows the throughput for the core-sharding scaling

approach and an increasing number of CPU cores used by

the load balancer. We can observe how the throughput scales

almost linearly for the six implementations using sharding

up to 3 cores. From this point, the bottleneck of the system

is the 100 Gbps network link, which saturates. To put the

overheads of connection tracking into perspective, we note a

forwarding configuration achieves 80 Gbps with a single core,

and 100 Gbps with 2 cores.

Figure 4 shows the throughput of different locking tech-

niques for an increasing number of CPU cores used by the

load balancer. We observe that the performance of lock-

based methods sharply degrades when increasing the number

of cores. The Cuckoo lock-free is the only one to compete

with core-sharding, reaching 100 Gbps and offering an almost-

linear scaling. Still, with 2 cores, Cuckoo lock-free delivers

67 Gbps while Cuckoo++ with core-sharding reaches 76 Gbps.

The other implementations cannot process more than 61 Gbps

even with eight cores, showing the bottleneck is the locking

mechanism.

D. Deletion

We then compare the garbage collection techniques pre-

sented in Section II in Figure 5, using a single core and the

Cuckoo hash table. The load of the CPU is around 70%. The

scanning technique is heavy on the CPU cache, and induces

an order of magnitude higher number of LLC cache misses.

Moreover, even when scanning 1/1000 of the connection table

at a frequency of 1 kHz, the scanning is taking too long

and packets are dropped as they accumulate in the receiving

queue. We note that at a high enough frequency, the timer

wheel mechanism performs similarly to the lazy-deletion.

Surprisingly, if the length of the timer wheel buckets does

not increase too much (ensured by a frequency high enough),

the cycles spent in recycling are equal to the overhead of

looking for expired entries and updating the time in the lazy

deletion. One could argue that scanning could be performed

5

1 2 3 4 5 6 7 8
Number of cores

0

20

40

60

80

100
Th

ro
ug

hp
ut

 (G
bp

s)

Cuckoo LF
Cuckoo LB

Chaining MP
Cuckoo Mutex

Cuckoo Spinlock

Figure 4. Scaling of connection tracker using locking techniques for a single
hash-table, campus trace 32x. Cuckoo Lock-Free scales linearly on the number
of cores, while all lock-based mechanisms can achieve an almost constant
throughput among cores.

by a remote, eventually dedicated, core. This would waste re-

sources, breaking sharding and forcing costly synchronization

mechanisms.

1) Scaling with deletion: When sharding is not possible,

deletion becomes more complicated as one thread could recy-

cle entries of other threads. Figure 6 shows the single-table

using Cuckoo LF exhibits slightly lower performance than

sharding because of the increased contention due to recycling.

Similarly, the lazy method do not scale as well as the timer

wheel because all threads have to scan buckets for recycled

entries which force cache-line transfers.

2) Additional controls implies additional overhead: We

also observed that the presence of multi-thread support influ-

ences the performance of the system even when using a single

core (not shown in a graph). In particular, the Lock-Based

approach of DPDK Cuckoo tables reduces the throughput by

10%, similarly to Mutex and Spinlock implementations, even

when if there is no thread-race.

IV. RELATED WORK

A. Hash Tables

On top of the methods presented earlier, several works

have focused on hash tables optimizations and implementa-

tions. CUCKOOSWITCH [4] optimizes the underlying data

structures to exploit instruction reordering in x86 CPUs and

1000Hz 100Hz 10Hz 1Hz
Recycling frequency

0

1

2

5

Pa
ck

et
s d

ro
pp

ed
 (%

)

Baseline
Lazy
Timer wheel
Scanning

Figure 5. Comparison of deletion methods under an increasing garbage
collection frequency running the Cuckoo implementation on a single core.
Lazy deletion is comparable to timer wheel at higher recycling frequencies.

1 2 3 4 5 6 7 8
Number of cores

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

Cuckoo (Per-Core) + Timer wheel
Cuckoo (Per-Core) + Lazy
Cuckoo LF + Timer wheel
Cuckoo LF + Lazy

Figure 6. Scaling of two deletion techniques with sharded tables or a single
lock-free Cuckoo table, Caida trace 32x. Timer-Wheel per-core scales best,
performing up to 20% better than Cuckoo LF using Lazy deletion.

dynamic batching. MemC3 [6] improves Cuckoo Hash tables

with algorithmic and work-load based optimizations, some of

which have been implemented in the cuckoo implementation

used in this work. A stash-memory based solution has been

proposed by A. Kirschet et al. [51], demonstrating how a

small external area of memory can be used to amortize the

cost of collisions and improving the performances at high

load factors. Cache Line Hash Tables [52] tightly designs the

implementation around the CPU cache structure to reduce the

latency of the operations.

Othello [22] and Ludo [23] hashing take a more algorithmic

approach, separating the implementation of the hash tables in a

control plane and a data plane parts. Concury [53] uses Othello

hashing to implement a fast load balancer while Concise [54]

implements a packet forwarding mechanism based on Othello,

where the control plane part is run on the SDN controller.

RUBIK [55] and DUET [56] enhance the packet classification

by moving some logic to the ECMP tables of modern switches.

Krononat [5] presents a CG-NAT application built on top

of [18], using core-sharding to scale for high bandwidths.

SilkRoad [17] provides low latency Load Balancing by using

ASIC switches, where a digest of the hashes is stored. Cheetah

inserts the index value of the entry where the flow state

is stored into each packet of a connection, thus relying

on simple arrays instead of hash tables [57]. A hardware

implementation of hash tables can be realized with Content

Addressable Memories (CAMs), which provide a constant and

low access time. However, the power consumption and the

small capacity limit the scaling of this solution [58]. Recent

releases in programmable hardware [59–61], together with

recent advancements in this field [17, 62, 63], could open the

path to further developments, where connection tracking is

offloaded to the network card.

B. Flow Ageing

Iptables implements connection tracking by relying on a

Finite State Machine, with ageing regulated by timeouts [64–

66]. Cuckoo++ [18] implements ageing with a lazy strategy,

similar to our implementation, updating a timestamp when

an entry is accessed. However, the authors do not evaluate

its efficiency, claiming lazy deletion is supposedly better than

6

timer wheels, which we could not confirm in our experiments.

MemC3 [6] leverages a linked list that stores the last recently

used keys. Whenever space is needed, the key at the tail is

removed from the table. Bonomi et al. [67] propose to use a

flag to distinguish between recently used and expired entries,

parsing all the table at regular intervals. Binned Duration Flow

Tracking [68] divides the hash tables in a fixed number of

ordered bins, across which the flows are swapped. When space

is needed, the oldest bin is deleted. Bloom filters are used to

speed up the lookup of the flows in the bins. Katran [3] tracks

expired UDP connections with a timer, while TCP connections

are removed when space is needed in the tables.

C. Future work

Recent releases of NICs with connection tracking mecha-

nisms [9] may open the path to implementations that exploit

hardware offloading on commodity hardware, freeing the

servers’ CPU from the connection tracking duty [69].

To improve the memory efficiency and processing time, the

structure and the size of flow table data-structures may be

changed at run-time. While static allocation of the structures is

usually preferred, limiting the variables that may influence the

packet processing time, some works have already explored this

possibility [15, 70]. The transformation between different data

structure types may result in a more optimized response under

some specific loads (e.g., one implementation may optimize

insertions in an insert-intensive workload, while another may

optimize lookups or deletions). This conversion requires a

careful design in order to reduce the packet-processing time

during the transition.

V. CONCLUSIONS

This work presents an analysis of six different hash tables

implementations based on a load balancer application, showing

up to 30% differences in performance. Cuckoo++ resulted the

most efficient hash table implementation, gaining a 10% higher

throughput than a basic Cuckoo implementation and up to 28%

better than basic chained hashing.

The need to scale to multiple cores showed that only core-

sharding and lock-free connection tables can achieve high-

throughput. However, lock-free implementations heavily de-

pend on the workload (e.g., write or read intensive), requiring

a careful design to keep the number of cycles low. Core-

sharding is the only approach that can truly scale linearly

on the number of cores, independently to the offered traffic

load. We then explored recycling, an angle generally forgotten

by other works. We found that timer wheels, when run

frequently enough, compensate the cost of real-time garbage

collection, delivering similar performances to lazy deletion.

The latter is penalized by the additional cycles required for

timestamp comparisons on all operations, achieving slightly

lower performance.

ACKNOWLEDGMENTS

This project was funded by the Swedish Foundation for

Strategic Research (SSF). This project has also received

funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation

programme (grant agreement No 770889). The work of the

second author was partially supported by the KTH Digital

Futures center.

REFERENCES

[1] A. Jaakkola, “Implementation of transmission control protocol in linux,”
in Proceedings of Seminar on Network Protocols in Operating Systems.

[2] Facebook. (2020) eBPF hashmap implementation in the Linux kernel.
[Online]. Available: https://git.io/Jt0mF

[3] Facebook Incubator. Katran GitHub Repository.
https://github.com/facebookincubator/katran.

[4] D. Zhou et al., “Scalable, high performance ethernet forwarding with
cuckooswitch,” in ACM CoNEXT 2013.

[5] F. André et al., “Don’t share, don’t lock: large-scale software connection
tracking with krononat,” in USENIX ATC 2018.

[6] B. Fan et al., “MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing,” in USENIX NSDI 2013.

[7] R. Pagh et al., “Cuckoo hashing,” Journal of Algorithms, vol. 51, no. 2,
pp. 122–144, 2004.

[8] Intel Barefoot Networks. (2020) Tofino-2 second-generation of
world’s fastest p4-programmable ethernet switch. [Online]. Available:
https://www.barefootnetworks.com/products/brief-tofino-2/

[9] NVIDIA Mellanox. (2020) ConnectX®-6 DX EN IC 200GbE
ethernet adapter ic. [Online]. Available: https://www.mellanox.com/
files/doc-2020/pb-connectx-6-dx-en-card.pdf

[10] Z. Yao et al. (2016) Introducing backpack:
Our second-generation modular open switch. [On-
line]. Available: https://engineering.fb.com/data-center-engineering/
introducing-backpack-our-second-generation-modular-open-switch/

[11] G. P. Katsikas et al., “Metron:{NFV} service chains at the true speed
of the underlying hardware,” in USENIX NSDI 2018.

[12] J. Martins et al., “Clickos and the art of network function virtualization,”
in USENIX NSDI 2014.

[13] S. Palkar et al., “E2: A framework for nfv applications,” in ACM SOSP

2015.
[14] A. Bremler-Barr et al., “Openbox: a software-defined framework for

developing, deploying, and managing network functions,” in ACM

SIGCOMM 2016.
[15] L. Molnár et al., “Dataplane specialization for high-performance open-

flow software switching,” in ACM SIGCOMM 2016.
[16] D. E. Eisenbud et al., “Maglev: A Fast and Reliable Software Network

Load Balancer,” in USENIX NSDI 2016.
[17] R. Miao et al., “Silkroad: Making stateful layer-4 load balancing fast

and cheap using switching asics,” in ACM SIGCOMM 2017.
[18] N. Le Scouarnec, “Cuckoo++ hash tables: High-performance hash tables

for networking applications,” in ACM ANCS 2018.
[19] T. Barbette et al., “Rss++: Load and state-aware receive side scaling,”

in ACM CoNEXT 2019.
[20] D. Didona et al., “Size-aware sharding for improving tail latencies in

in-memory key-value stores,” in USENIX NSDI 2019.
[21] S. Han et al., “Megapipe: a new programming interface for scalable

network i/o,” in USENIX OSDI 2012.
[22] Y. Yu et al., “Memory-Efficient and Ultra-Fast Network Lookup and

Forwarding Using Othello Hashing,” IEEE/ACM Transactions on Net-

working, vol. 26, no. 3, pp. 1151–1164, 2018.
[23] S. Shi et al., “Ludo hashing: Compact, fast, and dynamic key-value

lookups for practical network systems,” Proceedings of the ACM on

Measurement and Analysis of Computing Systems, 2020.
[24] Z. Chen et al., “Concurrent hash tables on multicore machines: Compari-

son, evaluation and implications,” Future Generation Computer Systems,
vol. 82, pp. 127 – 141, 2018.

[25] Repository with additional material. [Online]. Available: https:
//github.com/conntrackHPSR21

[26] L. Barroso et al., “Attack of the killer microseconds,” Communications

of the ACM, vol. 60, no. 4, pp. 48–54, 2017.
[27] A. Farshin et al., “Make the Most out of Last Level Cache in Intel

Processors,” in ACM EuroSys 2019.
[28] P. Gupta et al., “Algorithms for packet classification,” IEEE Network,

vol. 15, no. 2, pp. 24–32, March-April/2001.

7

https://git.io/Jt0mF
https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.mellanox.com/files/doc-2020/pb-connectx-6-dx-en-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-6-dx-en-card.pdf
https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generation-modular-open-switch/
https://engineering.fb.com/data-center-engineering/introducing-backpack-our-second-generation-modular-open-switch/
https://github.com/conntrackHPSR21
https://github.com/conntrackHPSR21

[29] S. S. e. Dinesh P. Mehta, Handbook of data structures and applications.
Chapman & Hall/CRC, 2004.

[30] X. Li et al., “Algorithmic improvements for fast concurrent cuckoo
hashing,” in ACM EuroSys 2014.

[31] DPDK Project. (2020) Dpdk website. [Online]. Available: https:
//dpdk.org

[32] DPDK Project. (2020) Hash library. [Online]. Available: https:
//doc.dpdk.org/guides/prog guide/hash lib.html

[33] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422–426, Jul. 1970.

[34] M. Herlihy et al., “Hopscotch hashing,” in DISC 2008.
[35] P. Celis et al., “Robin hood hashing,” in SFCS 1985.
[36] M. Herlihy et al., The Art of Multiprocessor Programming (Second

Edition), 2nd ed. Morgan Kaufmann, 2021.
[37] M. P. Herlihy, “Impossibility and universality results for wait-free

synchronization,” in ACM PODC 1988.
[38] Intel®. (2016) Improving network performance in multi-core systems.

[Online]. Available: https://www.intel.com/content/dam/support/us/en/
documents/network/sb/318483001us2.pdf

[39] G. Varghese et al., “Hashed and hierarchical timing wheels: efficient data
structures for implementing a timer facility,” IEEE/ACM transactions on

networking, vol. 5, no. 6, pp. 824–834, 1997.
[40] J. Corbet. (2015) Reinventing the timer wheel. [Online]. Available:

https://lwn.net/Articles/646950/
[41] J. Corbet. (2016) timer: Refactor the timer wheel. [Online]. Available:

https://lwn.net/Articles/691064/
[42] T. Barbette et al., “Fast userspace packet processing,” in ACM ANCS

2015.
[43] E. Kohler et al., “The click modular router,” ACM Transactions on

Computer Systems (TOCS), vol. 18, no. 3, pp. 263–297, 2000.
[44] The CAIDA Anonymized Internet Traces. (2019). [Online]. Available:

http://www.caida.org/data/passive/passive dataset.xml
[45] Hopscotch-map GitHub repository. [Online]. Available: https://github.

com/Tessil/hopscotch-map/
[46] robinmap-map GitHub repository. [Online]. Available: https://github.

com/Tessil/robin-map/
[47] ISO/IEC 14882:2017 Information technology - Programming languages

- C++, ISO Std., 2017. [Online]. Available: https://www.iso.org/
standard/68564.html

[48] DPDK Project. (2020) Reader-writer lock library documentation.
[Online]. Available: https://doc.dpdk.org/api/rte rwlock 8h.html

[49] H. Nagarahalli. Patch introducing address reader-writer concurrency
in rte hash. [Online]. Available: https://mails.dpdk.org/archives/dev/
2018-September/111016.html

[50] H. Nagarahalli. Lock Free RW Concurrency in hash library.
[Online]. Available: https://www.dpdk.org/wp-content/uploads/sites/35/
2018/10/am-04-lock free rte hash Honnappa.pdf

[51] A. Kirsch et al., “More robust hashing: Cuckoo hashing with a stash,”
SIAM Journal on Computing, vol. 39, no. 4, p. 1543–1561, 2009.

[52] T. David et al., “Asynchronized Concurrency: The Secret to Scaling
Concurrent Search Data Structures,” in ACM ASPLOS 2015.

[53] S. Shi et al., “Concury: a fast and light-weight software cloud load
balancer,” in SoCC 2020.

[54] Y. Yu et al., “A concise forwarding information base for scalable and
fast name lookups,” in IEEE ICNP 2017, 2017.

[55] R. Gandhi et al., “Rubik: Unlocking the Power of Locality and End-
Point Flexibility in Cloud Scale Load Balancing,” in USENIX ATC 2015.

[56] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and
software,” in SIGCOMM 2014.

[57] T. Barbette et al., “A high-speed load-balancer design with guaranteed
per-connection-consistency,” in USENIX NSDI 2020, pp. 667–683.

[58] F. Baboescu et al., “Packet classification for core routers: Is there an
alternative to CAMs?” in IEEE INFOCOM 2003.

[59] Netronome. (2019) Agilio fx smartnic. [Online]. Available: https:
//www.netronome.com/products/agilio-fx/

[60] Netronome. (2019) Agilio cx smartnic. [Online]. Available: https:
//www.netronome.com/products/agilio-cx/

[61] NVIDIA Mellanox. (2020) Bluefield 2 SmartNIC.
[Online]. Available: https://www.mellanox.com/files/doc-2020/
pb-bluefield-2-smart-nic-eth.pdf

[62] S. Pontarelli et al., “FlowBlaze: Stateful Packet Processing in Hard-
ware,” in USENIX NSDI 2019.

[63] D. Firestone et al., “Azure Accelerated Networking: SmartNICs in the
Public Cloud,” in USENIX NSDI 2018.

[64] M. Boye. Netfilter connection tracking and nat implementation. [On-
line]. Available: https://wiki.aalto.fi/download/attachments/69901948/
netfilter-paper.pdf

[65] A. Chiao. Connection tracking (conntrack): Design and implementation
inside linux kernel. [Online]. Available: https://arthurchiao.art/blog/
conntrack-design-and-implementation/#connection-tracking-conntrack

[66] How long does conntrack remember a connection? [Online]. Available:
https://unix.stackexchange.com/a/524320

[67] F. Bonomi et al., “Beyond Bloom Filters: From Approximate Mem-
bership Checks to Approximate State Machines,” in ACM SIGCOMM

2016.
[68] B. Whitehead et al., “Tracking per-flow state—binned duration flow

tracking,” in IEEE SPECTS 2020.
[69] G. P. Katsikas et al., “What you need to know about (smart) network

interface cards,” in PAM 2021.
[70] T. Barbette et al., “Building a chain of high-speed VNFs in no time,”

in IEEE HPSR 2018.

8

https://dpdk.org
https://dpdk.org
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://doc.dpdk.org/guides/prog_guide/hash_lib.html
https://www.intel.com/content/dam/ support/us/en/documents/network/sb/318483001us2.pdf
https://www.intel.com/content/dam/ support/us/en/documents/network/sb/318483001us2.pdf
https://lwn.net/Articles/646950/
https://lwn.net/Articles/691064/
http://www.caida.org/data/passive/passive_dataset.xml
https://github.com/Tessil/hopscotch-map/
https://github.com/Tessil/hopscotch-map/
https://github.com/Tessil/robin-map/
https://github.com/Tessil/robin-map/
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://doc.dpdk.org/api/rte__rwlock_8h.html
https://mails.dpdk.org/archives/dev/2018-September/111016.html
https://mails.dpdk.org/archives/dev/2018-September/111016.html
https://www.dpdk.org/wp-content/uploads/sites/35/2018/10/am-04-lock_free_rte_hash_Honnappa.pdf
https://www.dpdk.org/wp-content/uploads/sites/35/2018/10/am-04-lock_free_rte_hash_Honnappa.pdf
https://www.netronome.com/products/agilio-fx/
https://www.netronome.com/products/agilio-fx/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.mellanox.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://www.mellanox.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf
https://wiki.aalto.fi/download/attachments/69901948/netfilter-paper.pdf
https://arthurchiao.art/blog/conntrack-design-and-implementation/#connection-tracking-conntrack
https://arthurchiao.art/blog/conntrack-design-and-implementation/#connection-tracking-conntrack
https://unix.stackexchange.com/a/524320

	Introduction
	Data-structures for connection tracking
	Evaluation
	Test methodology
	Traffic generation
	CPU cycle measurement

	Single core performances
	Multi-core scaling
	Deletion
	Scaling with deletion
	Additional controls implies additional overhead

	Related Work
	Hash Tables
	Flow Ageing
	Future work

	Conclusions
	References

