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Abstract

We propose a novel dual-camera design to acquire 4D

high-speed hyperspectral (HSHS) videos with high spatial

and spectral resolution. Our work has two key technical

contributions. First, we build a dual-camera system that

simultaneously captures a panchromatic video at a high

frame rate and a hyperspectral video at a low frame rate,

which jointly provide reliable projections for the underly-

ing HSHS video. Second, we exploit the panchromatic video

to learn an over-complete 3D dictionary to represent each

band-wise video sparsely, and a robust computational re-

construction is then employed to recover the HSHS video

based on the joint videos and the self-learned dictionary.

Experimental results demonstrate that, for the first time to

our knowledge, the hyperspectral video frame rate reaches

up to 100fps with decent quality, even when the incident

light is not strong.

1. Introduction

Hyperspectral imaging, which collects and processes

scene information by dividing the whole spectrum into tens

or hundreds of bands, has gained increasing attention from

both academic and industrial communities. Thanks to its

capability for detailed scene representation, this technique

has been widely adopted in many fields, including medical

diagnosis, health care, remote sensing, and military opera-

tions [17, 24]. Recently, it is found that various computer

vision tasks, e.g., recognition, classification, and tracking,

can benefit from incorporating the spectral information in

tens or hundreds of bands [11, 20, 28].

Unfortunately, conventional spectrometers have to con-

front a tradeoff between spatial/spectral and temporal reso-

lution, as they need to scan the scene along either spatial

or spectral dimension to capture a full hyperspectral im-

age [19, 31, 7, 26]. Therefore, conventional spectrometers

are not suitable for measuring dynamic scenes. To enable

hyperspectral video acquisition, snapshot spectral imagers

have been developed thanks to the flourish of computational
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Figure 1. Dual-camera architecture for HSHS video acquisition.

reconstruction. Techniques in this category, including com-

puted tomographic imaging spectrometry (CTIS) [29, 12],

coded aperture snapshot spectral imager (CASSI) [3, 34],

and hybrid spectral video imaging system (HVIS) [10, 25],

have the ability to recover a full hyperspectral image with

a single shot. Nevertheless, these systems need to employ

additional optical elements to encode and/or disperse the

scene information. Inevitably, the incident light will go

through a long optical path and certain light-blocking el-

ements, leading to considerable light intensity attenuation.

As a result, the video frame rate that can be achieved with

these snapshot spectral imagers is usually limited compared

to the RGB/panchromatic cameras equipped with the same

detector, especially when the incident light is not strong. So

far, the highest frame rate reported in the literature is 30fps

by CASSI, for a bright scene with burning candles [35].

In this paper, we propose a novel dual-camera design

to acquire 4D high-speed hyperspectral (HSHS) videos,

which leverages the high spatial and spectral resolution of

the compressive spectral imaging and high light efficiency

of the panchromatic camera (PanCam for short hereafter).

This new design, as shown in Fig. 1, comprises a beam

splitter, a high-speed PanCam, a suite of CASSI (inside the

CASSI there is an objective lens, a coded aperture, a re-

lay lens, a dispersive prism, and a detector). Specifically,

the incident light from the scene is equally divided by the

beam splitter into two parts, which are then captured by the

PanCam and the CASSI, respectively. Light in the PanCam

branch will go through a shorter path and less optical el-

ements compared with the CASSI branch. Therefore, the
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dual-camera system can simultaneously capture a panchro-

matic video at a high frame rate and a hyperspectral video at

a low frame rate, which jointly provide reliable projections

for the underlying HSHS video.

Meanwhile, the panchromatic video is further exploited

to learn an over-complete 3D dictionary to represent each

band-wise video sparsely. This is motivated by the obser-

vation that a 4D HSHS video can be treated as a concatena-

tion of multiple band-wise videos which often have similar

structural content (e.g., edges) as the panchromatic video.

Therefore, the dictionary learned from the panchromatic

video yields high sparsity when representing the band-wise

videos. A robust computational reconstruction is then em-

ployed to recover the HSHS video based on the joint videos

and the self-learned dictionary.

With the enhanced overall light efficiency provided by

the dual-camera design and the effective sparse represen-

tation provided by the self-learned dictionary, for the first

time to our knowledge, it is possible to acquire 4D HSHS

videos using a low-cost system as we developed in this pa-

per. Experimental results demonstrate that the hyperspectral

video frame rate reaches up to 100fps with decent quality,

even when the incident light is not strong.

2. Related work

The fundamental problem for hyperspectral video acqui-

sition is how to capture 4D data (2D spatial + 1D spectral

+ 1D temporal) in a 3D real world where the imaging sen-

sor exists. Conventional spectrometers simply trade tempo-

ral resolution for spatial/spectral resolution, and thus lose

the ability to record dynamic scenes [7, 19]. For example,

pushbroom or whiskbroom based methods capture the spec-

tral information of a slit or a single point of the scene, and

spatially scan the whole scene to obtain a full hyperspectral

image [4, 30]. Filter wheel or tunable filter based methods

integrate multiple color bandpass filters to select one band

for each exposure, and multiple exposures are required to

capture different spectral information of the scene [16, 31].

All these systems actually cut off or block a large portion of

light, and thus are inefficient in terms of light utilization.

To overcome the limitation of conventional spectrom-

eters and make it possible to capture dynamic scenes,

snapshot spectral imagers have been developed in the last

decade. CTIS multiplexes the 3D spectral information onto

a 2D detector with customized optical elements and recon-

structs the underlying information by solving a linear prob-

lem [29, 12]. However, this method sacrifices the spatial

resolution to achieve the snapshot property and also suffers

from the missing cone problem. Another snapshot solution

is the prism-mask spectral video imaging system (PMVIS)

[15], which directly trades spatial resolution for spectral

resolution using a customized occlusion mask. This solu-

tion is later upgraded to HVIS [10, 25], which uses an ad-

ditional RGB camera to enhance the spatial resolution. A

distinct advantage of PMVIS and HVIS is real-time recon-

struction. However, the underlying problem is that the oc-

clusion mask only allows a small portion of light to pass

(the overall throughput is one out of the total band num-

ber), which limits both the spectral resolution and the video

frame rate that can be achieved.

Relying on the compressive sensing theory, CASSI

has made a significant breakthrough towards hyperspectral

video acquisition. CASSI employs one or two dispersers

and a coded aperture to optically encode the 3D spectral

information onto a 2D detector, and a full hyperspectral

image is then recovered through computational reconstruc-

tion [18, 34, 3]. CASSI has been demonstrated to cap-

ture dynamic scenes with high spatial and spectral resolu-

tion [35]. As a modification of CASSI, a dual-coded com-

pressive spectral imager (DCSI) is proposed recently [22],

which separately encodes spatial and spectral dimensions

using a digital micromirror device (DMD) and a liquid crys-

tal on silicon (LCOS). Still, the video frame rate of the

above systems is limited due to light intensity attenuation

caused by the extended light path and the light-blocking el-

ements (e.g., coded aperture, DMD, and LCOS), especially

when the incident light is not strong.

Our work is built on CASSI and also motivated by

the hybrid imaging systems that use a high-speed, low-

resolution camera and a low-speed, high-resolution camera

for motion deblurring [5, 32], as well as the coded expo-

sure high-speed imaging [23]. Compared to CASSI and

other snapshot spectral imagers, our system not only en-

hances the overall light efficiency, but also carves out a new

way to rely on multiple cameras for the challenging task

of capturing HSHS videos. The contribution of this pa-

per goes beyond the system. We also propose to learn an

over-complete 3D dictionary from the panchromatic video

to represent each band-wise video sparsely, which copes

well with a robust computational reconstruction to recover

the underlying HSHS video. The improvement over sim-

ply using the joint videos further justifies the dual-camera

design. Note that the dual-camera design for CASSI was

first investigated in our previous work [36], but it was lim-

ited to single-frame image reconstruction directly using the

measurements.

3. System principles

A schematic of our proposed system is shown in Fig. 1

and the data flow in this system is detailed in Fig. 2. As

can be seen, there are two branches after the beam splitter.

In the PanCam branch, there is simply an objective lens in

front of the detector and thus the light path is short and un-

obstructed. In the CASSI branch, light is first encoded by

a coded aperture and then dispersed by a dispersive prism

before reaching the detector, which results in considerable



Figure 2. Data flow in the dual-camera system. The CASSI branch captures a low frame-rate video while the PanCam branch captures a

high frame-rate video simultaneously. The PanCam measurements are then used to train an over-complete 3D dictionary, together with

which the underlying 4D HSHS video is reconstructed from the joint videos.

light intensity attenuation. Suppose the detectors in the two

branches are identical, the PanCam branch can work at a

much higher frame rate than the CASSI branch in practice,

due to higher efficiency of light utilization. That is to say,

the PanCam branch lacks in spectral resolution while the

CASSI branch lacks in temporal resolution. Therefore, it

is possible to recover 4D HSHS videos by jointly using the

measurements from the two branches, under elaborate cali-

bration and synchronization.

3.1. Light efficiency analysis

We start with a light efficiency analysis of our system

in comparison with existing hyperspectral video acquisition

systems. It is an increasing trend to optically encode the

spectral information and then recover it through computa-

tional reconstruction. Besides elegant interpretation with

the mathematical model, light efficiency plays a crucial role

in determining the speed performance of the system. As the

representative work in this direction, we evaluate the light

efficiency of CASSI [35], PMVIS [15], HVIS [10], and

DCSI [22] along with our system. Specifically, We measure

the light efficiency by the overall light transmission percent-

age of the whole system, which is mainly determined by the

light-blocking elements in the optical path. Note that we

only consider ideal optical elements here, which may suffer

from some deviation in practice.

Considering to capture a hyperspectral video with Ω
spectral bands, the light efficiency of different systems is

summarized in Table 1. CASSI involves one coded aperture

with 50% light transmission. PMVIS incorporates an occlu-

sion mask which downsamples the spatial resolution by a

factor of Ω to obtain the desired spectral resolution and thus

sacrifices considerable light intensity. In two-branch HVIS,

one branch shares the same light efficiency as in PMVIS

and the other branch employing an RGB camera contributes

1/3 ligh transmission due to the Bayer pattern. DCSI pro-

vides an overall light efficiency of 0.25 due to the DMD

Table 1. Light efficiency comparison of different hyperspectral

video acquisition systems.

CASSI

[35]

PMVIS

[15]

HVIS

[10]

DCSI

[22]
Ours

0.5 1/Ω 0.5(1/Ω+1/3) 0.25 0.75

and LCOS employed, each with 50% light transmission. In

our system, the CASSI branch provides 50% light transmis-

sion and the PamCam branch reaches 100% light transmis-

sion. Considering the employed beam splitter, our system

achieves an overall light efficiency of 0.75. This is the high-

est among existing hyperspectral video acquisition systems,

making it most efficient for capturing HSHS videos.

3.2. Formulation

Let f(x, y, λ, t) denote the scene information of a 4D

HSHS video clip in its discrete form, where 1 ≤ x ≤ W
and 1 ≤ y ≤ H index the spatial coordinates, 1 ≤ λ ≤ Ω
indexes the spectral coordinate, and 1 ≤ t ≤ K indexes the

temporal coordinate. Without loss of generality, we assume

the PanCam has K exposures and the CASSI has only one

exposure corresponding to this video clip. In other words,

the PanCam captures K frames while the CASSI captures

one frame, equivalent to an acceleration rate of K. Since

the beam splitter equally divides the incident light, the high

frame-rate PanCam image captured at time t can be written

as

gp(x, y, t) = 0.5

Ω
∑

λ=1

w(λ)f(x, y, λ, t), (1)

where w(λ) is the spectral response function of the detector.

This equation can be rewritten in a linear matrix form as

Gp
t = ΦpFt, (2)

where Gp
t and Ft are the vectorized representation of gp and

f at time t, and Φp is the time-invariant observation matrix

of the PanCam (determined by w(λ)).



On the other hand, the low frame-rate CASSI image cap-

tured during the whole clip can be written as

gc(x, y) = 0.5

K
∑

t=1

Ω
∑

λ=1

w(λ)S(x, y−φ(λ))f(x, y−φ(λ), λ, t),

(3)

where S(x, y) denotes the transmission function of the

coded aperture and φ(λ) denotes the wavelength-dependent

dispersion function of the prism. (Please refer to [35] for a

detailed formulation of the CASSI measurement.) Similar

to the PanCam branch, the output of the CASSI branch can

be rewritten as

Gc = ΦcF, (4)

where Gc is the vectorized representation of gc, F =
(F1, F2, . . . , FK)T is the temporal concatenation of the

original HSHS video, and Φc is the observation matrix of

the CASSI (jointly determined by w(λ), S(x, y), and φ(λ)).
The dual-camera system model can then be expressed as
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A more simplified expression will be

G = ΦF, (6)

where G includes all the measurements and Φ is a sparse

matrix representing the overall system forward operation.

4. Dictionary-based reconstruction

The total number of measurements from the PanCam

branch and the CASSI branch is W ×H ×K +W × (H +
Ω − 1)1, which is significantly smaller than the dimension

of the unknown data W × H × Ω × K. Recovering the

original HSHS video F from its incomplete measurements

G thus remains an ill-posed inverse problem. Thanks to the

compressive sensing theory [8, 14], F can be recovered by

seeking an over-complete dictionary D on which it can be

sparsely represented. We can then solve the following min-

imization problem instead

α̂ = argmin
α

||G− ΦD ◦ α||22 + τ ||α||0, (7)

where α is the concatenation of the sparse coefficients of

all patches in F when represented on D, the operation ◦
derives F from D and α, and τ is a regularization parameter

balancing the data fidelity and the prior sparsity2.

1Please refer to [34] for the number of measurements in CASSI.
2Mathematically, α needs to be reorganized to multiply with D and

their product needs to be reorganized again to give F . Please refer to [13]

for details on this operation.

Following the recent advances in the information theory

community, a proper dictionary indicates that a good recon-

struction can be obtained with a high probability [9]. Mean-

while, we notice that the 4D HSHS video can be treated

as a spectral concatenation of multiple band-wise videos

which often have similar structural content (e.g., edges) to

the panchromatic video. To validate this observation, we

conduct a statistical experiment on a hyperspectral database

[38]. For each 6x6 image patch in all band-wise images,

we calculate the normalized root mean squared error with

its most similar patch from the corresponding panchromatic

image. There are 98.1% and 93.4% patches with less than

0.04 and 0.02 errors respectively, which reveals a high de-

gree of similarity. The same observation applies to the

panchromatic video and the band-wise videos as long as

they are well calibrated and synchronized. Therefore, the

output video of the PanCam in our system can be readily

used to train an over-complete 3D dictionary to sparsely

represent each band-wise video.

To train the over-complete dictionary, we randomly sam-

ple a large number of 3D patches sized m = w × h × k
from the panchromatic video. The dictionary D ∈ R

m×n

can then be derived by KSVD [2], where n (n > m) is

the number of atoms (vectorized 3D patches) remaining in

the dictionary. Note that the data we use to train the dictio-

nary is self-provided and highly correlated to the underlying

HSHS video, which ensures that the dictionary yields high

sparsity when representing the band-wise videos. Once the

dictionary is learned, the 4D HSHS video can be sparsely

represented as

F = (F1, F2, . . . , FΩ)
T = D◦(α1, α2, . . . , αΩ)

T = D◦α,
(8)

where Fλ(1 ≤ λ ≤ Ω) denotes a band-wise video, αλ de-

notes the sparse coefficient vector that represents Fλ on D,

and α can be regarded as the concatenation of αλ. Substi-

tuting Eq. 8 into Eq. 7, the optimization problem of our

system can be efficiently solved by employing the orthogo-

nal matching pursuit algorithm [33].

5. Simulation

In this section, simulations are conducted to evaluate the

performance of the proposed approach in principle. The test

data we use come from the synthetic hyperspectral video

reported in [27]. We remove some deteriorated bands with

heavy noise and take out the moving region of the scene.

Specifically, a 4D hyperspectral video clip with the dimen-

sion of 256(W )× 256(H)× 20(Ω)× 24 is selected. Three

different acceleration rates K = 2, 4, 8 are tested, respec-

tively. For example, when K = 8, there are 24 PanCam

frames and 3 CASSI frames synthesized as measurements,

from which a total of 20× 24 hyperspectral frames need to

be recovered. The spectral response function of the detector



Table 2. Quantitative evaluation of three reconstruction methods.

K Method
Spatial Metric Spectral Metric

PSNR SSIM RMSE SAM

2

CASSI-TI 26.99 0.611 0.196 0.071

TwIST 32.94 0.951 0.089 0.059

DBR 34.25 0.961 0.075 0.050

4

CASSI-TI 26.45 0.573 0.214 0.081

TwIST 32.15 0.932 0.093 0.061

DBR 33.06 0.940 0.084 0.057

8

CASSI-TI 23.08 0.447 0.317 0.124

TwIST 28.56 0.912 0.136 0.089

DBR 29.17 0.922 0.126 0.085

is borrowed from the real one used in our experiments. The

transmission function of the coded aperture is generated as

a random Bernoulli distribution with p = 0.5. The disper-

sion function of the prism utilizes a linear distribution for

simplicity.

The parameters used in the dictionary-based reconstruc-

tion (DBR) are chosen empirically as below. For training

the dictionary, the 3D patch size is set as m = 6 × 6 ×K,

and 60000 patches are randomly sampled from the panchro-

matic video as the input of KSVD. After KSVD, there are

n = 4m atoms remaining in the dictionary. The maximum

iteration number of DBR is set to 30 and τ is set to 0.01.

For comparison, we generate the reconstruction results us-

ing the two-step iterative shrinkage/thresholding (TwIST)

algorithm along with the total variation (TV) regularizer

[6], which is generally used for CASSI reconstruction. The

parameters for TwIST are properly tuned. To provide a

direct comparison with traditional CASSI, we also gener-

ate the temporal interpolation results of CASSI reconstruc-

tion (CASSI-TI) using a publicly available tool Twixtor in

Adobe After Effects [1].

We use four quantitative image quality metrics to eval-

uate the performance of the reconstruction results, includ-

ing peak signal-to-noise ratio (PSNR), structural similarity

(SSIM) [37], root mean squared error (RMSE), and spectral

angle mapping (SAM) [21]. PSNR and SSIM are calcu-

lated based on each 2D spatial image, which measure the

spatial fidelity between the reconstruction results and the

original hyperspectral video. A larger value of these two

metrics indicates a higher fidelity reconstruction. RMSE

and SAM are calculated based on each 1D spectrum vector,

which measure the spectral fidelity of the reconstruction.

A smaller value of these two metrics suggests a better re-

construction. All metrics are averaged across the remaining

dimensions.

The quantitative results for three different acceleration

(a) (b)

(c) (d) (e)

Figure 3. Reconstruction results of one selected band at a certain

temporal location under K = 2. (a) Original frame. (b) Cropped

regions from (a). (c) CASSI-TI. (d) TwIST. (e) DBR. (Please see

the electronic version for better visualization.)

rates are shown in Table 2. It can be seen that the CASSI-

TI results suffer from large deviation from the original test

data. In contrast, both TwIST and DBR decently recover

the 4D hyperspectral video even under K = 8, which vali-

dates the superiority of our proposed dual-camera design.

On the other hand, with respect to all the four metrics,

our proposed DBR outperforms TwIST under all accelera-

tion rates, which demonstrates the effectiveness of the self-

learned dictionary.

To further demonstrate the performance of the proposed

approach, Fig. 3 shows the reconstruction results of one

selected band at a certain temporal location under K = 2.

While CASSI-TI introduces noticeable artifacts, the orig-

inal hyperspectral frame is well recovered with the dual-

camera design through either TwIST or DBR. Still, the latter

using the self-learned dictionary achieves better perceptual

quality, especially for the object details.

6. Experiments

6.1. System setting

System components. Fig. 4 demonstrates the pro-

totype system we have developed for 4D HSHS video

acquisition. The incident light is equally divided by a

beam splitter and captured by two branches. In the Pan-

Cam branch, a panchromatic detector (PointGrey FL3-U3-

13Y3M-C) equipped with an 8mm objective lens is used,

which can capture up to 150fps video at a maximum reso-

lution of 1280×1024 pixels. In the CASSI branch, an 8mm

objective lens is used to project the scene onto a coded aper-

ture. The manufactured coded aperture is a random binary

pattern with 300×300 elements and each element has a size



Figure 4. Prototype system for HSHS video acquisition.

of 10um × 10um. A doublet-Amici prism vertically dis-

perses the spectral information with the center wavelength

at 550nm. The CASSI detector has same model as the one

in the PanCam branch. In our experiments, each element on

the coded aperture is mapped to 2×2 pixels on the detec-

tor by a relay lens (Edmund 45-762), so the effective spatial

resolution is 600 × 600 pixels. In addition, an optical fil-

ter with a passband from 450nm to 650nm is used in each

branch to restrict the spectrum to a certain range.

System calibration. There are two parts of calibration:

the CASSI itself and that between the two branches. The

CASSI calibration has already been well studied in [35] and

will not be detailed here. Following the same procedures,

we can obtain the observation matrix of the CASSI, and the

whole spectrum spanning over the passband of the optical

filter is discretized into 28 bands with different intervals.

The calibration between the PanCam and the CASSI is es-

sential for our system. Owing to the CASSI calibration, we

only need to align the PanCam image with the projection of

one wavelength on the CASSI image plane, and the align-

ment with other wavelengths can then be easily deduced.

To this end, we place an auxilliary coded aperture in front of

the beam splitter to act as an objective scene. This auxilliary

coded aperture is illuminated by monochromatic light and

captured by the two detectors. Once the optical elements in

the CASSI branch are fixed, we fine tune the position of the

PanCam so that the auxilliary coded aperture occupies an

area with the same resolution on the two detectors. Then,

under the illumination at one specified wavelength, the two

captured images jointly determine the correspondence be-

tween the measurements of the two branches.

System synchronization. Synchronization of the

CASSI and the PanCam is also essential to temporally align

the output sequences of the two branches. Given an acceler-

ation rate K, there should be K exposures of the PamCam

during one exposure of the CASSI, and their starting time

should be synchronized exactly. To this end, we use a signal

generator (RIGOL 1022D) to trigger the two branches with

the same impulse signal. The frame rate of the two branches

Table 3. RMSE of spectral signatures in the center of three shapes.

Shape K=5 K=10 K=20 CASSI

Circle 0.037 0.042 0.043 0.060

Rectangle 0.031 0.034 0.044 0.070

Diamond 0.043 0.044 0.045 0.085

is preset by software.

6.2. Qualitative and quantitative evaluation

To evaluate the performance of the proposed approach,

we first test a simple scene that consists of three fast mov-

ing shapes with distinct colors displayed on an LCD screen.

Three sets of experiments are conducted under different ac-

celeration rates K = 5, 10, 20. Since the screen brightness

is limited, to reach a proper exposure, the exposure time of

the CASSI needs to be 200ms (i.e., 5fps) under the maxi-

mum aperture of the objective lens. Correspondingly, the

exposure time of the PanCam is set to 40ms (25fps), 20ms

(50fps), and 10ms (100fps), under different apertures. Two

sets of CASSI and PanCam measurements along with the

color scene are shown in Fig. 5(a)-(b). The PanCam mea-

surements are then used to train an over-complete dictionary

for the reconstruction, where the parameters are chosen em-

pirically as in the simulation. The reconstruction results of

three selected bands at one temporal location under different

acceleration rates are shown in Fig. 5(c). It can be seen that

the proposed approach faithfully recovers the scene content

even under K = 20. On the other hand, Fig. 5(d) shows

the reconstruction results of one selected band at five tem-

poral locations under K = 20, from which we can see that

the high-speed motion is well recovered by the proposed ap-

proach. For comparison, we also generate a 5fps hyperspec-

tral video directly from the CASSI measurements through

the TwIST reconstruction. As shown in Fig. 5(c)-(d), this

low frame-rate reconstruction suffers from blurring artifacts

caused by the fast motion3.

For a quantitative evaluation on the reconstruction qual-

ity, we further compare the averaged spectral signatures in

the center areas of the three moving shapes. The reference

values are measured by a scanning spectrometer (Stellar-

Net BLK-CXR-SR-50 with 1.3nm spectral resolution). The

spectral signature is normalized by the total energy of each

area. Fig. 6 shows the comparison results in three areas.

We can see the spectral signatures well match the reference

under all acceleration rates, which indicates the high spec-

tral fidelity of our reconstruction. In contrast, there is larger

deviation for the direct CASSI reconstruction. Meanwhile,

we calculate the RMSE of these signatures with respect to

the reference in Table 3. It can be seen, as the acceleration

rate gets higher, the reconstruction error also increases due

3In fact, a single CASSI without the beam splitter should achieve 10fps

hyperspectral video for this scene, so this comparison is just for reference.



Figure 5. HSHS video reconstruction results of a simple scene consisting of three fast moving shapes with distinct colors displayed on

an LCD screen. (a)-(b) Two sets of CASSI and PanCam measurements along with the color scene. (c) Results of three selected bands at

one temporal location corresponding to (a). Direct CASSI reconstruction and ours under K = 5, 10, 20 are compared. (d) Results of one

selected band at different temporal locations corresponding to (b). Direct CASSI reconstruction and ours under K = 20 are compared.

(Please see the electronic version for better visualization.)

(a) (b) (c)

Figure 6. Spectral signature comparison in the center areas of the three moving shapes: (a) circle, (b) rectangle, and (c) diamond.

to the increasing number of unknowns in the reconstruction.

Still, the RMSE values are fairly small even under K = 20
compared to the direct CASSI reconstruction, which vali-

dates the superior performance of the proposed approach.

6.3. Comparison with temporal interpolation

We then test the proposed approach on a doll with rich

details moving fast on a stage, under ordinary indoor illu-

mination. The exposure times for the CASSI and the Pan-

Cam are set to 100ms (10fps) and 10ms (100fps) respec-

tively, equivalent to an acceleration rate of 10. As men-

tioned above, the CASSI measurements can be used to re-

construct a 10fps hyperspectral video. However, this low

frame-rate video will inevitably be deteriorated by motion

blur due to the long exposure time. To provide a baseline

for evaluating our reconstruction results, we temporally in-



Figure 7. HSHS video reconstruction results of a fast moving doll under ordinary indoor illumination. Exposure times for CASSI and

PanCam are 100ms and 10ms, respectively. (a) Results of different selected bands at one temporal location. (b) Results of one selected

band at different temporal locations. (Please see the electronic version for better visualization.)

terpolate the 10fps reconstruction of CASSI to 100fps using

Twixtor.

Fig. 7 shows a part of the comparison results. In Fig.

7(a), the reconstruction results of several selected bands at

one temporal location are displayed. It can be seen that the

CASSI-TI results suffer from blurring artifacts, while our

reconstruction results contain more detailed scene informa-

tion (e.g., clearer edges). In Fig. 7(b), the reconstruction

results of one selected band at several temporal locations

are compared, which again demonstrates the superior per-

formance of the proposed approach over CASSI-TI.

7. Conclusion and discussion

In this paper, we have made the first effort in 4D HSHS

video acquisition. Specifically, we have designed a novel

dual-camera system with enhanced overall light efficiency

and developed a robust computational reconstruction by us-

ing a self-learned dictionary. Simulation and experimental

results validate the superiority of the proposed approach.

Our current system has some limitations, which are con-

sidered as the future work. First, since the two branches

have different exposure times and potentially different aper-

tures, the difference of PSFs may become noticable and thus

influence the performance when target scenes have a large

diversity in depth. This requires more effort for the cali-

bration. Second, as can be observed from the experimental

results, there are still some reconstruction errors especially

around the edges and spectral discontinuities. Further ex-

ploiting the correlation among different spectral bands may

help improve the reconstruction quality. Last, compared

with PMVIS and HVIS, one shortcoming of our system is

that the reconstruction cannot be performed in realtime. We

plan to investigate using parallel computation to improve

the reconstruction speed.
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