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Abstract. This paper shows that a $390 mass-market quad-core 2.4GHz
Intel Westmere (Xeon E5620) CPU can create 109000 signatures per
second and verify 71000 signatures per second on an elliptic curve at a
2128 security level. Public keys are 32 bytes, and signatures are 64 bytes.
These performance figures include strong defenses against software side-
channel attacks: there is no data flow from secret keys to array indices,
and there is no data flow from secret keys to branch conditions.
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1 Introduction

This paper introduces software for public-key signatures with several attractive
features:

– Fast single-signature verification. The software takes only 273364 cycles
to verify a signature on Intel’s widely deployed Nehalem/Westmere lines of
CPUs. (This performance measurement is for short messages; for very long
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messages, verification time is dominated by hashing time.) Nehalem and
Westmere include all Core i7, i5, and i3 CPUs released between 2008 and
2010, and most Xeon CPUs released in the same period.

– Even faster batch verification. The software performs a batch of 64
separate signature verifications (verifying 64 signatures of 64 messages under
64 public keys) in only 8.55 million cycles, i.e., under 134000 cycles per
signature. The software fits easily into L1 cache, so contention between cores
is negligible: a quad-core 2.4GHz Westmere verifies 71000 signatures per
second, while keeping the maximum verification latency below 4 milliseconds.

– Very fast signing. The software takes only 87548 cycles to sign a message.
A quad-core 2.4GHz Westmere signs 109000 messages per second.

– Fast key generation. Key generation is almost as fast as signing. There is
a slight penalty for key generation to obtain a secure random number from
the operating system; /dev/urandom under Linux costs about 6000 cycles.

– High security level. This system has a 2128 security target; breaking it has
similar difficulty to breaking NIST P-256, RSA with ≈ 3000-bit keys, strong
128-bit block ciphers, etc. (The same techniques would also produce speed
improvements at other security levels.) The best attacks known actually
cost more than 2140 bit operations on average, and degrade quadratically in
success probability as the number of bit operations drops.

– Foolproof session keys. Signatures in this paper are generated determin-
istically; key generation consumes new randomness but new signatures do
not. This is not only a speed feature but also a security feature, directly
relevant to the recent collapse of the Sony PlayStation 3 security system.
See Section 2 for further discussion.

– Collision resilience. Hash-function collisions do not break this system.
This adds a layer of defense against the possibility of weakness in the selected
hash function.

– No secret array indices. The software never reads or writes data from
secret addresses in RAM; the pattern of addresses is completely predictable.
The software is therefore immune to cache-timing attacks, hyperthreading
attacks, and other side-channel attacks that rely on leakage of addresses
through the CPU cache.

– No secret branch conditions. The software never performs conditional
branches based on secret data; the pattern of jumps is completely pre-
dictable. The software is therefore immune to side-channel attacks that rely
on leakage of information through the branch-prediction unit.

– Small signatures. Signatures fit into 64 bytes. These signatures are actu-
ally compressed versions of longer signatures; the times for compression and
decompression are included in the cycle counts reported above.

– Small keys. Public keys consume only 32 bytes. The times for compression
and decompression are again included.

We have submitted our software to the eBATS project [15] for public bench-
marking, and placed the software into the public domain to maximize reusability.
The numbers 87548 and 273364 shown above are from the eBATS reports for
our software on a Westmere CPU (Intel Xeon E5620, hydra2).
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Our signatures are elliptic-curve signatures, carefully engineered at several
levels of design and implementation to achieve very high speeds without com-
promising security. Section 2 specifies the signature system; Section 3 explains
the techniques we use for finite-field arithmetic; Section 4 discusses fast signa-
tures; Section 5 discusses fast verification.

Comparison to previous ECC work. Carrying out high-security elliptic-
curve signature verification in only 134000 cycles on a single core of a typical
Intel CPU is unprecedented. The following paragraphs discuss previous work.

Readers should be aware of several difficulties in comparing ECC performance
results. First, most papers on fast ECC have been limited to ECDH (variable-
base-point single-scalar multiplication) and have not implemented ECC signa-
ture verification, although there are certainly some exceptions— for example,
[21] reported verification 1.33× slower than ECDH, and [34] reported verifica-
tion 1.36× slower than ECDH. Second, most implementations use secret array
indices and secret branch conditions and therefore must be assumed to be break-
able by side-channel attacks, as illustrated by the successful OpenSSL attack in
[23]; this is not an issue for public-key signature verification but it is an issue for
signing and for ECDH. Third, most papers report results for only a few CPUs,
so anyone without access to the same CPUs must engage in error-prone extrap-
olation from one CPU to another; this is not an issue for systems included in
the eBATS benchmarks, but we are aware of two recent ECC implementations
(discussed below) that are not included in eBATS.

Intel’s “Turbo Boost” and AMD’s “Turbo Core” have added a further dif-
ficulty for new CPUs. Typical benchmarking frameworks measure performance
on a single CPU core, and Turbo Boost fools most of these frameworks into
reporting excessively low Westmere cycle counts—speeds that the CPU cannot
actually achieve when a sensible workload is keeping all cores busy. The eBATS
reports include explicit warnings regarding Turbo Boost. This corruption does
not occur on hydra2: Turbo Boost is disabled on that computer.

Before this paper, the closest system to ours in eBATS was ecdonaldp256:
ECDSA signatures using the NIST P-256 elliptic curve. On hydra2 this system
takes 1690936 cycles for key generation, 1790936 cycles for signing, and 2087500
cycles for verification. Better speeds were reported for ECDH:

– Third place was curve25519, an implementation by Gaudry and Thomé [35]
of Bernstein’s Curve25519 [12].

– Second place was 307180 cycles for ecfp256e, an implementation by Hisil
[40] of ECDH on an Edwards curve with similar security properties to
Curve25519.

– First place was 278256 cycles for gls1271, an implementation by Galbraith,
Lin, and Scott [34] of ECDH on an Edwards curve with an endomorphism.

The recent papers [38] and [44] point out security problems with endomorphisms
in some ECC-based protocols, but as far as we can tell those security issues are
not relevant to ECDH with standard hashing of the ECDH output, and are not
relevant to ECC signatures.
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Longa and Gebotys in [51] claimed 281000 cycles on a Core 2 Duo E6750
(C2 65nm) for ECDH on a curve similar to ecfp256e, and 229000 cycles for
ECDH on a curve similar to gls1271. The software in [51] is not included in the
eBATS benchmarks and apparently is not publicly available, so we are unable
to benchmark it on a Westmere. More recently Käsper in [46] reported 457813
cycles for side-channel-protected ECDH on the NIST P-224 curve on a Core 2
Duo E8400 (C2 45nm); this software has been integrated into OpenSSL but not
yet into eBATS.

To aid comparisons we also implemented ECDH, specifically curve25519,
with the same side-channel defenses as our signature software (no secret array
indices, and no secret branch conditions). We submitted our ECDH software
to eBATS, which reports that the software uses 226872 cycles on hydra2 for
variable-base-point single-scalar multiplication. This is a new speed record for
public ECDH software, a new speed record for side-channel-protected ECDH
(out of all the papers mentioned above, the only ones that report side-channel
protection are [12] and [46]), and a new speed record for ECDH without endo-
morphisms.

We do not claim that curve25519 will maintain its current position on top of
eBATS: we would expect ECDH with endomorphisms (especially without side-
channel protection) to be somewhat faster than ECDH without endomorphisms
on many platforms. This expectation seems to be supported by the very recent
paper [42] by Hu, Longa, and Xu: [42, Table 2] claims 194000 cycles for a curve
with endomorphisms on an Intel Core 2 Duo E6750, and the accompanying web
site [42, reference 18] claims 182000 cycles on an Intel Core i5 540M (Westmere).
The same web site also claims 215000 Westmere cycles for a curve without
endomorphisms. However, like the software in [51], the software in [42] does not
appear to be publicly available. The resulting lack of verifiability raises questions
regarding accuracy. We are particularly skeptical of the Westmere speed claims,
given the Turbo Boost issues discussed above. After we wrote this paragraph,
the same web site was updated to claim 250000 cycles for the same software on
another Westmere CPU.

Given our 226872-cycle ECDH speed, given the ECDH-to-verification slow-
downs reported in [21] and [34], and given the extra costs that we incur for
decompressing keys and signatures, one would expect a verification speed close
to 400000 cycles. We do better than this for several reasons, the most important
reason being our use of batching. This requires careful design of the signature
system, as discussed later in this paper: ECDSA, like DSA and most other sig-
nature systems, is incompatible with fast batch verification.

Comparison to other signature systems. The eBATS benchmarks cover
42 different signature systems, including various sizes of RSA, DSA, ECDSA,
hyperelliptic-curve signatures, and multivariate-quadratic signatures. This paper
beats almost all of the signature times and verification times (and key-generation
times, which are an issue for some applications) by more than a factor of 2. The
only exceptions are as follows:
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– Multivariate-quadratic signatures are competitive in speed. For example,
sflashv2 takes 124740 cycles to sign and 165884 cycles to verify; mqqsig256
takes 4212 cycles to sign and 134900 cycles to verify; smaller mqqsig versions
are even faster. However, sflashv2 was broken by Dubois, Fouque, Shamir,
and Stern in [30]. We are not aware of any security evaluation of mqqsig,
which was introduced last year in [36], but we disregard mqqsig256 for the
simple reason that it has a 789552-byte public key.

– donald512 (512-bit DSA) takes 334508 cycles to verify. This is comparable
to our single-signature verification speed but much slower than our batch
verification speed. This is also at a far lower security level, breakable in
about 260 simple operations.

– Some RSA-type systems provide faster verification—but this advantage de-
creases as the security level increases, and for many applications the ad-
vantage is outweighed by much slower signatures and much larger keys. For
example, rwb0fuz1024 (1024-bit Rabin–Williams) uses 12304 cycles to ver-
ify but 1751284 cycles to sign and 128 bytes for a public key; ronald1024
(1024-bit RSA) uses 60300 cycles to verify but 2171124 cycles to sign and
128 bytes for a public key; ronald3072 (3072-bit RSA) uses 231536 cycles to
verify but an astonishing 31456912 cycles to sign and 384 bytes for a public
key. This paper uses 134000 cycles to verify (in batches), 87548 cycles to
sign, and 32 bytes for a public key.

The conventional wisdom is that RSA signatures are much better than ECC
signatures in applications where each signature is verified many times, since RSA
verification is much faster than ECC verification. Our ECC speed results call this
conventional wisdom into question. We do not claim that our verification speeds
cannot be beaten by RSA at the same security level, but we do claim that they
are fast enough to make ECC an attractive option even for verification-intensive
applications such as [70].

2 The signature system

This section specifies the signature system used in this paper, and a generalized
signature system EdDSA that can be used with other choices of elliptic curves.

There is an extensive literature on variants of the classic signature system
introduced by ElGamal in [33]; notable variants include Schnorr’s signature
system [72], DSA, and ECDSA. Our generalized system is another of these
variants. We do not claim novelty for any of the individual modifications that
we use, but we emphasize that selecting a good combination of modifications
is critical for top performance. The most obvious modification is that we use
twisted Edwards curves rather than Weierstrass curves; this explains our choice
of the name EdDSA (Edwards-curve Digital Signature Algorithm).

EdDSA parameters. EdDSA has seven parameters: an integer b ≥ 10; a cryp-
tographic hash function H producing 2b-bit output; a prime power q congruent
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to 1 modulo 4; a (b − 1)-bit encoding of elements of the finite field Fq; a non-
square element d of Fq; a prime ℓ between 2b−4 and 2b−3 satisfying an extra
constraint described below; and an element B 6= (0, 1) of the set

E =
{

(x, y) ∈ Fq × Fq : −x2 + y2 = 1 + dx2y2
}

.

The condition that d is not a square implies that d 6∈ {0,−1}, so this set E forms
a group with neutral element 0 = (0, 1) under the twisted Edwards addition law

(x1, y1) + (x2, y2) =

(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 + x1x2

1− dx1x2y1y2

)

introduced by Bernstein, Birkner, Joye, Lange, and Peters in [13]. Completeness
of the addition law—the fact that the denominators 1±dx1x2y1y2 are nonzero—
follows as explained in [13, Section 6]: −1 is a square in Fq (since q is congruent
to 1 modulo 4), so this addition law on E is Fq-isomorphic to the Edwards
addition law on the Edwards curve x2 + y2 = 1 − dx2y2, which is complete by
[14, Theorem 3.3] since −d is not a square in Fq. The latter follows from d being
a non-square and −1 being a square in Fq. The extra constraint mentioned above
is that ℓB = 0, where nB means the nth multiple of B in this group.

We use the encoding of Fq to define some field elements as being negative:
specifically, x is negative if the (b−1)-bit encoding of x is lexicographically larger
than the (b− 1)-bit encoding of −x. If q is an odd prime and the encoding is the
little-endian representation of {0, 1, . . . , q − 1} then the negative elements of Fq

are {1, 3, 5, . . . , q − 2}.
An element (x, y) ∈ E is encoded as a b-bit string (x, y), namely the (b− 1)-

bit encoding of y followed by a sign bit; the sign bit is 1 iff x is negative.
This encoding immediately determines y, and it determines x via the equation
x = ±

√

(y2 − 1)/(dy2 + 1).

EdDSA keys and signatures. An EdDSA secret key is a b-bit string k. The
hash H(k) = (h0, h1, . . . , h2b−1) determines an integer

a = 2b−2 +
∑

3≤i≤b−3

2ihi ∈
{

2b−2, 2b−2 + 8, . . . , 2b−1 − 8
}

,

which in turn determines the multiple A = aB. The corresponding EdDSA
public key is A. Bits hb, . . . , h2b−1 of the hash are used as part of signing, as
discussed in a moment.

The signature of a message M under this secret key k is defined as follows.
Define r = H(hb, . . . , h2b−1,M) ∈

{

0, 1, . . . , 22b − 1
}

; here we interpret 2b-bit

strings in little-endian form as integers in
{

0, 1, . . . , 22b − 1
}

. Define R = rB.
Define S = (r + H(R,A,M)a) mod ℓ. The signature of M under k is then the
2b-bit string (R,S), where S is the b-bit little-endian encoding of S. Applications
wishing to pack data into every last nook and cranny should note that the last
three bits of signatures are always 0 because ℓ fits into b− 3 bits.

Verification of an alleged signature on a message M under a public key
works as follows. The verifier parses the key as A for some A ∈ E, and parses
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the alleged signature as (R,S) for some R ∈ E and S ∈ {0, 1, . . . , ℓ− 1}.
The verifier computes H(R,A,M) and then checks the group equation 8SB =
8R+8H(R,A,M)A in E. The verifier rejects the alleged signature if the parsing
fails or if the group equation does not hold.

To see that signatures pass verification, simply multiply B by the equa-
tion S = (r + H(R,A,M)a) mod ℓ, and use the fact that ℓB = 0, to see
that SB = rB + H(R,A,M)aB = R + H(R,A,M)A. The verifier is permit-

ted to check this stronger equation and to reject alleged signatures where the
stronger equation does not hold. However, this is not required ; checking that
8SB = 8R+ 8H(R,A,M)A is enough for security.

Weak keys. Forgeries are trivial if A is a known multiple of B. For example,
an attacker who knows that A = 37B can choose r and compute S = (r +
37H(R,A,M)) mod ℓ. As an even more extreme example, an attacker who knows
that A = 0B can choose r and compute S = r mod ℓ, independently of M . We
could declare that 0B and 37B are “broken” by these two “attacks” and that
users must check for, and reject, these “weak keys”; but the same confused
logic would require rejecting all keys in all cryptosystems, and would have no
relevance to the standard definition of signature security.

Legitimate users choose A = aB, where a is a random secret; the derivation of
a from H(k) ensures adequate randomness. These users have negligible chance
of generating any particular multiple of B targeted by the attacker (and no
chance of generating 0B). The chance of the attacker randomly guessing a is
far smaller than the chance of the attacker computing a by known discrete-
logarithm algorithms; standard elliptic-curve security criteria are designed so
that the latter algorithms have negligible chance of succeeding in any reasonable
amount of time.

Malleability. We also see no relevance of “malleability” to the standard defini-
tion of signature security. For example, if we slightly modified the system then
replacing S by −S and replacing A by −A (a slight variant of the “attack”
of [75]) would convert one valid signature into another valid signature of the
same message under a new public key; but it would still not accomplish the
attacker’s goal, namely to forge a signature on a new message under a target
public key. One such modification would be to omit A from the hashing; another
such modification would be to have A encode only |A|, rather than A.

Choice of curve. Our recommended curve for EdDSA is a twisted Edwards
curve birationally equivalent to the curve Curve25519 from [12]. Any efficiently
computable birational equivalence preserves ECDLP difficulty, so the well-known
difficulty of computing ECDLP for Curve25519 immediately implies the difficulty
of computing ECDLP for our curve. We use the name Ed25519 for EdDSA with
this particular choice of curve.

Specifically, Ed25519-SHA-512 is EdDSA with the following parameters: b =
256; H is SHA-512; q is the prime 2255 − 19; the 255-bit encoding of F2255−19

is the usual little-endian encoding of
{

0, 1, . . . , 2255 − 20
}

; ℓ is the prime 2252 +
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27742317777372353535851937790883648493 from [12]; d = −121665/121666 ∈
Fq; and B is the unique point (x, 4/5) ∈ E for which x is positive.

Curve25519 from [12] is the Montgomery curve v2 = u3 + 486662u2 + u
over the same field Fq. Bernstein and Lange pointed out in [14, Section 2] that
Curve25519 is birationally equivalent to an Edwards curve, specifically x2 +
y2 = 1 + (121665/121666)x2y2; the equivalence is x =

√
486664u/v and y =

(u − 1)/(u + 1). As above this Edwards curve is isomorphic to −x2 + y2 =
1− (121665/121666)x2y2 since −1 is a square in Fq. Our choice of base point B
corresponds to the choice u = 9 made in [12].

Pseudorandom generation of r. ECDSA, like many other signature systems,
asks users to generate not merely a random long-term secret key, but also a
new random secret session key r for each message to be signed. If r becomes
public then, assuming H(R,A,M) mod ℓ 6= 0, the long-term secret key a can
be simply computed as a = (S − r)/H(R,A,M) mod ℓ. If the same value r is
ever used for 2 different messages the secret key can be computed as well, as
ElGamal noted in [33, Note 2]. It was reported in [24] that the latter failure had
occurred in Sony’s ECDSA implementation for code-signing for the PlayStation3,
immediately revealing Sony’s long-term secret key.

Furthermore, it is well known that ECDSA’s session keys are much less tol-
erant than the long-term key of slight deviations from randomness, even if the
session keys are not revealed or reused. For example, Nguyen and Shparlinski
in [61] presented an algorithm using lattice methods to compute the long-term
ECDSA key from the knowledge of as few as 3 bits of r for hundreds of sig-
natures, whether this knowledge is gained from side-channel attacks or from
non-uniformity of the distribution from which r is taken.

EdDSA avoids these issues by generating r = H(hb, . . . , h2b−1,M), so that
different messages will lead to different, hard-to-predict values of r. No per-
message randomness is consumed. This idea of generating random signatures
in a secretly deterministic way, in particular obtaining pseudorandomness by
hashing a long-term secret key together with the input message, was proposed
by Barwood in [9]; independently by Wigley in [79]; a few months later in
a patent application [57] by Naccache, M’Räıhi, and Levy-dit-Vehel; later by
M’Räıhi, Naccache, Pointcheval, and Vaudenay in [55]; and much later by Katz
and Wang in [47]. The patent application was abandoned in 2003.

Standard PRF hypotheses imply that this pseudorandom session key r is
indistinguishable from a truly random string generated independently for each
M , so there is no loss of security. Well-known length-extension properties prevent
secret-prefix SHA-512 from being a PRF, but also do not threaten the security
of Ed25519-SHA-512, since r is not visible to the attacker. All remaining SHA-
3 candidates are explicitly designed to be PRFs, and we will not hesitate to
recommend Ed25519-SHA-3 after SHA-3 is standardized. It would of course also
be safe to generate r with a cipher such as AES, combined with standard PRF-
stretching mechanisms to support a long input; but we prefer to reuse H to save
area in hardware implementations.
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EdDSA samples r from the interval [0, 22b − 1], ensuring almost uniformity of
the distribution modulo ℓ. The guideline [2, Section 4.1.1, Algorithm 2] specifies
that the interval should be of size at least [0, 2b+61 − 1], i.e., 64 bits more than
ℓ; for Ed25519 there are 259 extra bits.

Comparison to previous ElGamal variants. The original ElGamal system
[33, Section III] predated elliptic-curve cryptography; it instead used the mul-
tiplicative group F∗

q . ElGamal took a large non-prime ℓ, specifically ℓ = q − 1,
and focused on the case of prime q. ElGamal’s signatures were pairs (R,S) of
integers between 0 and q−2 inclusive satisfying BH(M) = ARRS in F∗

q . See [33,
equation (3)]; see also [33, Attack 6] for the introduction of H. The signer, given
M , generates a random r coprime to ℓ and computes the signature (R,S), where
R = Br and S = r−1(H(M)−Ra) mod ℓ.

Schnorr in [72] pointed out that one could safely work in an order-ℓ subgroup
of F∗

q with a prime ℓ much smaller than q, saving most of the space for S. Schnorr
also introduced several other improvements to ElGamal’s system, as discussed
below.

ElGamal’s verification equation involves R as an element of the group F∗
q and

as a scalar, the exponent for A. For more general groups one needs a function
x mapping group elements to scalars. ECDSA works this way: it replaces F∗

q

with an order-ℓ subgroup of an elliptic-curve group over Fq and defines x(R) as
the x-coordinate of R. ECDSA also replaces A with −A, changing the signer’s
subtraction into an addition and obtaining the verification equation H(M)B +
x(R)A = SR. ECDSA replaces this three-scalar equation with the equivalent
two-scalar equation S−1H(M)B + S−1x(R)A = R at the expense of requiring
S to be invertible modulo ℓ; note that both the signer and the verifier compute
inverses here.

Schnorr used a cryptographic hash function for x. This has minimal expense
and eliminates any concerns regarding the mathematical structure of simpler
functions x. Schnorr also compressed the group element R to the scalar x(R): a
Schnorr signature is (x(R), S) rather than (R,S). Given a compressed signature
(x(R), S), the verifier recomputes R as S−1H(M)B+S−1x(R)A and checks that
x(R) matches; at this point the verifier knows a valid uncompressed signature
(R,S), so the compression cannot reduce security.

Schnorr also merged the hashing of R with the hashing of M . One way to
understand this merging is to replace S with x(R)S, and to impose the extra
constraint x(R) 6= 0, obtaining the verification equation x(R)−1H(M)B + A =
SR. There is no need for the multiplicative structure of x(R)−1H(M) here: one
can instead use the verification equation H(R,M)B +A = SR, with the signer
obtaining S as r−1(H(R,M) + a) mod ℓ. Schnorr actually used the equation
SB = R+H(R,M)A, eliminating all inversions both for the signer and for the
verifier; this is an obvious advantage, saving time and reducing code size.

The presence of R as input to the hash function provides collision resilience:
the attacker cannot break Schnorr’s system by merely finding hash collisions.
Neven, Smart, and Warinschi in [60] proposed taking advantage of collision
resilience by choosing H to output only b/2 bits, reducing the size of compressed
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signatures by 25%; but the same proposal had actually appeared twenty years
earlier in Schnorr’s original paper [72, Section 2].

Practical use of Schnorr’s system was hampered by a patent (which expired in
2008), but the system became well known to theoreticians, because the hashing
of R allowed various security proofs. Some proofs use the “forking lemma” to
show that any generic-hash attack against Schnorr’s system (i.e., any attack that
works for arbitrary functions H) can be converted into a DLP algorithm with
a polynomially bounded, although often quite severe, loss of efficiency. There
are also theorems with a different loss of efficiency for generic-group attacks
(i.e., attacks that work for arbitrary groups) under mild assumptions on H, and
theorems with no loss of efficiency for generic-group generic-hash attacks. See,
for example, [67], [74], [11], and [60]. We do not mean to exaggerate the real-
world relevance of “provable security”, but we find it obvious that Schnorr’s
system is a conservative, well-studied signature system.

Our verification equation is the same as Schnorr’s verification equation with
double-size hashing instead of half-size hashing, with A inserted as an extra hash
input, and without Schnorr’s compression of R. These modifications obviously do
not compromise security. The use of double-size hashing helps alleviate concerns
regarding hash-function security; the use of A is an inexpensive way to alleviate
concerns that several public keys could be attacked simultaneously; and the
avoidance of compression allows an important verification speedup, as discussed
in Section 5. We also reuse the double-size hash to alleviate concerns regarding
nonce randomness, as discussed above.

3 Fast arithmetic modulo 2255
− 19

This section explains how our software represents elements of the field F2255−19,
and how our software performs efficient field arithmetic. The machine instruc-
tions used in the software are available on all 64-bit Intel and AMD CPUs, but
we target Intel’s Nehalem/Westmere CPUs.

Multipliers on Nehalem CPUs. Field multiplications (and squarings) are
the main bottlenecks in elliptic-curve performance on most CPUs. The most im-
portant tool for fast field multiplication is a fast CPU multiplication instruction.
Nehalem CPUs offer three different multiplication instructions that can be used
to implement high-speed field arithmetic:

– The mulpd instruction can perform two double-precision floating-point mul-
tiplications in SIMD fashion every cycle. Newer Sandy Bridge CPUs include
a vmulpd instruction that can perform up to 4 double-precision floating-point
multiplications per cycle, but this instruction is not available on our target
CPUs.

– The mul instruction can multiply two 64-bit unsigned integers, producing a
128-bit result, every two cycles.

– The pmuldq/pmuludq instructions can perform two multiplications of 32-
bit integers, producing 64-bit results, every cycle. The pmuldq instruction
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performs signed multiplication; the pmuludq instruction performs unsigned
multiplication.

Multiplication and Edwards-curve arithmetic involve data-level parallelism that
we could exploit with mulpd and pmuldq, but this approach would incur a serious
overhead of shuffle instructions needed to arrange data in registers as described
in, e.g., [26] and [59]. This overhead is eliminated when several independent
computations are run in parallel, but two 64-bit results every cycle are not
fundamentally better than one 128-bit result every two cycles. We therefore
decompose field multiplication into multiplications of 64-bit unsigned integers.

Radix-264 representation. The standard way to split 255-bit values into 64-
bit limbs is a 4-limb, radix-264 representation. Each element x of the field is
represented as (x0, x1, x2, x3) with x =

∑3
i=0 xi2

64i. The multiplication of two
elements x and y is decomposed into 16 multiplications of 64-bit unsigned inte-
gers; the 128-bit results are added up to produce the result in 8 limbs r0, . . . , r7.
Reduction modulo 2255 − 19 exploits the fact that 2256 ≡ 38, so 38 · r4 is added
to r0, 38 · r5 to r1 and so on.

A detail worth noting of this representation is that it uses 256 bits to represent
255-bit field elements. We use this one extra bit and do not always reduce modulo
2255−19 but modulo 2256−38. For a similar representation this has been shown
to be useful for example in [17].

Our implementation of the signature scheme based on this representation of
field elements yields high performance on many microprocessors such as AMD
K10 or 65-nm Intel Core 2 processors. However, on our target platform, the In-
tel Nehalem/Westmere CPUs, this representation triggers a serious bottleneck.
Every 128-bit result of the mul instruction is produced in two 64-bit registers.
Adding two of these results requires two addition instructions. In the field mul-
tiplication most of these additions produce carries; the carry bits need to be
handled by subsequent additions. The Intel Nehalem and Westmere CPUs can
perform three additions per cycle, but only if these additions do not have to han-
dle a carry bit from a previous addition (add instruction). An add with carry
(adc instruction) can only be done once every two cycles; i.e., carry bits decrease
addition throughput by a factor of 6. This bottleneck is triggered not only inside
field multiplication and squaring but also inside additions.

Radix-251 representation. To reduce the number of expensive adc/subc in-
structions, we instead represent an element x of F2255−19 as (x0, x1, x2, x3, x4)

with x =
∑4

i=0 xi2
51i.

The 5 limbs are unsigned integers. We can represent each element of the field
F2255−19 with each xi ∈ [0, . . . , 251 − 1]. In fact our implementation does not
enforce these bounds except for comparisons. Multiplication accepts inputs with
each limb having up to 54 bits and produces results of which each limb can be
only slightly larger than 251.

Multiplication and squaring. Schoolbook multiplication of two field elements
x and y, each represented in 5 unsigned integers, takes 25 mul instructions. The
results are again produced in two 64-bit integer registers, but as both inputs
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have only up to 54 bits, the value in the upper result register has only up
to 44 bits. Adding two multiplication results now takes only one adc and one
add instruction. Furthermore reduction can be carried out simultaneously to
multiplication. For example, we do not compute a coefficient r5. Whenever the
result of a mul instruction belongs to r5, for example in the multiplication of
x2 · y3, we multiply one of the inputs by 19 and add the result to r0. Similarly
we do not compute r6, r7, r8 and r9 but directly add into r1, . . . , r4. Multiplying
one input by 19 yields a result with less than 64 bits so we can use the faster
imul instruction for these multiplications. The 5 result coefficients require 10
64-bit registers; the AMD64 architecture has 15 such registers, so we can keep
the result coefficients inside registers throughout the computation.

After the multiplication we need to reduce (carry) the 5 coefficients to obtain
a result with coefficients that are at most slightly larger than 251. Denote the two
registers holding coefficient r0 as r00 and r01 with r0 = 264r01 + r00. Similarly
denote the two registers holding coefficient r1 as r10 and r11. We first shift r01
left by 13, while shifting in the most significant bits of r00 (shld instruction)
and then compute the logical and of r00 with 251 − 1. We do the same with r10
and r11 and add r01 into r10 after the logical and with 251 − 1. We proceed this
way for coefficients r2, . . . , r4; register r41 is multiplied by 19 before adding it
to r00. Now all 5 coefficients fit into 64-bit registers but are still too large to be
used as input to another multiplication. We therefore carry from r0 to r1, from
r1 to r2, from r2 to r3, from r3 to r4, and finally from r4 to r0. Each of these
carries is done as one copy, one right shift by 51, one logical and with 251 − 1,
and one addition.

Squaring needs only 15 mul instructions. Some inputs are multiplied by 2; this
is combined with multiplication by 19 where possible. The coefficient reduction
after squaring is the same as for multiplication.

Multiplication and squaring are implemented as separate functions, but calls
to these functions are used only for inversion (see below). Edwards-curve arith-
metic uses inlined functions for point addition and doubling.

Addition, subtraction, and inversion. The results of additions do not have
to be reduced if they are used as input to a multiplication. Long sequences of
additions that let coefficients grow larger than 54 bits would be a problem but we
do not have such sequences of additions. Field addition is therefore nothing but 5
integer additions without carries (add instruction). Subtraction is slightly more
expensive because we use unsigned coefficients. Therefore we first add a multiple
of q and then perform subtraction. This costs 5 add and 5 sub instructions.

Inversion is implemented as exponentiation with exponent q − 2. It uses the
same sequence of 255 squarings and 11 multiplications as [12].

4 Signing messages

Signature generation has three steps: (1) computing r = H(hb, . . . , h2b−1,M);
(2) computing R = rB; (3) computing S = (r +H(R,A,M)a) mod ℓ.
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Our primary concern is with short messages M , obviously the top concern for
a server trying to keep up with a given volume of data; longer messages take
more cycles per signature but far fewer cycles per byte. The computations of
H take negligible time for short messages. The reduction modulo ℓ also takes
negligible time with standard branchless techniques. For the rest of this section
we focus on the main signing bottleneck, namely computing rB given r.

High-level strategy. We begin by computing the 253-bit integer r mod ℓ. We
then write r mod ℓ as r0 + 16r1 + · · ·+ 1663r63 with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}.

For each i we look up 16i|ri|B in a precomputed table, and then conditionally
negate 16i|ri|B to obtain 16iriB. Finally we compute rB as

∑

i 16
iriB.

There is nothing new in our computation at this level. Computing rB as a
sum of precomputed pieces is a special case of a standard scalar-multiplication
algorithm published by Pippenger in [64] (subsequently reinvented in [19] and
[50]); allowing negative coefficients is a standard tweak. The devil lies in the
lower-level details—choosing the optimal radix 16, and computing 16iriB and
∑

i 16
iriB as efficiently as possible. These details are discussed below.

Low level, part 1: table lookups. Recall that, as a side-channel defense, we
prohibit secret array indices. In particular, we cannot use |ri| as an array index.
We instead load all table entries 0B, 16iB, 2 · 16iB, 3 · 16iB, 4 · 16iB, 5 · 16iB, 6 ·
16iB, 7 · 16iB, 8 · 16iB and use arithmetic operations, without branching, to
combine the table entries into 16i|ri|B. We similarly use arithmetic operations
to compute 16iriB from 16i|ri|B and −16i|ri|B.

We actually store table entries only for i ∈ {0, 2, 4, . . . , 62}, at the expense
of 4 elliptic-curve doublings. The table then contains 8 · 32 = 256 curve points
(aside from 0B, which is not stored). Each point is represented as three integers
(see below) modulo 2255 − 19. Each integer in turn is represented as five 8-byte
words. Overall the table consumes 30 kilobytes of RAM.

We could instead use radix 32 or larger. Radix 32 would involve twice as
many table loads (since we load all table entries), and twice as much arithmetic
to combine table entries, but these costs would be outweighed by the benefit of
fewer elliptic-curve additions. A more serious concern is that the table would be
twice as large, consuming 60KB instead of 30KB. This is only a minor issue for a
typical cryptographic speed test on our target CPUs (each Nehalem/Westmere
core has its own fast 256KB L2 cache efficiently handling our sequential loads),
but 30KB is clearly more attractive inside a larger application that needs to fit
several different subroutines into L2 cache.

In the opposite direction, we could chop the table in half again at the expense
of 8 more doublings; we could also switch to radix 8, 4, or 2. These changes
would also allow reasonably fast signing on much smaller CPUs.

Low level, part 2: elliptic-curve addition. We use extended coordinates
for the twisted Edwards curve −x2 + y2 = 1 + dx2y2, as proposed by Hisil,
Wong, Carter, and Dawson in [41]. These coordinates are (X : Y : Z : T ) with
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XY = ZT representing x = X/Z and y = Y/Z. The addition formulas from
[41, Section 3.1] are complete for our curve and use just 9 field multiplications
to add a table entry (x0, y0) into (X : Y : Z : T ). Note that these formulas rely
on the −1 in −x2; this is why EdDSA uses the −1 twist.

One of the field multiplications is a multiplication by d = −121665/121666.
We could replace this with a small number of multiplications by 121665 and
121666, as in [13, Section 6], but our current software treats d as a generic field
element to save code size. We considered switching to a new curve using a small
integer d (such as 646, which has a near-prime group order; note that we do not
need the twist security of Curve25519), but decided that the resulting speedup
was too small to justify departing from an established curve.

A different way to save a multiplication is to use the dual addition formulas
from [41, Section 3.2]. However, those formulas are not complete; they would
require a detailed analysis of intermediate results in our computation to see
whether any of the intermediate additions could trigger any of the exceptional
cases in the formulas.

Instead we represent a precomputed point (x0, y0) as (y0−x0, y0+x0, 2dx0y0).
These values depend only on x0 and y0 and are usually computed in the first part
of addition in extended coordinates; providing them as part of the precomputa-
tion saves the multiplication by d, the multiplication x0y0, and 2 field additions,
at the expense of increasing the storage requirements by a factor of 1.5.

Template attacks. We comment that for hardware implementations this type
of precomputation reduces the information exposed to template attacks trying
to link multiple uses of the same precomputed point.

Consider, for example, an attacker monitoring the power consumption of a
device with very limited memory. Assume that the device designer has reduced
the table described above to just B, 2B, . . . , 8B at the expense of many dou-
blings, and has saved more memory by storing a table entry as simply (x0, y0).
The addition formulas then begin by computing y0−x0, y0+x0, etc. If the same
table entry is used again later then the same subtraction, addition, etc. will be
performed again, resulting in exactly the same power trace. The attacker can
therefore partition the loaded points into (at most) 16 different groups, obtaining
55 bits of information on average, as discussed in [31, Section 5.1.2].

Precomputing y0 − x0, y0 + x0, etc. guarantees (for these addition formulas)
that all operations involving the precomputed point also involve the intermediate
point, which varies unpredictably between different uses of the same table entry.
A closer look at field arithmetic sometimes reveals lower-level operations that
depend on only one input, such as the preliminary additions in Karatsuba’s
method; the results of those operations can be similarly precomputed.

Of course, there is much more to say about countermeasures to hardware side-
channel attacks; we do not claim that any single countermeasure is adequate by
itself. The software situation is simpler, since the side channels exposed to an
attacker are much more limited.

Results. Overall we spend a bit less than 1000 cycles for each iteration of our
main signing loop, i.e., for one table lookup and one elliptic-curve mixed addition.
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We also spend about 21000 cycles to invert Z at the end of the computation.
The complete signing procedure for a short message takes 87548 cycles.

5 Verifying signatures

Fast signature verification seems considerably more difficult than fast signa-
ture generation, for two reasons. First, the verifier has to recover the elliptic-
curve points A and R from the compressed points A and R. Second, checking
SB = R +H(R,A,M)A seems to require not merely a fixed-base scalar multi-
plication SB but also a much more expensive variable-base scalar multiplication
H(R,A,M)A. This section explains several techniques that we use to address
these problems.

Fast decompression. Recall that the encoding R of a point R = (x, y) contains
a straightforward encoding of y but contains only a sign bit for x. One must
therefore recover x via the equation x = ±

√

(y2 − 1)/(dy2 + 1); note that dy2+
1 6= 0 since −d is not a square. The division and square root here seem to involve
two exponentiations, about twice as expensive as the usual Weierstrass-curve
decompression.

Of course, we could use Montgomery’s trick to merge the two divisions in-
volved in decompressing two points, but two square roots and a division are still
more expensive than two Weierstrass-curve decompressions. We could also skip
the compression and decompression for applications willing to use 64-byte keys
and 96-byte signatures; but we think that 32-byte keys and 64-byte signatures
are considerably more attractive.

To save time we look more closely at the standard computation of square roots
in Fq. The prime q = 2255−19 is congruent to 5 modulo 8, so any square α ∈ Fq

satisfies α2 = β4 where β = α(q+3)/8, i.e., ±α = β2. The standard computation
is a single exponentiation to compute β, followed by a quick multiplication of β
by

√
−1 if β2 = −α.

In the decompression context we are given α as a fraction u/v, where u = y2−1
and v = dy2+1. Instead of computing α we merge the division with the square-
root computation:

β = (u/v)(q+3)/8 = u(q+3)/8vq−1−(q+3)/8 = u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

We check whether β2 = −α by checking whether vβ2 = −u, and if so we multiply
β by

√
−1. The entire computation of

√

u/v, starting from u and v, takes just a
few multiplications more than a single exponentiation. In other words, Edwards-
curve decompression is as inexpensive as Weierstrass-curve decompression.

Fast single-signature verification. To verify a single signature we use stan-
dard techniques for double-scalar multiplication to compute SB−H(R,A,M)A,
and we then check whether the result is the same as R. (We actually check
whether the encoding of the result is the same as the encoding of R, so that we
can skip decompression of R.) The speed of Edwards-curve addition, especially
with the −1 twist, makes these techniques particularly efficient; using the tables
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discussed in Section 4 does not seem to offer any advantage. This computation
fits in very little space.

We have also considered the verification method suggested by Antipa, Brown,
Gallant, Lambert, Struik, and Vanstone in [7], but our very efficient elliptic-
curve arithmetic makes the overheads in this method—extra decompression
and a Euclidean computation—much more troublesome. In the batch context
discussed below, the only extra overhead of the method of [7] would be the
Euclidean computation, but the benefit would also be much smaller.

Fast batch verification. For any system bottlenecked by signature verification,
the problem is not to verify one signature at a time, but to verify many signatures
as quickly as possible.

Naccache, M’Räıhi, Vaudenay, and Raphaeli in [58, Section 2.2] proposed
verifying a batch of linear signature equations by verifying a random linear com-
bination of the equations. This proposal is not directly applicable to ElGamal,
DSA, Schnorr, ECDSA, etc., because all of those systems require computing lin-
ear functions (to compute R) rather than merely verifying linear functions; but
if R is transmitted instead of H(· · · ), as suggested in [58], then this problem
disappears.

Unfortunately, the verification algorithm in [58] was quite slow: [58, Table
1] reported “29n” multiplications to verify n signatures from the same signer
at a highly questionable 220 security level. If the same technique were adapted
to ECDSA and increased to a 2128 security level then it would require nearly
200 elliptic-curve additions for each signature from the same signer— somewhat
faster than verifying each signature separately, but not much.

The followup paper [10] by Bellare, Garay, and Rabin proposed a more com-
plicated verification technique using, e.g., 3200 multiplications to verify 100 ex-
ponentiations, or 6480 multiplications to verify 100 DSA signatures, in both
cases at a substandard 260 security level. See [10, Appendix A.1]. The number
of multiplications per signature begins to drop as the batch size grows towards
1000—see [10, Figure 3]—but such large batches do not fit into cache on typical
CPUs.

The unimpressive theoretical performance of these batch-verification tech-
niques can be traced directly to the naive exponentiation algorithms used in
[58] and [10]. We do much better by using random linear combinations, as in
[58], together with state-of-the-art scalar-multiplication techniques.

Specifically, we start from a batch of (Mi, Ai, Ri, Si) where (Ri, Si) is an
alleged signature of Mi under key Ai. We choose independent uniform random
128-bit integers zi, compute Hi = H(Ri, Ai,Mi), and verify the equation

(

−
∑

i

ziSi mod ℓ

)

B +
∑

i

ziRi +
∑

i

(ziHi mod ℓ)Ai = 0

by a multi-scalar multiplication. There are two reasonable choices of scalar-
multiplication methods here, namely Pippenger’s method in [64] and the Bos–
Coster method reported in [27, Section 4]. We use the Bos–Coster method be-
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cause it fits into less storage; see below for details. Note that zi is not secret, so
side-channel protection is not required.

The number of scalars here is 2n + 1. Half of the scalars are 253-bit and
half are 128-bit. If public keys appear repeatedly, the situation considered in
[58] and [10], then we could save some time by merging the 253-bit scalars;
this merging also explains why we do not use the similar signature equation
SB = A +H(R,A,M)R, which would allow only merging 128-bit scalars. Our
software focuses on general-purpose verification with arbitrary keys.

If verification succeeds then we are confident that 8SiB = 8Ri + 8HiAi for
each i, i.e., that each signature is valid. The logic is simple: the differences
Pi = 8Ri + 8HiAi − 8SiB are elements of a cyclic group of prime order ℓ, and
have been verified to satisfy

∑

i ziPi = 0; but this equation cannot hold with
probability more than 2−128 unless all Pi = 0. For example, if P4 is nonzero then
the choices of z1, z2, z3, z5, z6, . . . determine exactly one choice of z4 satisfying
∑

i ziPi = 0, and z4 has chance at most 2−128 of matching that choice.
If verification fails then there must be at least one invalid signature. We then

fall back to verifying each signature separately. There are several techniques to
identify a small number of invalid signatures in a batch, but all known techniques
become slower than separate verification as the number of invalid signatures
increases; separate verification provides the best defense against denial-of-service
attacks.

Fast multi-scalar multiplication. The Bos–Coster method mentioned above
is as follows: to compute n1P1+n2P2+ · · · , where n1 ≥ n2 ≥ · · · , we recursively
compute (n1 − n2)P1 + n2(P1 + P2) + · · · . For n1 much larger than n2, say
2k+1n2 > n1 ≥ 2kn2, we could gain speed by instead recursively computing
(n1 − 2kn2)P1 + n2(2

kP1 + P2) + · · · , but we have found this to occur so rarely
that checking for it is not worthwhile.

We keep the scalars ni in a heap so that identifying the two largest scalars is
easy. The usual method to replace the root of a heap is top-down, starting at the
root and swapping down for a variable number of steps. We instead use Floyd’s
1964 bottom-up algorithm discussed in [48, Exercise 5.2.3–18] (often miscredited
to [25] and [78]): start at the root, swap down to the bottom, and then swap
up for a variable number of steps. This has the advantage of somewhat reducing
the number of comparisons, and the not-so-well-known advantage of drastically
reducing the number of branches, especially for balanced heaps.

Results. The complete verification procedure takes under 134000 cycles per sig-
nature for batch size 64. Our batch-verification software is included in, although
not yet benchmarked by, the public eBATS benchmarking framework.

Doubling the batch size to 128 no longer fits into L1 cache but still improves
performance on our target CPU, taking under 125000 cycles per signature.
Larger batches take under 114000 cycles per signature while still fitting into
L2 cache. Our software spends about 44000 cycles on decompression, so verifi-
cation of uncompressed signatures (32 extra bytes) using uncompressed public
keys (another 32 extra bytes) would take only about 81000 cycles for batch size
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128, even faster than signing. However, in this paper we have emphasized the
performance that we obtain without using so much space.
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