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Abstract— Reed-Solomon (RS) codes are one of the most
extensively used error control codes in digital communication
and storage systems. Recently, significant advancements have
been made on algebraic soft-decision decoding (ASD) of RS
codes. These algorithms can achieve substantial coding gain
with polynomial complexity. One major step of ASD is the
interpolation. Various techniques have been proposed to reduce
the complexity of this step. Further speedup of this step
is limited by the inherent serial nature of the interpolation
algorithm. In this paper, taking the bit-level generalized min-
imum distance (BGMD) ASD as an example, we propose a
novel technique to combine the computations from multiple
interpolation iterations. Compared to the single interpolation
iteration architecture for a (255, 239) RS code, the combined
architecture can achieve 2.7 times throughput with only 2%
area overhead in high signal-to-noise ratio scenarios.

I. INTRODUCTION

Reed-Solomon (RS) codes are among the most widely
used error-correcting codes in digital communication and
data storage systems. Recently, significant advancements
have been made on algebraic soft-decision decoding (ASD)
[1]–[3] of RS codes. By incorporating the probability in-
formation from the channel into the algebraic interpolation
process developed by Guruswami and Sudan [4], significant
coding gain can be achieved by ASD, while their complexity
is polynomial with respect to the codeword length. ASD
algorithms consist of two major steps: the interpolation and
the factorization. In this paper, we focus on the interpolation
step, which is the speed bottleneck of ASD algorithms.

The most popular interpolation algorithm is the Nielson’s
algorithm [5], [6]. This is an iterative algorithm and each iter-
ation mainly consists of discrepancy coefficient computation
and candidate polynomial updating. Various techniques have
been proposed to reduce the complexity of the interpolation.
The total number of iterations involved in the interpolation
can be reduced by employing the re-encoding and coordinate
transformation techniques proposed in [7], [8]. Optimizing
the computations involved in each iteration is another ap-
proach to reduce the interpolation complexity. The latency
of the discrepancy coefficient computation can be reduced
by the point-serial scheme proposed in [9], [10]. Based on
this scheme, a systolic array architecture has been proposed
for the interpolation step [9]. In addition, deep pipelining of
the interpolation architecture is enabled by using a hybrid
representation for finite field elements [11]. In [12], it is
found that a significant proportion of the discrepancy coeffi-
cients are zero and the updating of corresponding candidate

polynomials can be skipped. Accordingly, the number of
hardware units implementing candidate polynomial updating
can be reduced substantially. Although these efforts led to
faster and smaller area implementation of the interpolation,
further speedup is limited by the inherent serial nature of the
Nielson’s algorithm.

In this paper, we present a novel technique to combine the
computations from multiple iterations of the interpolation. To
illustrate our idea, we use the bit-level generalized minimum
distance (BGMD) ASD with maximum multiplicity two as an
example. Multiple interpolation iterations need to be carried
out for an interpolation point with multiplicity larger than
one. For the iterations associated with the same interpolation
point, the discrepancy coefficients can be computed in a
’look-ahead’ manner. Based on the computed discrepancy
coefficients, the candidate polynomial updating in those
iterations can be combined efficiently. In the BGMD al-
gorithm, there may also be pairs of interpolation points
with multiplicity one that share the same X coordinate.
Only one interpolation iteration is required for each of these
points. However, the discrepancy coefficients for each pair
can be computed simultaneously with small overhead due
to the same X coordinate. Accordingly the corresponding
polynomial updating can be also combined. The savings can
be brought by the proposed scheme is dependent on the
multiplicities of the interpolation points, which are decided
by channel conditions. In high signal-to-noise ratio (SNR)
scenarios, our proposed combined interpolation architecture
for the BGMD decoding of a (255, 239) RS code can
achieve 2.7 times throughput compared to single interpo-
lation iteration architectures, while the area requirement has
only been increased by 2%. In terms of speed/area ratio,
our architecture is 165% more efficient. At low SNR, our
architecture is 70% more efficient.

The structure of this paper is as follows. Section 2 intro-
duces BGMD ASD algorithm and the Nielson’s interpolation
algorithm. The proposed combined interpolation scheme is
presented in Section 3. Then in Section 4, efficient architec-
tures are proposed for the combined interpolation. Section
5 gives the hardware requirement and latency analyses.
Conclusions are provided in Section 6.

II. THE BGMD ALGORITHM AND THE

NIELSON’S INTERPOLATION

In this paper, we consider RS codes constructed over finite
field GF(2q). For a primitive RS codes, n = 2q − 1. For k
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message symbols, ( f0, f1, · · · , fk−1), where fi ∈ GF(2q), the
message corresponding polynomial is f (X) = f0 + f1X + · · ·
+ fk−1Xk−1. The encoding of RS codes can be carried
out by evaluating the message polynomial at n distinct
nonzero elements of GF(2q). Assume the fixed-ordered
set {x0,x1, · · · ,xn−1} is chosen as the n distinct evaluation
elements, the codeword corresponding to ( f0, f1, · · · , fk−1)
is ( f (x0), f (x1), · · · , f (xn−1)).

ASD algorithm decoding consists of three steps:
the multiplicity assignment, the interpolation, and the
factorization. As the first step, the multiplicity assignment
receives the reliability information from the channel and then
decides on the multiplicities of the interpolation points. To
increase the probability that the correct message polynomial
can be recovered, usually assign larger multiplicities to
those more reliable points. Popular multiplicity assignment
schemes include the Koetter-Vardy (KV) [1], low-complexity
Chase (LCC) [2] and the BGMD scheme [3]. In this paper,
we will use the BGMD scheme with maximum multiplicity
two as an example to illustrate the proposed technique.
In the BGMD algorithm, the multiplicities are assigned
by using bit-level reliabilities. Each received symbol,
θ j, consists of q noise-corrupted bits. Define the log-
likelihood ratio (LLR) of a noise-corrupted bit, δ , by
LLRδ = log(Pr(0|δ )/Pr(1|δ )). δ is considered to be erased
if |LLRδ | is smaller than a threshold. Assume the maximum
multiplicity of the interpolation points is mmax, the BGMD
algorithm assigns multiplicities based on the number of bits
erased in each received symbol according to the following
scheme.

Algorithm A: BGMD Multiplicity Assignment
1) if no bit is erased in θ j, assign mmax to (x j,y j), where

y j is the hard-decision of θ j;
2) if there is only one bit erased in θ j, assign mmax/2

to both (x j,y j1) and (x j,y j2), where y j1 and y j2 are the
hard-decision of θ j and the field element that differs from
the hard-decision in only the erased bit, respectively;

3) if there are more than one bit erased in θ j, do not
assign any multiplicity to the interpolation points with x j.

Although ASD algorithms differ in the multiplicity assign-
ment step, they share the same interpolation and factoriza-
tion steps. Some definitions necessary for understanding the
interpolation-based decoding algorithms are given below.

Definition 1 A bivariate polynomial Q(X ,Y ) passes a
point (x0,y0) with multiplicity m if the shifted polynomial
Q(X + x0,Y + y0) contains a monomial XαY β with degree
α +β = m, and does not contain any monomial with degree
less than m.

Definition 2 For non-negative integers wx and wy,
the (wx,wy)-weighted degree of a bivariate polynomial
Q(X ,Y ) = ∑∞

i=0 ∑∞
j=0 qi, jX iY j is the maximum of iwx + jwy

such that qi, j �= 0.
The purpose of the interpolation step is to find a bivariate

polynomial, Q(X ,Y ), with minimum (1,k − 1) weighted

degree that passes each non-trivial interpolation point with
at least its associated multiplicity. Then the factorization
finds all factors of Q(X ,Y ) in the form of Y − f (X) with
the degree of f (X) at most k. These derived polynomials
contain all the message polynomials in the list as a subset.
In this paper, we focus on the interpolation step. Popular
interpolation algorithms include the Nielson’s algorithm and
the Lee-O’Sullivan (LO) algorithm [13]. However, the LO
algorithm can not take in more points once the interpolation
started. In this paper, we use the Nielson’s algorithm in our
design. The pseudo codes of this algorithm are listed in
Algorithm B.

Algorithm B: Nielson’s Interpolation
initialization:
Q(0)(X ,Y ) = 1,Q(1)(X ,Y ) = Y, · · · ,Q(t)(X ,Y ) = Yt

Wdeg0 = 0,Wdeg1 = k−1, · · · ,Wdegt = t(k−1)
interpolation starts:
for each interpolation point (xi,yi, j) with multiplicity mi, j

for α = 0 to mi, j −1 and β = 0 to mi, j −α −1
I1: compute d(l)

α ,β (xi,yi, j)(0 ≤ l ≤ t)

I2: minl = argminl(Wdegl|d(l)
α ,β (xi,yi, j) �= 0,0 ≤ l ≤ t)

for l = 0 to t, l �= minl
I3: Q(l)(X ,Y ) ⇐ d(minl)

α ,β (xi,yi, j)Q(l)(X ,Y )

+ d(l)
α ,β (xi,yi, j)Q(minl)(X ,Y )

I4: Q(minl)(X ,Y ) ⇐ Q(minl)(X ,Y )(X + xi)
Wdegminl ⇐Wdegminl + 1

Output: Q(ϕ)(X ,Y )(ϕ = argminl(Wdegl|0 ≤ l ≤ t))

In Algorithm B, the discrepancy coefficient, d(l)
α ,β (xi,yi, j),

is defined as the coefficient of the monomial XαY β in
Q(l)(X + xi,Y + yi, j). It can be computed as

d(l)
α ,β (xi,yi, j) = ∑

a≥α
∑

b≥β

(
a
α

)(
b
β

)
xa−α

i yb−β
i, j q(l)

a,b, (1)

where q(l)
a,b is the coefficient of XaY b in Q(l)(X ,Y ). The

basic idea of Algorithm B is to first initialize a set of
t + 1 bivariate candidate polynomials Q(l)(X ,Y ) (0 ≤ l ≤ t)
as 1,Y,Y 2, · · · ,Yt . Then these polynomials are updated to
satisfy one extra interpolation constraint at a time at the
cost of minimum increase in (1,k − 1)-weighted degree.
After the constraints for all interpolation points have been
satisfied, the candidate polynomial with the least weighted
degree is selected as the output. It can be derived that
an interpolation point of multiplicity m adds m(m + 1)/2
constraints. Since one extra constraint is satisfied in each
iteration, m(m + 1)/2 interpolation iterations need to be
carried out for a point of multiplicity m. The re-encoding
and coordinate transformation [7], [8] can convert the Y
coordinate of the k most reliable interpolation points to zero.
As a result, the interpolation over these points can be pre-
solved by simple univariate interpolation. In addition, the
point-serial scheme [9], [10] and a hybrid finite field element
representation [11] can be employed to increase the speed of
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the discrepancy coefficient computation. Further speedup of
the interpolation is limited by the serial nature of Algorithm
B.

III. THE COMBINED INTERPOLATION

Due to the data dependency, the computations from mul-
tiple interpolation iterations can not be carried out simul-
taneously. In this section, taking the BGMD algorithm as
an example, we propose a novel and efficient scheme that
combines the candidate polynomial updating of multiple
iterations.

In the BGMD decoding with maximum multiplicity two,
each coordinate position can have one interpolation point
with multiplicity two, two interpolation points with multi-
plicity one or no interpolation point. In this case, it can be
derived that there are three candidate polynomials involved
in the interpolation for high rate codes (t = 2 in Algorithm
B). Now consider the interpolation over a point, (x0,y0),
of multiplicity two, which requires three iterations for the
constraints (α,β ) = (0,0),(0,1) and (1,0) in Algorithm B.
Since the interpolation point is the same in these three
iterations, (x0,y0) is dropped from the d(l)

α ,β (x0,y0) notation
in the remaining of this paper. Assume in the first iteration,
Q(0)(X ,Y ) is picked as the minimum polynomial (i.e. minl =
0). Then the polynomials are updated according to the I3 and
I4 steps of Algorithm B as

⎧⎪⎨
⎪⎩

Q(0)(X ,Y ) ⇐ Q(0)(X ,Y )(X + x0)
Q(1)(X ,Y ) ⇐ d(0)

0,0 Q(1)(X ,Y )+ d(1)
0,0 Q(0)(X ,Y )

Q(2)(X ,Y ) ⇐ d(0)
0,0 Q(2)(X ,Y )+ d(2)

0,0 Q(0)(X ,Y )

(2)

In the remaining of this paper, we use d(l)
i, j(α ,β ) to denote

the coefficient of XiY j in Q(l)(X + x0,Y + y0) before it is
updated in the iteration of constraint (α,β ). Apparently, the
discrepancy coefficient, d(l)

α ,β , in Algorithm B is equivalent to

d(l)
α ,β (α ,β ). From (2), it can be derived that d(0)

0,1 = d(0)
−1,1(0,0) =

0. Hence Q(0)(X ,Y ) will not be picked as the minimum
polynomial and does not need to be updated in the iteration
of (α,β ) = (0,1). On the other hand, d(1)

0,1 = d(0)
0,0d(1)

0,1(0,0) +

d(1)
0,0d(0)

0,1(0,0) and d(2)
0,1 = d(0)

0,0d(2)
0,1(0,0) + d(2)

0,0d(0)
0,1(0,0). Therefore,

either Q(1)(X ,Y ) or Q(2)(X ,Y ) can be the minimum poly-
nomial in the iteration of (α,β ) = (0,1), depending on
their weighted degrees and whether d(1)

0,1 or d(2)
0,1 is zero.

Assume Q(1)(X ,Y ) is picked as the minimum polynomial,
the candidate polynomials are updated again according to the
I3 and I4 steps. Similarly, Q(1)(X ,Y ) has zero discrepancy
coefficient in the last iteration of (α,β ) = (1,0), and will not
be the minimum polynomial and does not need to be updated.
In the last iteration, from (2), d(0)

1,0 is nonzero. Therefore, the
minimum polynomial can be either Q(0)(X ,Y ) or Q(2)(X ,Y ).
Depending on whether Q(0)(X ,Y ) has been picked as the
minimum polynomial twice or once in the three iterations,
the updated polynomials from the last iteration can be written
in terms of the polynomials at the beginning of the first

iteration in one of the two formats below:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q(0)(X ,Y ) ⇐ Q(0)(X ,Y )(X + x0)2

Q(1)(X ,Y ) ⇐ (d(0)
0,0Q(1)(X ,Y )+ d(1)

0,0Q(0)(X ,Y ))(X + x0)

Q(2)(X ,Y ) ⇐ d(0)
0,0

(
Δ0Q(0)(X ,Y )+ Δ1Q(1)(X ,Y )

+Δ2Q(2)(X ,Y )
)
+ Δ3Q(0)(X ,Y )(X + x0)

(3)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q(0)(X ,Y ) ⇐ d(0)
0,0

(
Δ0Q(0)(X ,Y )+ Δ1Q(1)(X ,Y )

+Δ2Q(2)(X ,Y )
)
+ Δ3Q(0)(X ,Y )(X + x0)

Q(1)(X ,Y ) ⇐ (d(0)
0,0Q(1)(X ,Y )+ d(1)

0,0Q(0)(X ,Y ))(X + x0)
Q(2)(X ,Y ) ⇐ (

Δ0Q(0)(X ,Y )+ Δ1Q(1)(X ,Y )
+Δ2Q(2)(X ,Y )

)
(X + x0)

(4)
According to (3) and (4), the candidate polynomial up-

dating for the three iterations can be combined. In these
equations, each Δ j (0 ≤ j ≤ 3 ) is a sum of products of
d(i)

0,0(0,0), d(i)
0,1(0,0) and d(i)

1,0(0,0) for i = 0,1,2. Following the
interpolation for the constrains (α,β ) = (0,0), (0,1) and
(1,0), Δ j can be computed as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δ0 = d(1)
0,0(0,0)d

(2)
0,1(0,0) + d(1)

0,1(0,0)d
(2)
0,0(0,0)

Δ1 = d(2)
0,0(0,0)d

(0)
0,1(0,0) + d(2)

0,1(0,0)d
(0)
0,0(0,0)

Δ2 = d(0)
0,0(0,0)d

(1)
0,1(0,0) + d(0)

0,1(0,0)d
(1)
0,0(0,0)

Δ3 = Δ0d(0)
1,0(0,0) + Δ1d(1)

1,0(0,0) + Δ2d(2)
1,0(0,0)

(5)

From (1), it can be observed that d(i)
0,1(0,0) and d(i)

1,0(0,0) can

be computed as byproducts of the d(i)
0,0(0,0) computation.

Hence, compared to the discrepancy coefficient computation
in the iteration of (α,β ) = (0,0), the computation of Δ j only
requires small overhead to derive the sum of products.

As it can be observed from (3) and (4), Q(1)(X ,Y ), which
is picked as the minimum polynomial in the iteration of
(α,β ) = (0,1), is the same for both cases. In addition, the
Q(2)(X ,Y ) for the first case is the same as the Q(0)(X ,Y ) for
the second case. When different candidate polynomials are
picked as the minimum polynomials in the three iterations,
the output polynomials at the end of the third iteration are in
the same format as either (3) or (4), except that the candidate
polynomials are switched. From our extensive simulations,
we did not find any case that has all three discrepancy
coefficients as zero in a iteration.

In the BGMD algorithm, there may also be pairs of
interpolation points with multiplicity one that share the
same X coordinate. For each of these points, only one
interpolation iteration needs to be carried out. Although the
discrepancy coefficient for one point can not be computed
as the byproduct of the discrepancy coefficient computation
of another, the discrepancy coefficients for the two points
with the same X coordinate can be computed simultaneously
with small overhead due to the shared coordinate and low Y -
degree. Accordingly, the corresponding candidate polynomial
updating can be also combined. In addition, the polynomial
picked as the minimum polynomial during the interpolation
over the point (x j,y j1) is multiplied by (X + x j). Hence
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this polynomial has zero discrepancy coefficient during the
interpolation over the point (x1,y j2), and will not be picked
as the minimum polynomial again. Assume Q(0)(X ,Y ) and
Q(1)(X ,Y ), respectively, are the minimum polynomials in
the interpolation iterations for two points of multiplicity one
that share the same X coordinate. The candidate polynomial
updating in these two iterations can be combined as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Q(0)(X ,Y ) ⇐ Q(0)(X ,Y )(X + x0)
Q(1)(X ,Y ) ⇐ Q(1)(X ,Y )(X + x0)
Q(2)(X ,Y ) ⇐ Δ0Q(0)(X ,Y )+ Δ1Q(1)(X ,Y )

+Δ2Q(2)(X ,Y )

(6)

where Δi (i = 0,1,2) have the same format as those in
(5), except that d(i)

0,1,(0,0) should be replaced by d(i)
0,0,(0,0)

for the second point with the same X coordinate. In the
case that different polynomials are picked as the minimum
polynomials, the combined polynomials are in the same
format as those in (6).

IV. VLSI ARCHITECTURE FOR THE COMBINED

INTERPOLATION

In this section, efficient architectures for the combined
interpolation are presented. Since all the coefficients in the
combined candidate polynomial updating in (3), (4) and (6)
are computed based on the polynomial coefficients at the
beginning of the iteration of (α,β ) = (0,0), the subscript
(0,0) is dropped from the notation d(l)

α ,β (0,0) in this section,

i.e., d(l)
α ,β (0,0) is now denoted by d(l)

α ,β .

A. Discrepancy Coefficient Computation Architecture

To enable the combining of the candidate polynomial
updating, d(l)

α ,β for (α,β ) = (0,0),(0,1) and (1,0) need to be
computed first based on the starting candidate polynomials
in the first iteration. Then Δi are computed by using (5).
The discrepancy coefficient computation equation can be
rewritten as

d(l)
α ,β = ∑

b≥β

(
∑

a≥α

(
a
α

)
q(l)

a,bxa−α
0

)(
b
β

)
yb−β

0

= ∑
b≥β

c(l,b)
α

(
b
β

)
yb−β

0

(7)

where c(l,b)
α = ∑a≥α

(a
α
)
q(l)

a,bxa−α
0 . Substituting α by 0 and 1,

respectively, it can be derived that

c(l,b)
0 = ∑

a≥0

q(l)
a,bxa

0, c(l,b)
1 = ∑

a≥1

(
a
1

)
q(l)

a,bxa−1
0 (8)

Fig. 1 (a) illustrates the architecture for computing c(l,b)
0 and

c(l,b)
1 . The register on the top left corner is initialized as ’1’

and the multiplier-register loop generates xa
0 in clock cycle

a. The coefficients, q(l)
a,b, are fed to the multiplier serially

with the least significant one first. After q(l)
a,b is multiplied

by xa
0, the products are summed up to derive c(l,b)

0 . The

computation of c(l,b)
1 involves

(a
1

)
. Since

(a
1

)
is computed

over finite fields of characteristic two, it is either 0 or 1
when a is an even or odd number, respectively. Hence

(a
1

)

x0

,
l
a bq

a
1

,
0
l bc

,
0 1

l bx c

,1
0
lc
,1

0 1
lx c

0y

1
0,0d

2
0,1d

0 1
0 1,0x d

0 3x

,0
0
lc
,0

0 1
lx c

1

2
0y1

0
0 1,0x d

,2
0
lc
,2

0 1
lx c
2
0,0d
2

1
0,1d

2
0 1,0x d

0,0
ld

0

0 1,0
lx d

0

Fig. 1. The architecture for discrepancy coefficient computation (DCC)

equals the least significant bit of a. According to (8), c(l,b)
1

can be computed by using another multiplier and adder in
a similar way as that for c(l,b)

0 computation. Alternatively,
scaling a candidate polynomial by a nonzero factor does
not change the decoding output. Since x0 �= 0, we can
compute c(l,b)

1 x0 = ∑a≥1
(a

1

)
q(l)

a,bxa
0 instead, as long as other

involved discrepancy coefficients are also scaled properly.
The computation of c(l,b)

1 x0 does not need multiplier and can
be done by adding just one adder loop as shown by the
bottom branch in Fig. 1(a). Nine copies of the architecture
in Fig. 1(a) are required. Hence computing c(l,b)

1 x0 instead
brings a saving of nine multipliers. The number of pipelining
stages of this architecture is ξdcca = 1.

Once c(l,b)
α are computed, d(l)

α ,β can be derived according
to (7). Since the maximum Y -degree of the polynomials is
two, d(l)

0,1 = c(l,1)
0 and d(l)

α ,0 = ∑0≤b≤2 c(l,b)
α yb

0 for α = 0,1.

Accordingly, d(l)
0,0 and x0d(l)

1,0 can be computed using the
architecture in Fig. 1(b) by routing proper inputs through
the multiplexors. In total, three copies of this architecture
are required, one for each candidate polynomial. After the
discrepancy coefficients are computed, each of Δi for i =
0,1,2 is computed by one copy of the architecture. Then
x0Δ3 is computed by using a single architecture. Since all
these computations are carried out in the architecture in Fig.
1(b) in a time-multiplexed way, it takes ξdccb = 4 clock cycles
to derive the required coefficients in (3) and (4). The same
architectures can be used to compute the coefficients in (6).

B. Polynomial Updating Architecture

After Δ j have been computed, the polynomial updating can
be carried out by using the PU architecture shown in Fig.
2. Since there is no data dependency among the coefficients
with different Y degree, they are updated in parallel in our
design. Fig. 2 shows the architecture for updating the coef-
ficients with one of the three Y -degrees. In this architecture,
the multiplications by (X + x0) are implemented by feeding
the polynomial coefficients serially with the least significant
one first to the A blocks. It can be observed that the four
different polynomials in (3) and (4) have the following
common terms: Q(0)(X ,Y )(X + x0), Q(1)(X ,Y )(X + x0), and
Δ0Q(0)(X ,Y )+Δ1Q(1)(X ,Y )+Δ2Q(2)(X ,Y ). These terms are
shared in the PU architecture to reduce the complexity of
the combined polynomial updating. (3) and (4) only has one
different polynomial. The different polynomial is chosen by
the 2-to-1 multiplexor in gray color. By passing through the
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1Q x

0Q x

1Q x

0Q x

2Q x

0

1

2

0 3x

0
0 0,0x d

1
0,0d

x0

x0

x0

x0

0
0,0d

Fig. 2. The architecture for polynomial updating (PU)

lower input to each of the 2-to-1 multiplexor on the right of
Fig. 2, the three polynomials in (3) or (4) are available at the
output. In addition, the PU architecture also takes care of the
combined polynomial updating for two interpolation points
of multiplicity one according to (6). In this case, the upper
input of each multiplexor needs to be passed to the output.
As it was mentioned in Section 3, it is possible that other
candidate polynomials instead of Q(0)(X ,Y ) and Q(1)(X ,Y )
are picked as the minimum polynomials in the first and
second iterations. In this case, the candidate polynomials
and their discrepancy coefficients need to be switched. These
switching are handled by the 3-to-1 multiplexors in Fig. 2 .
It can be noted that an extra multiplier is added to multiply
x0 with d(0)

0,0. This is because that Δ3 is scaled by x0 when

it is computed, and hence d(0)
0,0 also needs to be scaled by

the same factor to compute Q(2)(X ,Y ) in (3) or Q(0)(X ,Y )
in (4). Although calculating x0d(0)

0,0 here requires one more
multiplier, nine multipliers have been saved in the DCC
architecture by computing x0Δ3 instead of Δ3.

In previous designs [10], [11], the coefficients of updated
polynomials are fed back to their own memory blocks and
multiplexors are required for coefficient routing. In our
architecture, instead, the three updated polynomials at the
output are written back to fixed memory blocks. Although a
few extra gates are required to keep track of the weighted
degree of the polynomials, the multiplexors for routing are
eliminated and hence the critical path as well as total gate
number are reduced. To increase the speed, registers are
added to break the data path in Fig. 2 into ξpu = 2 pipelining
stages.
C. Computation Scheduling

All blocks in the DCC architecture in Fig. 1 and the PU ar-
chitecture in Fig. 2 take polynomial coefficients with the least
significant one first. Once the coefficients have been updated,
they can be passed to the DCC architecture to compute the
discrepancy coefficients for the next interpolation iteration.
A control unit is employed to generate the control signals for
the DCC and PU architectures. It is also used to record and
update the weighted degrees of the polynomials. During the
interpolation, the degrees of polynomials are either increased

by one or two according to (3) and (4). The degree change
can be decided right after the discrepancy coefficients are
computed. Hence the degree updating can be carried out in
parallel with polynomial updating.

It can be observed that the block B in Fig. 2 has the
same architecture as that in Fig. 1 (b), if the multiplexors
are ignored. All coefficients of q(l)

a,b for a ≥ α are required to

compute c(l,b)
α . Accordingly, during the updating of candidate

polynomials, c(l,b)
α for the next iteration is not available

and the computation of d(l)
α ,β and Δi can not start. On the

other hand, the polynomial updating can not start before
d(l)

α ,β and Δi are computed. Hence, the architecture in Fig.
1 (b) and the block B in Fig. 2 will not be activated
simultaneously. Therefore, by adding one extra input to each
of the multiplexors on top of the multipliers in Fig. 1, a
single architecture can be shared for both purposes in a time-
multiplexed way.

V. HARDWARE REQUIREMENT AND LATENCY ANALYSES

Table I lists the gate count and critical path of each
building block, except the control unit, in the combined
interpolation architecture for a (255, 239) RS code. All
the gates in this table are 2-input gates, and the Muxes
refer to 1-bit 2:1 multiplexors. A GF(28) multiplier can be
implemented by 64 XOR gates and 48 AND gates with 6
XOR gates and 1 AND gate in the critical path. The gates
required for the architecture in Fig. 1 (b) is not counted in the
DCC architecture. They are included in the PU architecture
instead. As it can be observed from Table I, the critical
path of our combined interpolation architecture consists of
12 gates. From simulations, the maximum X -degree of the
candidate polynomial coefficients is 33. Hence a memory of
33× 3× 3 = 297 bytes is required to store the polynomial
coefficients involved in the interpolation. In our design, the
weighted degrees of the polynomials are stored in registers.
Taking these registers into account, the total number of
registers required in our design is 345.

In the original Nielson’s interpolation, one iteration is
carried out for each interpolation constraint. Hence only
one discrepancy coefficient needs to be computed for each
polynomial. This computation can still be carried out by the
architecture shown in Fig. 1 by removing unnecessary mul-
tiplexors. Compared to prior architectures for discrepancy
coefficient computation, our architecture requires less gate in
the case that the maximum multiplicity is two. The candidate
polynomial updating architecture proposed in [10] has less
gate count than other published designs. The critical path
in this architecture consists of one multiplier, three Mux
and one inverter. A GF(28) inverter can be implemented
by a 256× 8 look-up table (LUT). In addition, its delay
usually equals to that of 2-3 serially concatenated XOR
gates. Replacing the delay of the inverter with that of 2
XOR gates, the critical path of single iteration interpolation
architecture includes 12 gates. In total, the implementation of
this architecture needs 2055 XOR gates, 1375 AND gates, 29
OR gates, 184 Muxes, and 273 registers. Besides the memory
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TABLE I

GATE COUNTS AND CRITICAL PATHS
area critical path

Multiplier 64XOR+48AND 6XOR+1AND
Adder 8XOR 1XOR
DCC 784XOR+552AND 7XOR+ 2AND
PU 2152XOR+1488AND+552Mux 8XOR+1AND+3Mux

Control 61XOR+102AND+106OR+82Mux 1XOR+4AND+4OR+3Mux
Total 2997XOR+2142AND+106OR+634Mux N/A

for the LUT, the same amount of memory is needed to store
the polynomial coefficients as in our design. Accordingly,
the memory requirement is 256 + 297 = 553 bytes.

The DCC and PU architectures take in coefficients serially.
Hence, the number of clock cycles required in each interpo-
lation iteration is decided by the maximum X -degree of the
candidate polynomials. This degree increases uniformly with
interpolation iteration. Therefore, the latency of the overall
interpolation can be derived by multiplying the average
number of clock cycles required by each iteration with
the number of interpolation iterations. In addition, in each
iteration, extra clock cycles used for pipelining are needed
to take into account and the total pipelining latency is ξdcca +
ξdccb +ξpu = 1+4+2 = 7 in our design. From simulations,
it can be derived that the average maximum X -degree of
the polynomials, dx, is 13 when the signal-to-noise ratio
(SNR) is high. Accordingly, the average number of clock
cycles required for each combined interpolation iteration is
dx +7 = 20. At low SNR, dx becomes 8. Hence, the average
number of clock cycles required for each combined interpo-
lation iteration becomes 15. After applying re-encoding and
coordinate transformation, the interpolation only needs to be
carried out over at most n− k = 16 interpolation points of
multiplicity two, or 16 pairs of points with multiplicity one,
or any combination of them. As a result, at most 16 combined
interpolation iterations are required in our proposed scheme.
In the original Nielson’s interpolation, the average number of
clock cycles required for each iteration is dx + 5. However,
the number of interpolation iterations depends the number
of constraints need to be satisfied. At high SNR, most
of the interpolation points have multiplicity two, each of
which adds 3 constraints. Hence, the number of interpolation
iterations is at most 3×16 = 48. On the other hand, at lower
SNR, most of the interpolation points have multiplicity one,
and at least 2×16 = 32 iterations are required in this case.

Each AND gate or OR gate occupies 3/4 of the area of an
XOR, each memory cell and Mux has the same area as an
XOR, and each register requires about 3 times of the area of
an XOR. Taking this into account, for a (255, 239) RS code,
the area requirement of the proposed interpolation architec-
ture is equivalent to that of 2997 + (2142 + 106)× 0.75 +
634+297×8+345×3= 8728 XOR gates. The area required
by the single iteration interpolation architecture equals that of
2055+(1375+29)×0.75+184+553×8+273×3 = 8535
XOR gates. Hence, our architecture only requires 2% more
area. The critical path of our architecture is the same as that
in the previous one. In high SNR scenarios, our architecture
can achieve a throughput of (18×48)/(20×16)= 2.7 times.
Hence, our architecture is 165% more efficient in terms of
speed/area ratio. When the SNR is low, our architecture is

(13× 32)/(15× 16) = 1.73 times faster, and thus is 70%
more efficient.

The application of the proposed combined polynomial
updating scheme is not limited to the architectures discussed
in this paper. Considering the interpolation architectures in
[11], the proposed scheme can also be employed to achieve
further speedup.

VI. CONCLUSION

A novel scheme is proposed in this paper to combine
interpolation iterations. In our scheme, the discrepancy co-
efficients from multiple iterations are computed using a
’look-ahead’ method. Then the polynomial updating of these
iterations are combined. Applying the proposed scheme, our
combined interpolation architecture can achieve significant
speedup at the cost of negligible area overhead. In the
case that more candidate polynomials are involved, there
are more possibilities with regard to which polynomial is
chosen as the minimum polynomial in each iteration. As a
result, combining interpolation iterations would lead to larger
number of different formats for the updated polynomials.
We will study if the scheme proposed in this paper can be
extended to the cases where more polynomials are involved.
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