HIGH-SPEED DIGITAL DESIGN A Handbook of Black Magic ## HOWARD W. JOHNSON, PH.D. Signal Consulting, Inc. ## MARTIN GRAHAM, PH.D. University of California at Berkeley ## Contents | 1 | Prefac
Funda | ce <i>ix</i>
amentals <i>1</i> | |---|--|--| | | 1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9 | Frequency and Time 1 Time and Distance 6 Lumped Versus Distributed Systems 7 A Note About 3 dB and RMS Frequencies 8 Four Kinds of Reactance 10 Ordinary Capacitance 11 Ordinary Inductance 17 A Better Method for Estimating Decay Time 22 Mutual Capacitance 25 Mutual Inductance 29 | | 2 | High- | Speed Properties of Logic Gates 37 | | | 2.2
2.3 | Historical Development of a Very Old Digital Technology 37 Power 39 Speed 59 Packaging 66 | vi Contents | 3 | Measurement Techniques 83 | | |---|---|----| | | 3.1 Rise Time and Bandwidth of Oscilloscope Probes3.2 Self-inductance of a Probe Ground Loop86 | | | | 3.3 Spurious Signal Pickup from Probe Ground Loops 3.4 How Probes Load Down a Circuit 3.5 Special Probing Fixtures 98 | | | | 3.6 Avoiding Pickup from Probe Shield Currents 3.7 Viewing a Serial Data Transmission System 3.8 Slowing Down the System Clock 3.9 Observing Crosstalk 3.10 Measuring Operating Margins 3.11 Observing Metastable States 3.120 | | | 4 | Transmission Lines 133 | | | | 4.1 Shortcomings of Ordinary Point-to-Point Wiring 4.2 Infinite Uniform Transmission Line 4.3 Effects of Source and Load Impedance 4.4 Special Transmission Line Cases 4.5 Line Impedance and Propagation Delay 178 | | | 5 | Ground Planes and Layer Stacking 189 | | | | 5.1 High-Speed Current Follows the Path of Least Inductance 5.2 Crosstalk in Solid Ground Planes 191 5.3 Crosstalk in Slotted Ground Planes 194 5.4 Crosstalk in Cross-Hatched Ground Planes 197 5.5 Crosstalk with Power and Ground Fingers 199 5.6 Guard Traces 201 5.7 Near-End and Far-End Crosstalk 204 5.8 How to Stack Printed Circuit Board Layers 212 | 89 | | 6 | Terminations 223 | | | | 6.1 End Terminators 223 6.2 Source Terminators 231 6.3 Middle Terminators 235 6.4 AC Biasing for End Terminators 236 6.5 Resistor Selection 239 6.6 Crosstalk in Terminators 244 | | | 7 | Vias <i>249</i> | | | | 7.1 Mechanical Properties of Vias 249 7.2 Capacitance of Vias 257 7.3 Inductance of Vias 258 7.4 Return Current and Its Relation to Vias 260 | | Contents | 8 | Power Systems 263 | |----|---| | | 8.1 Providing a Stable Voltage Reference 263 8.2 Distributing Uniform Voltage 268 8.3 Everyday Distribution Problems 279 8.4 Choosing a Bypass Capacitor 281 | | 9 | Connectors 295 | | | 9.1 Mutual Inductance—How Connectors Create Crosstalk 295 9.2 Series Inductance—How Connectors Create EMI 300 9.3 Parasitic Capacitance—Using Connectors on a Multidrop Bus 305 9.4 Measuring Coupling in a Connector 309 9.5 Continuity of Ground Underneath a Connector 312 9.6 Fixing EMI Problems with External Connections 314 9.7 Special Connectors for High-Speed Applications 316 9.8 Differential Signaling Through a Connector 319 9.9 Power Handling Features of Connectors 321 | | 0 | Ribbon Cables 323 | | | 10.1 Ribbon Cable Signal Propagation 324 10.2 Ribbon Cable Crosstalk 329 10.3 Ribbon Cable Connectors 336 10.4 Ribbon Cable EMI 338 | | 11 | Clock Distribution 341 | | | 11.1 Timing Margin 341 11.2 Clock Skew 343 11.3 Using Low-Impedance Drivers 346 11.4 Using Low-Impedance Clock Distribution Lines 348 11.5 Source Termination of Multiple Clock Lines 350 11.6 Controlling Crosstalk on Clock Lines 352 11.7 Delay Adjustments 353 11.8 Differential Distribution 360 11.9 Clock Signal Duty Cycle 361 11.10 Canceling Parasitic Capacitance of a Clock Repeater 362 11.11 Decoupling Clock Receivers from the Clock Bus 364 | | 12 | Clock Oscillators 367 | | | 12.1 Using Canned Clock Oscillators 367 12.2 Clock Jitter 376 | Collected References 385 A Points to Remember 389 B Calculation of Rise Time 399 C MathCad Formulas 409 Index 441