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Abstract—Context-based Adaptive Binary Arithmetic Coding 
(CABAC) is the major entropy-coding algorithm employed in 
H.264/AVC. Although the performance gain of H.264/AVC is 
mostly resulted from CABAC, it is difficult to achieve a fast 
decoder because the decoding algorithm is basically sequential. 
In this paper, a prediction scheme is proposed to enhance 
overall decoding performance by decoding two binary symbols 
at a time. A CABAC decoder based on the proposed prediction 
scheme improves the decoding performance by 24% compared 
to conventional decoders.  

I. INTRODUCTION 
The newest international video coding standard 

H.264/AVC developed by the joint video team of the MPEG 
and ITU can produce a perceptually equivalent quality video 
at about half the bit-rate compared to MPEG-2. The 
performance gain is mainly resulted from context-based 
adaptive binary arithmetic coding (CABAC) employed in 
H.264/AVC main profile [1]. The CABAC, a binary 
arithmetic code [2] associated with the context modeling 
technique, was reported in [3] that it can save up to 32% bit-
rate compared to other compression methods such as 
Huffman [4] and Exp-Golomb codes [5] if appropriate 
context models are provided. Therefore, H.264/AVC is 
adopted in a diverse range of multimedia applications, 
including HD-DVDs, HDTV broadcasting, and internet 
video streaming.  

Although more than 90 percents of the H.264 main 
profile stream is encoded using the CABAC, its decoding 
algorithm is basically sequential and needs large 
computation to calculate range, offset and context variables, 
making it difficult to achieve high decoding performance [6]. 
The CABAC decoding complexity required to process high 
definition images in real time is about 3 giga-operations per 
second. Although this computing complexity is still less than 
the block processing complexity, the CABAC decoding 
becomes a major bottleneck in real time processing due to its 
sequential nature. On the other hand, the block processing 
can be easily enhanced by applying parallel and pipeline 
techniques.  

In this paper, we propose a parallel CABAC decoding 
method that can decode two binary symbols at a time to 
achieve a high-speed decoder meeting the requirement of the 
H.264/AVC standard. In the proposed decoding method, the 
first binary symbol is decoded as the conventional scheme, 
while the second is decoded with predicting that the first 
symbol is the most probable one. We can decode two 
symbols simultaneously if the prediction is valid. 
Experimental results show that the proposed prediction 
scheme improves decoding performance by 24% compared 
to conventional decoding methods. 

II. CABAC ENCODING AND DECODING 
This section describes the encoding and decoding 

procedure of CABAC briefly, as it is essential to understand 
the proposed prediction-based decoding scheme. 

A. CABAC Encoding 
Fig. 1 shows the encoding procedure of CABAC. A 

sequence of syntax elements to be encoded is first converted 
to a sequence of codewords, each of which is a binary string 
consisting of binary symbols called bins, as CABAC deals 
with only binary symbols. The symbol with the higher 
probability is called the most probable symbol (MPS) and 
the other is the least probable symbol (LPS). Syntax 
elements that are already expressed in binary strings can skip 
this binarization step. Before applying binary arithmetic 
coding, a specific context model containing the LPS 

Fig. 1. The CABAC encoding procedure 
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probability and the MPS value is assigned to each bin. Each 
bin associated with a context model is sequentially encoded 
to produce an encoded bit-stream.  

Since the CABAC is effective when the bins to be 
encoded are biased to certain values, a sequence of bins can 
bypass the encoding when the sequence is not biased, that is, 
when the 0’s and 1’s in the pattern are evenly distributed. 
The CABAC is based on a binary arithmetic coder that 
allows substantial complexity reduction with high 
compression efficiency. More specifically, the binary 
arithmetic coder is related to the Q-coder family [7]. The 
context model is not fixed but adaptively updated for the 
next encoding. If the MPS is encoded, the LPS probability of 
the context decreases, otherwise, it increases. To encode a 
bin, the binary arithmetic coder (BAC) needs the 
corresponding range and context model. The range is to 
indicate an interval. Starting from the initial range, 0x1FE, it 
is narrowed after each bin is encoded. The range is divided 
into two sub-ranges, RMPS and RLPS, where RLPS is calculated 
by multiplying the range and the LPS probability specified in 
the context model, and RMPS is computed by subtracting RLPS 
from the range. In fact, a two-dimensional table that can be 
indexed with the LPS probability quantized to 6 bits and two 
most significant bits of the range is used to replace the 
multiplication. Since the range becomes narrow as the 
decoding progresses, more bits are needed to represent it. 
However, the range and offset are required to be limited to 9 
bit in CABAC. To cope with this situation, the range is 
renormalized to make it equal to or greater than 0x100. If the 

range is less than 0x100, it is shifted left until the range is in 
[0x100, 0x1FE]. An encoding example is shown in the upper 
part of Fig. 2, which corresponds to the shaded part of Fig. 1. 
The bins to be encoded are ‘1100’ and the encoded bit-
stream, 0x44C, is transferred through storage or wireless 
media. 

B. CABAC Decoding 
The decoding is similar to the encoding. Given an 

encoded bit-stream, a CABAC decoder repeatedly decodes 
bins. The CABAC decoder has a merging unit to check 
whether the sequence of decoded bins matches with a 
meaningful codeword. Except the merging unit, the encoding 
and decoding procedures are almost the same. To decode a 
bin, the binary arithmetic decoder (BAD) needs the 
corresponding range, offset and context model. The offset is 
criterion for deciding decoded bin, and initialized by taking 
the first 9 bits from the encoded bit-stream. A decoding 
example is shown in Fig. 2, where the initial offset is set to 
0x113. Note that a different context model can be used for 
each bin decoding. If the offset is less than RMPS, the bin is 
the MPS and the range to be used for the next decoding is set 
to RMPS. Otherwise, the bin is determined to the LPS, the 
inversion of the MPS value contained in the associated 
context model, and the next range is set to RLPS. As in the 
encoding procedure, renormalization is required to limit the 
range and offset to 9 bits. The offset is renormalized by 
appending lower n bits from the encoded bit-stream, where n 
is the shift amount.  

 
Fig. 2. The encoding procedure 
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III. PROPOSED PREDICTION SCHEME 
This section describes the proposed prediction-based 

CABAC decoding scheme, which is based on the analysis of 
how and what values are updated after a single bin is 
decoded 

A. Analysis of variable changes 
If the decoded bin is the MPS and renormalization does 

not occur, the next range is set to RMPS, and the same offset is 
used for the next bin decoding. The value of RMPS is in 
[0x080, 0x1FE], because the MPS probability is always 
greater than or equal to 0.5. Therefore, just one shift is 
sufficient for renormalization when the most significant bit 
of RMPS is zero. Otherwise no addition operation is needed 
for renormalization. 

In case of LPS decoding, the next range is set to RLPS. As 
the LPS probability is not greater than 0.5, the value of RLPS 
is in [0x000, 0x0FF], which means that the renormalization 
occurs always and requires multiple shifts. For the next 
decoding, it is needed to count the leading zeros and shift the 
RLPS to the left with that amount. For example, the third 
decoding in Fig. 2 requires 2 left shifts to renormalize the 
range and offset. In addition, the offset should be adjusted by 

subtracting the value of RMPS before the renormalization. 
TABLE 1 summarizes how variables are updated according 
to the decoded bin.  

If the decoded bin is the LPS, it takes a lot of time to 
calculate the next range and offset required for the next bin 
decoding. The range always has to be modified and the offset 
is also subtracted. To find the shift amount n, the decoder has 
to be equipped with a unit that counts leading zeros (CLZ). 
In addition to that, it needs an 8-bit barrel shifter to finalize 
renormalization. If the decoded bin is the MPS, however, the 
next range and offset can be calculated with simple 
operations even when the renormalization is involved. After 
calculating RMPS, at most one shift is enough for 
renormalization.  

Since CABAC is a binary arithmetic coding which deals 
with binary symbols, it seems that the next bin decoding can 
start earlier by assuming the current bin has a specific value, 
the LPS or MPS. Although the variables required for the next 
bin decoding are updated and dependent on the current bin 
decoding result, we can get the variables in advance by 
predicting the result of the current bin decoding. If the LPS is 
decoded in the first decoding, it takes a long time to calculate 
the range and offset. In this case, there is no difference from 
the traditional decoding scheme that decodes bins in sequel. 
However, if the MPS is decoded, the variables for next bin 
decoding can be calculated with simple operations. 

Based on the analysis, we propose a prediction scheme to 
decode two bins at a time. The first binary symbol is decoded 
as the conventional scheme, while the second is decoded 
with predicting that the first symbol is the MPS. 

B. Patterns of neighboring context 
There is a problem to be solved for the proposed parallel 

decoding. To start the second predicted decoding, we should 
know which context model is to be used for the second bin 
decoding. Since the context model is selected out of 399 
ones by referring to the type of the syntax element or the 
previous bin decoding, it is difficult to determine the context 
model without knowing the result of the first bin decoding. 
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Fig. 3. The proposed CABAC decoder 

TABLE 1 
Variable update after one bit decoding 

Case MPS decoding LPS decoding 

Frequency Frequent None 

Range RMPS - No 
renormalization 

Offset No change - 

Frequency Rare Always 

Shift amount n 1 Arbitrary 

Range RMPS  << 1 RLPS << n 
Renormalization 

Offset Offset << 1 (Offset−RMPS) << n 
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In addition, a context model used for a bin decoding is 
updated after the bin is decoded, which means that the 
updated context model should be used for the second bin 
decoding if the same context model is applied to the first and 
second bins. Analyzing the pattern of context models applied 
to two sequential bins contained in a syntax element, we 
found that the two context models are different in most cases 
and the second context model is usually next to the first 
context model. Based on the observation, the second bin is 
decoded with predicting that the first bin is the MPS and the 
next context model is used.  

C. The proposed CABAC decoder 
The proposed CABAC decoder shown in Fig. 3 includes 

two BADs and reads two sequential context models at a time. 
The first BAD is the same as the conventional decoder 
except additional two output signals, RN,MPS and PredHit, 
where RN,MPS is the range to be transferred to the second 
BAD and PredHit is to indicate whether the decoding result 
of the first BAD is the MPS and the next context model is 
valid for the second bin decoding. Before starting the second 
bin decoding, the second BAD performs renormalization if 
RN,MPS is less than 0x100. In this case, at most one shift is 
enough. If PredHit is asserted, the decoding result of the 
second unit is valid. Otherwise, it is discarded. Since there 
are little changes in the range and offset when the MPS is 
decoded in the first unit, the second unit can start after a little 
delay needed to calculate RN,MPS. 

IV. EXPERIMENTAL RESULTS 
The proposed decoder was described in Verilog HDL and 

synthesized in 0.18um CMOS technology. The bin decoding 
is processed in three cycles. Two context models are read in 
the first cycle, bins are decoded in the second cycle, and the 
decoded bins are merged in the third cycle. The critical part 
of a conventional decoder is the BAD unit that takes 3.3ns. 
As the second BAD needs some additional delay to calculate 
RN,MPS and select valid results, its delay increases to 4.5ns in 
the proposed decoder. To reduce the additional delay in the 
second cycle, the calculation of RN,MPS and the selection of 
valid results are retimed to the first cycle and the third cycle 
as shown in Fig. 4. With the retiming, the proposed decoder 
can work at the same clock frequency as that of the 
conventional decoder. 

TABLE 2 shows the simulation results for two 
benchmark image files. The case that has at least two bins 
remaining to be decoded in a syntax element is called a 
predictable case, and the other is an unpredictable case. The 
prediction is hit only when the second predicted decoding is 
valid, that is, when the first BAD decodes the MPS and the 
next context model is valid for the second decoding. If the 
prediction is hit, we can decode two bins at a time and thus 
save three cycles. The prediction accuracy is 67% on the 
average if predictable cases are considered. With the 
proposed predicted decoding, we can decode 24% more bins 
compared to the conventional serial decoding. 

V. CONCLUSION 
We have presented a prediction-based CABAC decoding 

scheme to improve the performance by decoding two bins 
simultaneously. In the proposed scheme, the second bin is 
decoded with predicting that the first bin is the MPS and the 
context model is next to that used for the first bin. 
Experimental results show that the proposed prediction 
scheme can improve the overall decoding performance by 
24% compared to conventional decoders. 
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Fig. 4. Retiming to reduce critical path delay (unit:ns) 

TABLE 2 
Simulations for two benchmark files 

File Case No. of bins 
Prediction 

hit (%) 
bins/cycle 

Predictable 14499682 69.07 0.56 
Unpredictable 13745309 - 0.33 Car.yuv 
Total 28244991 - 0.41 

Predictable 20441764 65.42 0.55 
Unpredictable 20567685 - 0.33 Cheer.yuv 
Total 41009449 - 0.41 
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