
High Speed Decoding of Context-based Adaptive Binary
Arithmetic Codes Using Most Probable Symbol Prediction

Chung-Hyo Kim
Power Generation Lab

Korea Electric Power Research Institute
Daejeon, Korea

Email : ch2kim@kepri.re.kr

In-Cheol Park
Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology
Daejeon, Korea

Email : icpark@ee.kaist.ac.kr

Abstract—Context-based Adaptive Binary Arithmetic Coding
(CABAC) is the major entropy-coding algorithm employed in
H.264/AVC. Although the performance gain of H.264/AVC is
mostly resulted from CABAC, it is difficult to achieve a fast
decoder because the decoding algorithm is basically sequential.
In this paper, a prediction scheme is proposed to enhance
overall decoding performance by decoding two binary symbols
at a time. A CABAC decoder based on the proposed prediction
scheme improves the decoding performance by 24% compared
to conventional decoders.

I. INTRODUCTION
The newest international video coding standard

H.264/AVC developed by the joint video team of the MPEG
and ITU can produce a perceptually equivalent quality video
at about half the bit-rate compared to MPEG-2. The
performance gain is mainly resulted from context-based
adaptive binary arithmetic coding (CABAC) employed in
H.264/AVC main profile [1]. The CABAC, a binary
arithmetic code [2] associated with the context modeling
technique, was reported in [3] that it can save up to 32% bit-
rate compared to other compression methods such as
Huffman [4] and Exp-Golomb codes [5] if appropriate
context models are provided. Therefore, H.264/AVC is
adopted in a diverse range of multimedia applications,
including HD-DVDs, HDTV broadcasting, and internet
video streaming.

Although more than 90 percents of the H.264 main
profile stream is encoded using the CABAC, its decoding
algorithm is basically sequential and needs large
computation to calculate range, offset and context variables,
making it difficult to achieve high decoding performance [6].
The CABAC decoding complexity required to process high
definition images in real time is about 3 giga-operations per
second. Although this computing complexity is still less than
the block processing complexity, the CABAC decoding
becomes a major bottleneck in real time processing due to its
sequential nature. On the other hand, the block processing
can be easily enhanced by applying parallel and pipeline
techniques.

In this paper, we propose a parallel CABAC decoding
method that can decode two binary symbols at a time to
achieve a high-speed decoder meeting the requirement of the
H.264/AVC standard. In the proposed decoding method, the
first binary symbol is decoded as the conventional scheme,
while the second is decoded with predicting that the first
symbol is the most probable one. We can decode two
symbols simultaneously if the prediction is valid.
Experimental results show that the proposed prediction
scheme improves decoding performance by 24% compared
to conventional decoding methods.

II. CABAC ENCODING AND DECODING
This section describes the encoding and decoding

procedure of CABAC briefly, as it is essential to understand
the proposed prediction-based decoding scheme.

A. CABAC Encoding
Fig. 1 shows the encoding procedure of CABAC. A

sequence of syntax elements to be encoded is first converted
to a sequence of codewords, each of which is a binary string
consisting of binary symbols called bins, as CABAC deals
with only binary symbols. The symbol with the higher
probability is called the most probable symbol (MPS) and
the other is the least probable symbol (LPS). Syntax
elements that are already expressed in binary strings can skip
this binarization step. Before applying binary arithmetic
coding, a specific context model containing the LPS

Fig. 1. The CABAC encoding procedure

This work was supported in part by University IT Research Center
Project, and by Korea Science Engineering Foundation through the
MICROS center.

1707 ISCAS 20060-7803-9390-2/06/$20.00 ©2006 IEEE

probability and the MPS value is assigned to each bin. Each
bin associated with a context model is sequentially encoded
to produce an encoded bit-stream.

Since the CABAC is effective when the bins to be
encoded are biased to certain values, a sequence of bins can
bypass the encoding when the sequence is not biased, that is,
when the 0’s and 1’s in the pattern are evenly distributed.
The CABAC is based on a binary arithmetic coder that
allows substantial complexity reduction with high
compression efficiency. More specifically, the binary
arithmetic coder is related to the Q-coder family [7]. The
context model is not fixed but adaptively updated for the
next encoding. If the MPS is encoded, the LPS probability of
the context decreases, otherwise, it increases. To encode a
bin, the binary arithmetic coder (BAC) needs the
corresponding range and context model. The range is to
indicate an interval. Starting from the initial range, 0x1FE, it
is narrowed after each bin is encoded. The range is divided
into two sub-ranges, RMPS and RLPS, where RLPS is calculated
by multiplying the range and the LPS probability specified in
the context model, and RMPS is computed by subtracting RLPS
from the range. In fact, a two-dimensional table that can be
indexed with the LPS probability quantized to 6 bits and two
most significant bits of the range is used to replace the
multiplication. Since the range becomes narrow as the
decoding progresses, more bits are needed to represent it.
However, the range and offset are required to be limited to 9
bit in CABAC. To cope with this situation, the range is
renormalized to make it equal to or greater than 0x100. If the

range is less than 0x100, it is shifted left until the range is in
[0x100, 0x1FE]. An encoding example is shown in the upper
part of Fig. 2, which corresponds to the shaded part of Fig. 1.
The bins to be encoded are ‘1100’ and the encoded bit-
stream, 0x44C, is transferred through storage or wireless
media.

B. CABAC Decoding
The decoding is similar to the encoding. Given an

encoded bit-stream, a CABAC decoder repeatedly decodes
bins. The CABAC decoder has a merging unit to check
whether the sequence of decoded bins matches with a
meaningful codeword. Except the merging unit, the encoding
and decoding procedures are almost the same. To decode a
bin, the binary arithmetic decoder (BAD) needs the
corresponding range, offset and context model. The offset is
criterion for deciding decoded bin, and initialized by taking
the first 9 bits from the encoded bit-stream. A decoding
example is shown in Fig. 2, where the initial offset is set to
0x113. Note that a different context model can be used for
each bin decoding. If the offset is less than RMPS, the bin is
the MPS and the range to be used for the next decoding is set
to RMPS. Otherwise, the bin is determined to the LPS, the
inversion of the MPS value contained in the associated
context model, and the next range is set to RLPS. As in the
encoding procedure, renormalization is required to limit the
range and offset to 9 bits. The offset is renormalized by
appending lower n bits from the encoded bit-stream, where n
is the shift amount.

Fig. 2. The encoding procedure

1708

III. PROPOSED PREDICTION SCHEME
This section describes the proposed prediction-based

CABAC decoding scheme, which is based on the analysis of
how and what values are updated after a single bin is
decoded

A. Analysis of variable changes
If the decoded bin is the MPS and renormalization does

not occur, the next range is set to RMPS, and the same offset is
used for the next bin decoding. The value of RMPS is in
[0x080, 0x1FE], because the MPS probability is always
greater than or equal to 0.5. Therefore, just one shift is
sufficient for renormalization when the most significant bit
of RMPS is zero. Otherwise no addition operation is needed
for renormalization.

In case of LPS decoding, the next range is set to RLPS. As
the LPS probability is not greater than 0.5, the value of RLPS
is in [0x000, 0x0FF], which means that the renormalization
occurs always and requires multiple shifts. For the next
decoding, it is needed to count the leading zeros and shift the
RLPS to the left with that amount. For example, the third
decoding in Fig. 2 requires 2 left shifts to renormalize the
range and offset. In addition, the offset should be adjusted by

subtracting the value of RMPS before the renormalization.
TABLE 1 summarizes how variables are updated according
to the decoded bin.

If the decoded bin is the LPS, it takes a lot of time to
calculate the next range and offset required for the next bin
decoding. The range always has to be modified and the offset
is also subtracted. To find the shift amount n, the decoder has
to be equipped with a unit that counts leading zeros (CLZ).
In addition to that, it needs an 8-bit barrel shifter to finalize
renormalization. If the decoded bin is the MPS, however, the
next range and offset can be calculated with simple
operations even when the renormalization is involved. After
calculating RMPS, at most one shift is enough for
renormalization.

Since CABAC is a binary arithmetic coding which deals
with binary symbols, it seems that the next bin decoding can
start earlier by assuming the current bin has a specific value,
the LPS or MPS. Although the variables required for the next
bin decoding are updated and dependent on the current bin
decoding result, we can get the variables in advance by
predicting the result of the current bin decoding. If the LPS is
decoded in the first decoding, it takes a long time to calculate
the range and offset. In this case, there is no difference from
the traditional decoding scheme that decodes bins in sequel.
However, if the MPS is decoded, the variables for next bin
decoding can be calculated with simple operations.

Based on the analysis, we propose a prediction scheme to
decode two bins at a time. The first binary symbol is decoded
as the conventional scheme, while the second is decoded
with predicting that the first symbol is the MPS.

B. Patterns of neighboring context
There is a problem to be solved for the proposed parallel

decoding. To start the second predicted decoding, we should
know which context model is to be used for the second bin
decoding. Since the context model is selected out of 399
ones by referring to the type of the syntax element or the
previous bin decoding, it is difficult to determine the context
model without knowing the result of the first bin decoding.

Divide RangeN into
RN,MPS & RN,LPS

Compare
RN,MPS & OffsetN

CLZ

Barrel
Shifter

Barrel
Shifter

SUB if
needed

Divide RN+1 into
RN+1,MPS & RN+1,LPS

Compare
RN+1,MPS & OffsetN+1

CLZ

Barrel
Shifter

Barrel
Shifter

SUB if
needed

RN,MPSRN,LPS

resultN

RN+1 OffsetN+1

shift amountN

RN+1,MPSRN+1,LPS

resultN+1

RN+2 OffsetN+2

shift amountN+1

PredHit

Decoded binN

Decoded binN+1

N N+1

N N

Renormalization
if RN,MPS < 0x100

Check
validation

RN+1 OffsetN+1

Fig. 3. The proposed CABAC decoder

TABLE 1
Variable update after one bit decoding

Case MPS decoding LPS decoding

Frequency Frequent None

Range RMPS - No
renormalization

Offset No change -

Frequency Rare Always

Shift amount n 1 Arbitrary

Range RMPS << 1 RLPS << n
Renormalization

Offset Offset << 1 (Offset−RMPS) << n

1709

In addition, a context model used for a bin decoding is
updated after the bin is decoded, which means that the
updated context model should be used for the second bin
decoding if the same context model is applied to the first and
second bins. Analyzing the pattern of context models applied
to two sequential bins contained in a syntax element, we
found that the two context models are different in most cases
and the second context model is usually next to the first
context model. Based on the observation, the second bin is
decoded with predicting that the first bin is the MPS and the
next context model is used.

C. The proposed CABAC decoder
The proposed CABAC decoder shown in Fig. 3 includes

two BADs and reads two sequential context models at a time.
The first BAD is the same as the conventional decoder
except additional two output signals, RN,MPS and PredHit,
where RN,MPS is the range to be transferred to the second
BAD and PredHit is to indicate whether the decoding result
of the first BAD is the MPS and the next context model is
valid for the second bin decoding. Before starting the second
bin decoding, the second BAD performs renormalization if
RN,MPS is less than 0x100. In this case, at most one shift is
enough. If PredHit is asserted, the decoding result of the
second unit is valid. Otherwise, it is discarded. Since there
are little changes in the range and offset when the MPS is
decoded in the first unit, the second unit can start after a little
delay needed to calculate RN,MPS.

IV. EXPERIMENTAL RESULTS
The proposed decoder was described in Verilog HDL and

synthesized in 0.18um CMOS technology. The bin decoding
is processed in three cycles. Two context models are read in
the first cycle, bins are decoded in the second cycle, and the
decoded bins are merged in the third cycle. The critical part
of a conventional decoder is the BAD unit that takes 3.3ns.
As the second BAD needs some additional delay to calculate
RN,MPS and select valid results, its delay increases to 4.5ns in
the proposed decoder. To reduce the additional delay in the
second cycle, the calculation of RN,MPS and the selection of
valid results are retimed to the first cycle and the third cycle
as shown in Fig. 4. With the retiming, the proposed decoder
can work at the same clock frequency as that of the
conventional decoder.

TABLE 2 shows the simulation results for two
benchmark image files. The case that has at least two bins
remaining to be decoded in a syntax element is called a
predictable case, and the other is an unpredictable case. The
prediction is hit only when the second predicted decoding is
valid, that is, when the first BAD decodes the MPS and the
next context model is valid for the second decoding. If the
prediction is hit, we can decode two bins at a time and thus
save three cycles. The prediction accuracy is 67% on the
average if predictable cases are considered. With the
proposed predicted decoding, we can decode 24% more bins
compared to the conventional serial decoding.

V. CONCLUSION
We have presented a prediction-based CABAC decoding

scheme to improve the performance by decoding two bins
simultaneously. In the proposed scheme, the second bin is
decoded with predicting that the first bin is the MPS and the
context model is next to that used for the first bin.
Experimental results show that the proposed prediction
scheme can improve the overall decoding performance by
24% compared to conventional decoders.

REFERENCES
[1] D. Marpe, H. Schwartz, and T. Wiegand. “Context-Based Adaptive

Binary Arithmetic Coding in the H.264/AVC video compression
standard,” IEEE Trans. on CSVT, vol. 13, pp. 620-636, July 2003.

[2] I. H. Witten, R. M. Neal, and J. G. Cleary. “Arithmetic coding for
data compression,” Communications of the ACM, vol. 30, pp. 520–
540, June 1987.

[3] D. Marpe, G. Blattermann, G. Heising, and T. Wiegand. “Video
compression using context-based arithmetic coding,” ICIP 2001, vol.
3, pp. 558-561, Oct. 2001.

[4] R. D. Hoffman, “A method for the construction of minimum
redundancy codes,” Proc. IRE, vol. 40, pp. 1089-1101, Sept. 1952.

[5] J. Teuhola, “A compression method for clustered bit-vectors,” Inform.
Proceedings Lett., vol. 7, pp. 308-311, Oct. 1978.

[6] H. Eeckhaut, H. Devos, B. Schrauwen, M. Christiaens, and D.
Stoobandt, “ A hard-ware-friendly wavelet entropy codec for scalable
video,” Proceedings of Design, Automation and Test in Europe, vol. 3,
pp. 14-19, March 2005.

[7] W. B. Pennebaker, J. L. Mitchel, G. G. Langdon jr., and R. B. Arps.
“An overview of the basic principles of the Q-coder adaptive binaey
arithmetic coder”, IBM Journal of Research and Development, vol.
32(6), pp. 717-726, November 1988.

Fig. 4. Retiming to reduce critical path delay (unit:ns)

TABLE 2
Simulations for two benchmark files

File Case No. of bins
Prediction

hit (%)
bins/cycle

Predictable 14499682 69.07 0.56
Unpredictable 13745309 - 0.33 Car.yuv
Total 28244991 - 0.41

Predictable 20441764 65.42 0.55
Unpredictable 20567685 - 0.33 Cheer.yuv
Total 41009449 - 0.41

1710

