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Abstract— This paper presents new methods to control high-
speed running in a simulated humanoid robot at speeds of
up to 6.5 m/s. We present methods to generate compliant
target CoM dynamics through the use of a 3D spring-loaded
inverted pendulum (SLIP) template model. A nonlinear least-
squares optimizer is used to find periodic trajectories of
the 3D-SLIP offline, while a local deadbeat SLIP controller
provides reference CoM dynamics online at real-time rates
to correct for tracking errors and disturbances. The local
deadbeat controller employs common foot placement strategies
that are automatically generated by a local analysis of the 3D-
SLIP apex return map. A task-space controller is then applied
online to select whole-body joint torques which embed these
target dynamics into the humanoid. Despite the body of work
on the 2D and 3D-SLIP models, to the best of the authors’
knowledge, this is the first time that a SLIP model has been
embedded into a whole-body humanoid model. When running
at 3.5 m/s, the controller is shown to reject lateral disturbances
of 40 N·s applied at the waist. A final demonstration shows the
capability of the controller to stabilize running at 6.5 m/s, which
is comparable with the speed of an Olympian in the 5000 meter
run.

I. INTRODUCTION

The Spring-Loaded Inverted Pendulum (SLIP) model has

been shown to describe the center of mass (CoM) dynamics

remarkably well for high-speed locomotion in a variety

of insects and animals [1]. Despite its simplicity, whether

hopping, trotting, or running, creatures from cockroaches

to kangaroos bounce dynamically, in close accordance with

the SLIP model [1]. As opposed to low-speed locomotion,

where animals typically vault over stiff legs, high-speed gaits

employ compliant CoM dynamics. In biological systems,

this compliance is shown to play a role in adapting to varied

terrain [2], and enables a reduced metabolic cost over stiff

gaits at high-speeds [3].

These advantages, afforded by elasticity found in biologi-

cal muscles and tendons, have inspired increased interest to

develop high-performance compliant actuators [4]. Despite

these advances, control of humanoid running remains a

sparsely studied problem, with solution methods largely

adapted from inverted pendulum methods for walking [5],

[6]. Other methods have required intensive hand design [7]

or offline optimization [8] and have not shown robustness

to disturbances. In contrast to these methods, this paper

develops control approaches for high-speed running in a

humanoid based on a 3D-SLIP model. To the best of the

authors’ knowledge, this represents the first time that a SLIP
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Fig. 1. High-speed humanoid running is demonstrated in simulation by
commanding the Center of Mass (CoM) dynamics of the humanoid to
match that of a 3D-SLIP model. The red spring in this figure represents
the compliant target CoM behavior. The humanoid employs torque control
at its joints to embed the 3D-SLIP dynamics.

model has been used to generate whole-body humanoid

motion. By matching the CoM dynamics of a humanoid

model, shown in Fig. 1, to a 3D-SLIP model, the control

approach described here is able to demonstrate running in

simulation at speeds from 3.5-6.5 m/s, is able to reject push

disturbances, and to change speeds in a single step.

Two-dimensional SLIP models have been quite useful in

the control and analysis of hopping monopods and bipeds

in the sagittal plane. Poulakakis and Grizzle formally embed

an extension of the 2D-SLIP model into the dynamics of a

hopping monopod [9] with a geometric nonlinear control

approach. Hutter et al. [10] studied a SLIP model with an

operational-space controller for CoM tracking to regulate

hop height and velocity in a simulated leg. Rutschmann

et al. [11] applied nonlinear model predictive control to

plan SLIP trajectories for uneven terrain footholds. Garofalo

et al. [12] developed a 2D-walking controller based on a

bipedal SLIP model. While humanoid running is largely

dominated by sagittal plane dynamics, these controllers do

not have the generality to control lateral sway in humanoid

running, and do not provide insight into lateral footstep

selection for disturbances. These cases are automatically

handled here.

Three-dimensional SLIP models have recently been pro-

posed as a generalization of planar SLIP models. While

these 3D-SLIP models have been the subject of analytical

studies [13], [14], their application to trajectory generation

and control of humanoid robots has yet to emerge. Seipel

and Holmes develop approximations to the 3D-SLIP step-to-
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Fig. 2. Block diagram of the control system. Once per step (at each liftoff)
a 3D-SLIP controller selects touchdown angles and target CoM compliance
characteristics to achieve a desired speed by the end of the next step. A
humanoid state machine then selects appropriate task dynamics for the foot
and CoM to continuously track the SLIP CoM dynamics and realize the
desired foot touchdown locations. The state machine also selects desired
angular momentum rates in stance to promote balance. A Humanoid Task-
Space Controller then selects whole-body joint torques at real-time rates to
realize these desired tasks.

step dynamics and show the inherent instability of periodic

3D-SLIP gaits [13]. Carver [14] treats the 3D-SLIP model

as a monopod in 3D and analyzes a number of control

problems for 3D steering. While modifications are required

for application to humanoids, the work in [14] serves as

inspiration for the 3D-SLIP control presented here.

The block diagram of the control system used in this paper

is shown in Fig. 2. The control includes a discrete component

that selects touchdown angles at each liftoff and provides

target CoM dynamics based on the 3D-SLIP after the next

foot touchdown. A continuous component, provided by a

state machine and task-space controller, is then capable to

reproduce these target dynamics through torque control of

the humanoid robot.

The remainder of the paper is organized as follows.

Section II presents the 3D-SLIP model and its associated

control system. A new method is presented which produces

periodic 3D-SLIP trajectories that are able to be retargeted to

the humanoid. Periodic trajectories are found through formu-

lation of a nonlinear least-squares optimization problem and

natural gait timings are specified from biomechanics data.

A local deadbeat control approach is introduced to stabilize

these trajectories. The controller is specified automatically,

without required tuning, from a local analysis of 3D-SLIP

step-to-step dynamics. Section III presents methods to track

these target CoM dynamics with a Task-Space Control

approach similar to [15]. As a key feature, the controller

applies angular momentum control which enables upper

body motions that reduce the required yaw moment for the

motion. Section IV presents running results for single-speed

running, speed transitions, and disturbance recovery. A top

speed of 6.5 m/s is able to be controlled by the approach

presented. Section V ends with conclusions and suggestions

for further study. A video of the running results is provided

in an attachment to this paper.
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Fig. 3. 3D-SLIP template model for high-speed humanoid running. The
3D-SLIP is a nominally passive point-mass model of locomotion.

II. 3D-SLIP MODEL AND CONTROL

A. The 3D Spring-Loaded Inverted Pendulum Model

Planar spring-mass models of locomotion have been ex-

tensively studied in recent decades to describe the center-

of-mass (CoM) dynamics of a wide range of animals [1].

The 3D spring-loaded inverted pendulum (3D-SLIP) model,

shown in Fig. 3, is a natural generalization of the common

planar SLIP model, and is capable to describe a richer set

of CoM dynamics [13]. The model consists of a point-mass

m and leg that experiences phases of stance and flight.

The mass follows ballistic dynamics in flight wherein the

massless leg is positioned for upcoming stance. Following

touchdown (TD), a Hookean spring with constant ks and

rest length ℓ0 imparts forces onto the mass. The period

of stance ends at liftoff (LO) when the spring once again

reaches its rest length. It is assumed that forward motion is

in the positive x-direction throughout, as shown in Fig. 3.

The evolution of the 3D-SLIP model can be described

more precisely as a hybrid dynamic system. We assume the

position of the mass to be given in inertial coordinates as

ps ∈ R
3 with velocity ṗs ∈ R

3. Flight dynamics follow

m p̈s = m g, where g ∈ R
3 is the gravity vector. In flight,

the foot position pf ∈ R
3 is adjusted for the upcoming

stance with touchdown angles θ and φ, shown in Fig. 4, as

pf = ps + phip + ℓh





sin(θ) cos(φ)
− sin(θ) sin(φ)

− cos(θ)



 . (1)

Here ℓh represents the length of the humanoid virtual leg

(hip to foot center) at touchdown, and phip is the position

of the hip with respect to the CoM. As an alternative to

using touchdown angles θ and φ to specify the SLIP anchor

relative to the CoM, a hip offset is applied so that these

touchdown angles more closely correspond to angles of the

humanoid virtual leg. This is a modification over previous

work [13], [14] that enables more direct application of the

3D-SLIP template to the humanoid. Here it is assumed that

the hip is offset from the CoM laterally by amount yhip
which nominally equals half the width of the torso.

In stance, the dynamics follow

m p̈s = ks(ℓ0 − ||ℓ||) ℓ̂+m g (2)

where ℓ0 is the rest length of the spring (computed as its

length at touchdown) and ℓ ∈ R
3 is given by ℓ = ps − pf .
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Fig. 4. Touchdown angle definitions. Hip displacement is shown for a
right foot touchdown.

Transitions to and from stance occur when the 3D-SLIP state

intersects the TD and LO switching manifolds respectively:

STD = {(ps, ṗs) | e
T
z ps = ℓh cos(θ), e

T
z ṗs ≤ 0}, (3)

SLO =
{

(ps, ṗs) | ||ℓ|| = ℓ0, ℓ
T ṗs ≥ 0

}

. (4)

B. 3D-SLIP Apex Return Map

We are interested in controlling the 3D-SLIP model from

step-to-step by varying its touchdown angles and spring

characteristics. As one of several approaches, this paper

concentrates on control of the top-of-flight (TOF) height and

velocity. An apex state-of-interest x is thus constructed from

the full SLIP state (ps, ṗs) by:

x =







eTz ps

eTx ṗs

eTy ṗs






=







h

vx

vy






(5)

where ex, ey , and ez are the unit vectors shown in Fig. 3.

Given touchdown angles and spring characteristics described

by un for the n-th step, an apex return map can be formed:

xn+1 = f(xn,un) (6)

which maps the TOF state xn to the subsequent TOF state.

Since the 3D-SLIP is a passive model, active additions need

to be considered to enable the 3D-SLIP to change speeds

or to recover from disturbances. Here, it is assumed that

the spring stiffness ks can vary at the instant of maximum

spring compression. Denoting these control variables before

and after maximum compression as ks1 and ks2 , the control

decisions u for each step are collected as

u = [θ, φ, ks1 , ks2 ]
T . (7)

Given a desired forward speed, Section II-C introduces

a method to find an initial apex state x0 and control

u0 that will lead to periodic 3D-SLIP dynamics. Since it

is of interest to find 2-step periodic motions of the 3D-

SLIP, search for 1-step motions is restricted to those with

alternating lateral velocity, but constant height and forward

velocity at each TOF. One-step motions are thus desired with

Ax0 = f(x0,u0) . (8)

where A = diag(1, 1,−1). Section II-D then presents a

method to stabilize these periodic trajectories by developing

3D-SLIP controllers for different speeds.

C. Finding Periodic 3D-SLIP Trajectories

For any given forward speed, the 3D-SLIP model exhibits

an infinite number of periodic trajectories. For instance,

by adjusting touchdown angles and leg stiffnesses, periodic

gaits can be generated with different maximum heights, or

different lateral sway characteristics. A method is introduced

here which uses offline optimization to find periodic 3D-

SLIP trajectories that approximately mimic human locomo-

tion and are able to be retargeted to the humanoid model.

Human running data in [16] and [17] is used to specify tar-

get gait timings of the 3D-SLIP model. Studies have shown

that human cadence c (steps per minute) increases [16] and

stance time ts decreases [17] with increased speed. Based

on the data in these studies, the following relationships were

determined:

c = 2.55v2x − 8.77vx + 172.9 (9)

log10(ts) = −0.64 log10(vx)− 0.2 . (10)

To provide additional time for leg positioning in flight,

cadence was unmodified while target stance times were

shortened to be governed by the following equation:

ts = 10−0.2 v−0.82
x . (11)

These relationships can be used to determine desired TD

and LO times T d(vx) = [tTD,d, tLO,d]
T as a function

of forward velocity. Given a TOF-state and control pair,

dynamic simulation can be used to evaluate the actual TD

and LO times. This evaluation is denoted by the mapping g:

[tTD, tLO]
T = g(xn,un) . (12)

Given a desired forward TOF velocity vx, a least-squares

optimization problem can then be formulated to find a state-

control pair which matches the periodicity constraint (8) and

achieves the desired gait timings:

min
h0,vy0,ks,θ

||Ax0 − f(x0,u0)||
2

+ ||T d(vx)− g(x0,u0)||
2 (13)

where x0 = [h0, vx, vy0]
T (14)

u0 = [θ, 0, ks, ks]
T . (15)

Note that a touchdown angle of φ = 0 has been fixed to

ensure a gait with footstep locations directly in front of the

hips. Additionally, the spring stiffnesses ks1 and ks2 are

selected to be equal, since any change in stiffness would

change the 3D-SLIP total energy and prevent satisfaction

of (8). This optimization, was performed in MATLAB with

the nonlinear least-squares function lsqnonlin. Despite

the need to use dynamic simulation in the evaluation of f

and g, the optimization is solved quickly in MATLAB. For

instance, it takes approximately 20 seconds to generate 31

periodic 3D-SLIP gaits for forward speeds of 3.5 m/s to

6.5 m/s (at 0.1 m/s increments). Over this range of speeds,

the optimal state-control pairs (x∗

0,u
∗

0) exhibit velocity-

dependent touchdown angles and leg stiffnesses which in-

crease with speed from 23.1 to 26.5 degrees and 11.7 to



16.4 kN/m respectively. The optimized TOF heights decrease

only slightly with speed, from 91.0 cm at 3.5 m/s to 88.0 cm

at 6.5 m/s.

D. 3D-SLIP Control - Transitioning to Periodic Motion

Once periodic 3D-SLIP motions have been generated,

a 3D-SLIP controller is desired to transition from nearby

TOF states to a periodic trajectory. Deadbeat control laws

can be developed to achieve this goal in a single step but

often require online optimization [10] or large knowledge

bases [14]. Here a first-order approximation to a deadbeat

controller is developed around the periodic apex state. The

control law is easy to compute offline and can be applied

online for real-time control of a humanoid.

Let (x∗

0,u
∗

0) be a state-control pair which satisfies (8) as

computed in the previous section. A first order approxima-

tion to the return map around (x∗

0,u
∗

0) provides:

x1 = f(x∗

0 +∆x,u∗

0 +∆u) (16)

≈ Ax
∗

0 + Jx ∆x+ Ju ∆u (17)

where Jx = ∂f/∂x and Ju = ∂f/∂u are Jacobians of

the return map evaluated at (x∗

0,u
∗

0). These Jacobians can

be evaluated numerically with finite differences. For a given

TOF error ∆x, the control objective of driving x1 to Ax
∗

0

can be achieved approximately by selecting ∆u such that:

Ju ∆u = −Jx ∆x . (18)

Numerical experiments have shown Ju ∈ R
3×4 to be full

rank, which provides redundancy to meet condition (18). To

account for this redundancy, the change in spring constant

∆ks1 is chosen to be opposite that of ∆ks2 . Under this

additional constraint, given a ∆x, there is a unique solution

for ∆u in (18), with the resulting control law given as:

u0 = u
∗

0 +K(x0 − x
∗

0). (19)

Similar to arguments in [14], the implicit function theo-

rem can be applied to show that (19) is in fact a first-

order approximation to a deadbeat controller that employs

∆ks1 = −∆ks2 . The value of K to stabilize periodic run-

ning at 3.5 m/s is shown in (20) and displays many expected

relationships. For instance, the second column shows which

control actions should be taken if the system needs to change

forward speed. A positive ∆vx indicates that the system is

moving too fast, which requires a larger touchdown angle θ
and removal of spring energy ∆ks2 < 0 to correct the error.

Similar expected relationships mainly modify φ to correct

for lateral velocity error. Note that these gains are not tuned,

but rather are provided automatically from solution of (18).








∆θ
∆φ
∆ks1
∆ks2









=









−0.51 0.13 0.013
−1.95 −0.076 −0.900
36.9 13.2 −0.86
−36.9 −13.2 0.86













∆h
∆vx
∆vy



 (20)

Here all angles are measured in radians, distances are

measured in meters, and spring constants have units kN/m.

Separate feedback matrices K are computed for each of the

31 periodic 3D-SLIP state-control pairs (x∗

0,u
∗

0), generated

in Sec II-C, for speeds from 3.5-6.5 m/s.
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Fig. 5. State machine used for running control. State transition criteria are
noted on the transition arrows. Local SLIP deadbeat control occurs at each
liftoff to select touchdown angles and target CoM compliance characteristics
for the upcoming step.

III. HUMANOID MODEL AND CONTROL

A. Humanoid Model

The humanoid model used in this work, shown in Fig. 1,

is a 26 degree of freedom (DoF) model, with 20 actuated

DoFs. It is modeled after a 6 foot, 160 pound male. The

mass distribution to each segment is modeled after a 50-th

percentile male, with further details on the relative dimen-

sions and weight distribution provided in [15]. See [15] for

a description of the 3D dynamic simulation environment

used here. The configuration of the system can be described

by q = [ qT
b qT

a ]T , where qb ∈ SE(3) is the unactuated

position and orientation of the torso (referred to as the float-

ing base) and qa denotes the configuration of the actuated

joints. The joint rate and acceleration vectors, q̇ ∈ R
26 and

q̈ ∈ R
26, are partitioned similarly. The standard dynamic

equations of motion are:

H(q)q̈ +C(q, q̇)q̇ +G(q) = ST
a τ + Js(q)

TF s (21)

where H , Cq̇ , and G are the familiar mass matrix, velocity

product terms, and gravitational terms, respectively. Here

F s collects ground reaction forces (GRFs) for appendages

in support, and Js is a combined support Jacobian. The

matrix Sa = [020×6 120×20 ] is a selection matrix for the

actuated joints and τ ∈ R
20 is the joint torque vector.

The control approach detailed in the following subsections

embeds the 3D-SLIP dynamics into the full dynamics (21) of

the humanoid through the use of task-space control. A state

machine is used to control the phasing of leg trajectories

synchronously with the 3D-SLIP template behavior.

B. State Machine and Commanded Task Dynamics

A running state machine, shown in Fig. 5, is used to to

sequence the humanoid through phases of stance and flight.

The state machine is assumed to have access to the system

state (q, q̇) in order to formulate desired task dynamics for

the feet and CoM to track the 3D-SLIP template behavior.

In addition, centroidal angular momentum control is applied

in stance due to its postulated role in the maintenance of

balance [18], and a pose controller is applied to enable the

specification of a desired system configuration. The com-

manded task dynamics are similar to our previous application
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Fig. 6. Right foot trajectory relative to the CoM for running at 3.5 m/s.

of task-space control for a dynamic kick and jump [15].

The task-space controller, described in Section III-C, weighs

the commanded task dynamics, which are often in conflict

with one another, to select appropriate whole-body joint

torques based on task importance through the use of convex

optimization.

A foot controller operates in all states to command angular

and linear foot accelerations, ω̇c and p̈c, for foot trajectory

tracking. For stance feet, this command is set to zero. When

the foot is in the air, these rates are selected based on a

position/orientation PD scheme [15] with the position PD

occurring relative to the CoM:

ω̇c = ω̇d +KD,ω(ωd − ω) +KP,ωeθ (22)

p̈c = p̈d +KD,p(ṗd − ṗ) +KP,p(pd − p) . (23)

Here eθ ∈ R
3 is an angle-axis representation of error

between a desired and actual orientation.

A simple concatenation of three cubic spline trajectories

relative to the CoM is used to provide (pd, ṗd, p̈d). A sample

flight foot trajectory relative to the CoM is shown in Fig. 6.

These three cubic splines serve to lift, transfer, and plant

the foot. Transfer and touchdown targets are adjusted online

based on the SLIP template touchdown angles. Estimated

stance and flight times from the SLIP model are used to

set the timing of these trajectories. Desired orientations for

each foot follow cubic splines on the pitch angle of the foot.

Foot pitch angle waypoints are manually specified and do not

vary with speed. We note that the foot trajectories end with

zero velocity relative to the CoM, which induces losses at

impact. Early leg retraction [19] could be added to improve

touchdown in future work.

A Centroidal Momentum [18] controller operates in the

stance states and commands rates of change in system linear

and angular momentum to track the 3D-SLIP trajectories

and promote balance. A rate of change in total system

linear momentum l̇G is commanded from PD control of the

humanoid CoM (G) to the 3D-SLIP model:

l̇G,c = m[p̈s +KD,ℓ(ṗs − ṗG)

+KP,ℓ(ps − pG)] (24)

where pG is the CoM position and m is the total mass of

the system. At each LO, the state of the 3D-SLIP template

is reset to coincide with that of the humanoid. The apex

state x is predicted, and the 3D-SLIP control law (19) is

applied. This control provides target touchdown angles for

the upcoming stance to realize a desired speed. The 3D-SLIP

model is integrated forward by the state machine in software

to provide continuous target dynamics to the humanoid.

The commanded rate of change in centroidal angular

momentum k̇G,c takes a simpler form:

k̇G,c = −KD,kkG . (25)

This law provides a dampening of any excess angular

momentum. While the roll and yaw angular momentum are

well regulated near zero in human running [20], the pitch

angular momentum is not due to leg cycling. With this in

mind, pitch angular momentum is ignored by the task-space

controller that processes this command.

To achieve pose control, joint accelerations are com-

manded for actuated joints and the torso orientation. For

all examples, this command takes the form of a PD law to a

desired pose. For all joints except the shoulder, the desired

pose is fixed and has zero rate. For revolute joints:

q̈i,c = q̈i,d +KD,i(q̇i,d − q̇i) +KP,i(qi,d − qi), (26)

where q̇i,d = q̈i,d = 0 in all the examples here. For spherical

joints and torso orientation, the law (22) is employed.

Desired shoulder pitch angles and rates are commanded pro-

portional to those of the opposite virtual leg. This promotes

a swinging of the arm in phase with the opposite leg. This

angular momentum canceling motion is further modified by

the task-space controller which attempts to regulate the yaw

angular momentum to zero.

C. Prioritized Task-Space Control

The prioritized task-space control (PTSC) approach pre-

sented in [15] is used to select system torques τ to track the

commanded task dynamics. Basically, the approach in [15]

produces joint torques τ , contact forces F s, and joint ac-

celerations q̈ that are consistent with the dynamic equations

of motion in order track the commanded task dynamics:

min
q̈,τ ,F s

1

2
||At q̈ + Ȧt q̇ − ṙt,c||

2 (27)

subject to H q̈ +C q̇ +G = ST
a τ + Js(q)

TF s (28)

F s ∈ C (29)

Here ṙt,c collects all the commanded task dynamics, while

At can be viewed as a task Jacobian [15]. The ground reac-

tion force constraint (29) collects unidirectional and friction

constraints, with further details in [15]. This optimization

can be run multiple times if a strict task hierarchy exists.

For all running results, the foot positions and orientations

are set as a first priority, with all other tasks as a secondary

priority. Task weightings can be incorporated into the error

norm (27) to encourage better tracking of certain tasks.

Here, arm task weightings are reduced to provide upper-body

motion freedom to the task-space controller. Task weightings

and gains are summarized in Table I, with further details on

the construction of ṙt,c provided in [15]. Precise tuning of

these values is not required to produce stable running, but

does affect the nuances of the motion due to task trade-

offs. The task-space control optimization problem (27)-(29)

is able to be solved at real-time rates of 200 Hz [15].



Task Weight KP (s−2)

CoM 25 150

Angular Momentum (20,4,20) KD = 25 s−1

Torso Orientation (17.5, 70, 14) 440
Hip 0.1 120
Knee 0.5 120
Ankle 0.1 120
Shoulder 17 280
Elbow 20 240
Foot Position & Orientation 1 50

TABLE I

WEIGHT AND GAIN SETTINGS FOR THE PTSC. WHERE OMITTED, ALL

DERIVATIVE GAINS ARE SET FOR CRITICAL DAMPING.

IV. RESULTS

The use of a high-level 3D-SLIP controller coupled with

a lower-level task-space controller is shown to enable high-

speed humanoid running that is able to change speeds and

recover from disturbances. This section presents running

results at a fixed speed and then demonstrates the tracking

capabilities of the controller. The same commanded task

gains, task-space weightings, and task-space priorities are

employed across all results.

A. Steady-State Fixed-Speed Running

The capabilities of the controller are shown for running at

a commanded speed of 3.5 m/s. For a video of the running

motion, please see the attachment to this paper, or view it

at the link below.

http://www.go.osu.edu/Wensing_Orin_IROS2013

The CoM velocity tracking of the task-space controller is

shown in Fig. 7. Despite the impact at TD, the controller

is able to provide tracking of the CoM velocity to that of

the SLIP model in all directions. This impulse, not captured

in the 3D-SLIP model, represents a disturbance that is

effectively handled by the PTSC. Note that the CoM tracking

is not given explicit priority over other commanded task

dynamics such as torso orientation or angular momentum.

Although explicit CoM prioritization does lead to better

tracking results for the CoM, it was found that the system

is more robust to disturbances when CoM tracking is not

prioritized. Still, the error in TOF forward velocity is ap-

proximately 2% for the results in the graph shown.

The angular momentum control applied has advantages to

prevent the feet from slipping due to excess required yaw

moments. Figure 8 shows the contribution of the upper and

lower body to the overall centroidal yaw angular momentum.

The task-space controller results in upper-body motions that

cancel the majority of the yaw angular momentum of the

lower body. This role of the arms in the regulation of yaw

angular momentum is a characteristic that is observed in

human running [20]. Note that the derivative (slope) of the

total yaw angular momentum curve is equal to the generated

yaw moment at the foot. The application of yaw momentum

control coupled with the arm swing heuristic has effectively

decreased the required yaw moment at the feet during stance.
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Fig. 7. CoM velocity tracking for running at a desired speed of 3.5 m/s. The
velocities in the forward (x) and vertical (z) directions are 1-step periodic,
while the lateral velocity (y) is 2-step periodic.
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Fig. 8. Yaw angular momentum about the CoM as contributed by the legs
and the upper body. The combination of a simple target arm motion and
centroidal angular momentum control cause the upper body to cancel the
majority of the yaw angular momentum generated by leg cycling.

B. Running Transitions and Push Disturbances

The 3D-SLIP controller provides the task-space controller

with reference CoM dynamics to change speeds and recover

from push disturbances. Fig. 9 shows the tracking of a

commanded forward velocity profile. We note that for each

commanded speed, a periodic 3D-SLIP solution (13) and

a 3D-SLIP control law (19) have been computed offline.

This amounts to storing a small amount of information,

(x0,u0,K), for each desired speed. The controller is able

to accelerate at up to 0.2 m/s per step and decelerate at up

to 0.4 m/s per step. The controller is unable to accelerate

faster, as the approximate deadbeat controller does not take

into account constraints on the touchdown angle which are

required to limit the minimum touchdown angle θ based
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Fig. 9. Tracking of a commanded forward velocity profile. Local deadbeat
control of the 3D-SLIP model provides foot placement and target CoM
dynamics to enable velocity transitions.



on the TOF height. Once again, the CoM is not explicitly

prioritized, which prevents perfect tracking at TOF but

improves robustness to disturbances.

Figure 10 shows the response of the system to a series

of lateral disturbances. Pushes are either 1000 N or 750 N

and are applied for 40 ms. The system is able to maintain

balance when the same pushes are applied in the sagittal

plane as well. Lateral push recovery is detailed here, as its

out-of-plane dynamics are a new complexity that is managed

by the 3D-SLIP controller. All pushes occur during stance.

For instance, the first push occurs during a right foot stance

immediately before liftoff. The 3D-SLIP controller picks

touchdown angles that modify the left foot touchdown to

reject this additional y velocity. A push to the left can also

be rejected with the left foot is in stance, by taking a cross

step with the right foot. This is shown in the next series

of 3 disturbances (each 30 N·s) that occur in succession.

The final two 40 N·s pushes occur earlier in stance, and can

be partially rejected by the CoM controller in stance. These

require less extreme recovery footsteps, but result in different

torso dynamics, as shown in the video attachment. Although

steady-state running is largely dominated by sagittal plane

dynamics, these out-of-plane disturbance recovery results are

unable to be described by planar SLIP models. This result

showcases a major advantage of applying the 3D-SLIP.
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Fig. 10. Footstep selection for lateral disturbance rejection. Shown are
the actual touchdown locations of the humanoid foot. Target footsteps are
selected from local deadbeat control of the 3D-SLIP model.

V. CONCLUSION

This paper has presented a control approach for high-

speed running in a simulated humanoid robot. Local dead-

beat control applied to a 3D-SLIP template model provides

appropriate dynamics online for the system to change speeds

and recover from large disturbances. While the local dead-

beat control is only approximate, the simple form of the con-

trol law enables use online. When coupled with a task-space

controller that operates at real-time rates, these corrective

reference CoM dynamics are accurately reproduced by the

simulated humanoid. To the best of the authors’ knowledge,

these results represent the first application of the 3D-SLIP

model to the control of a whole-body humanoid system.

These positive results encourage the use of low-complexity

template models to control and study balance for other

high-speed movements. As parallel advances continue to

develop improved inertial sensing technologies and increased

torque/speed capacity actuators, these dynamic behaviors

may soon be within reach for humanoid robots.
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