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Abstract—High-speed, low-power design of Viterbi decoders for trellis
coded modulation (TCM) systems is presented in this paper. It is well
known that the Viterbi decoder (VD) is the dominant module determining
the overall power consumption of TCM decoders. We propose a pre-com-
putation architecture incorporated with -algorithm for VD, which can
effectively reduce the power consumption without degrading the decoding
speed much. A general solution to derive the optimal pre-computation
steps is also given in the paper. Implementation result of a VD for a
rate-3/4 convolutional code used in a TCM system shows that compared
with the full trellis VD, the precomputation architecture reduces the power
consumption by as much as 70% without performance loss, while the
degradation in clock speed is negligible.

Index Terms—Trellis coded modulation (TCM), viterbi decoder, VLSI.

I. INTRODUCTION

Trellis coded modulation (TCM) schemes are used in many band-
width-efficient systems. Typically, a TCM system employs a high-rate
convolutional code, which leads to a high complexity of the Viterbi
decoder (VD) for the TCM decoder, even if the constraint length of
the convolutional code is moderate. For example, the rate-3/4 convolu-
tional code used in a 4-D TCM system for deep space communications
[1] has a constraint length of 7; however, the computational complexity
of the corresponding VD is equivalent to that of a VD for a rate-1/2 con-
volutional code with a constraint length of 9 due to the large number of
transitions in the trellis. Therefore, in terms of power consumption, the
Viterbi decoder is the dominant module in a TCM decoder. In order to
reduce the computational complexity as well as the power consump-
tion, low-power schemes should be exploited for the VD in a TCM
decoder.

General solutions for low-power VD design have been well studied
by existing work. Power reduction in VDs could be achieved by re-
ducing the number of states (for example, reduced-state sequence de-
coding (RSSD) [2], � -algorithm [3] and � -algorithm [4], [5]) or by
over-scaling the supply voltage [6]. Over-scaling of the supply voltage
usually needs to take into consideration the whole system that includes
the VD (whether the system allows such an over-scaling or not), which
is not the main focus of our research. RSSD is in general not as effi-
cient as the� -algorithm [2] and � -algorithm is more commonly used
than � -algorithm in practical applications, because the � -algorithm
requires a sorting process in a feedback loop while � -algorithm only
searches for the optimal path metric (PM), that is, the minimum value
or the maximum value of all PMs.
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Fig. 1. Functional diagram of a viterbi decoder.

� -algorithm has been shown to be very efficient in reducing the
power consumption [7], [8]. However, searching for the optimal PM in
the feedback loop still reduces the decoding speed. To overcome this
drawback, two variations of the � -algorithm have been proposed: the
relaxed adaptive VD [7], which suggests using an estimated optimal
PM, instead of finding the real one each cycle and the limited-search
parallel state VD based on scarce state transition (SST) [8]. In our pre-
liminary work [9], we have shown that when applied to high-rate con-
volutional codes, the relaxed adaptive VD suffers a severe degradation
of bit-error-rate (BER) performance due to the inherent drifting error
between the estimated optimal PM and the accurate one. On the other
hand, the SST based scheme requires predecoding and re-encoding pro-
cesses and is not suitable for TCM decoders. In TCM, the encoded data
are always associated with a complex multi-level modulation scheme
like 8-ary phase-shift keying (8PSK) or 16/64-ary quadrature ampli-
tude modulation (16/64QAM) through a constellation point mapper. At
the receiver, a soft-input VD should be employed to guarantee a good
coding gain. Therefore, the computational overhead and decoding la-
tency due to predecoding and re-encoding of the TCM signal become
high. In our preliminary work [9], we proposed an add-compare-select
unit (ACSU) architecture based on precomputation for VDs incorpo-
rating � -algorithm, which efficiently improves the clock speed of a
VD with � -algorithm for a rate-3/4 code. In this work, we further an-
alyze the precomputation algorithm. A systematic way to determine
the optimal precomputation steps is presented, where the minimum
number of steps for the critical path to achieve the theoretical iteration
bound is calculated and the computational complexity overhead due to
pre-computation is evaluated. Then, we discuss a complete low-power
high-speed VD design for the rate-3/4 convolutional code [1]. Finally
ASIC implementation results of the VD are reported, which have not
been obtained in our previous work in [9].

The remainder of this paper is organized as follows. Section II gives
the background information of VDs. Section III presents the precom-
putation architecture with � -algorithm and discusses the choice of pre-
computation steps. Details of a design example including the modifica-
tion of survivor-path memory unit (SMU) are discussed in Section III.
Synthesis and power estimation results are reported in Section IV and
conclusions are given in Section V.

II. VITERBI DECODER

A typical functional block diagram of a Viterbi decoder is shown
in Fig. 1. First, branch metrics (BMs) are calculated in the BM unit
(BMU) from the received symbols. In a TCM decoder, this module is
replaced by transition metrics unit (TMU), which is more complex than
the BMU. Then, BMs are fed into the ACSU that recursively computes
the PMs and outputs decision bits for each possible state transition.
After that, the decision bits are stored in and retrieved from the SMU
in order to decode the source bits along the final survivor path. The
PMs of the current iteration are stored in the PM unit (PMU).
� -algorithm requires extra computation in the ACSU loop for cal-

culating the optimal PM and puncturing states. Therefore, a straight-
forward implementation of � -algorithm will dramatically reduce the
decoding speed. The key point of improving the clock speed of � -al-
gorithm is to quickly find the optimal PM.
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III. PRECOMPUTATION ARCHITECTURE

A. Precomputation Algorithm

The basic idea of the precomputation algorithm was presented in
[9]. Consider a VD for a convolutional code with a constraint length �,
where each state receives � candidate paths. First, we expand PMs at
the current time slot� �������� as a function of�������� to form a
look-ahead computation of the optimal �����������. If the branch
metrics are calculated based on the Euclidean distance, �������� is
the minimum value of ������ obtained as
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Then, we group the states into several clusters to reduce the compu-
tational overhead caused by look-ahead computation. The trellis but-
terflies for a VD usually have a symmetric structure. In other words,
the states can be grouped into � clusters, where all the clusters have
the same number of states and all the states in the same cluster will be
extended by the same BMs. Thus, (1) can be rewritten as
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The �	
����� for each cluster can be easily obtained from the
BMU or TMU and the �	
����� at time � � � in each cluster can
be precalculated at the same time when the ACSU is updating the
new PMs for time �. Theoretically, when we continuously decompose
��������� ��������� � � � � � �, the precomputation scheme can be
extended to � steps, where � is any positive integer that is less than �.
Hence, �������� can be calculated directly from ����� � �� in �
cycles.

Fig. 2. Topology of precomputation pipelining.

B. Choosing Precomputation Steps

In [9], we have shown through a design example that, �-step pre-
computation can be pipelined into � stages, where the logic delay of
each stage is continuously reduced as � increases. As a result, the de-
coding speed of the low-power VD is greatly improved. However, after
reaching a certain number of steps, ��, further precomputation would
not result in additional benefits because of the inherent iteration bound
of the ACSU loop. Therefore, it is worth to discuss the optimal number
of precomputation steps.

In a TCM system, the convolutional code usually has a coding rate
of �	��  ��� � � �� �� �� � � �, so that in (1), � � �� and the logic
delay of the ACSU is 
��	
 � 
����
���� ����, where 
���� is
the logic delay of the adder to compute PMs of each candidate path that
reaches the same state and 
���� ���� is the logic delay of a �-input
comparator to determine the survivor path (the path with the minimum
metric) for each state. If 
 -algorithm is employed in the VD, the it-
eration bound is slightly longer than 
��	
 because there will be an-
other two-input comparator in the loop to compare the new PMs with a
threshold value obtained from the optimal PM and a preset 
 as shown
in (3)
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To achieve the iteration bound expressed in (3), for the precomputa-
tion in each pipelining stage, we limit the comparison to be among only
� or �� metrics. To simplify our evaluation, we assume that each stage
reduces the number of the metrics to �	� (or ���) of its input metrics
as shown in Fig. 2. The smallest number of precomputation steps ����
meeting the theoretical iteration bound should satisfy ����� � ����.
Therefore, �� � �� � ��	� and �� is expressed as (4), where ��� de-
notes the ceiling function

�� �
� � �

�
� (4)

In the design example shown in [9], with a coding rate of 3/4 and con-
straint length of 7, the minimum precomputation steps for the VD to
meet the iteration bound is 2 according to (4). It is the same value as we
obtained from direct architecture design [9]. In some cases, the number
of remaining metrics may slightly expand during a certain pipeline
stage after addition with BMs. Usually, the extra delay can be absorbed
by an optimized architecture or circuit design. Even if the extra delay is
hard to eliminate, the resultant clock speed is very close to the theoret-
ical bound. To fully achieve the iteration bound, we could add another
pipeline stage, though it is very costly as will be shown next.

Computational overhead (compared with conventional 
 -algorithm)
is an important factor that should be carefully evaluated. Most of the
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Fig. 3. Rate 3/4 convolutional encoder.

computational overhead comes from adding BMs to the metrics at each
stage as indicated in (2). In other words, if there are � remaining
metrics after comparison in a stage, the computational overhead from
this stage is at least � addition operations. The exact overhead varies
from case to case based on the convolutional code’s trellis diagram.
Again, to simplify the evaluation, we consider a code with a constraint
length � and � precomputation steps. Also, we assume that each re-
maining metric would cause a computational overhead of one addition
operation. In this case, the number of metrics will reduce at a ratio of
�������� and the overall computational overhead is (measured with ad-
dition operation)
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The estimated computational overhead according to (5) is
�������� � �� when � � 	 and � � �, which increases almost
exponentially to �. In a real design, the overhead increases even faster
than what is given by (5) when other factors (such as comparisons or
expansion of metrics as we mentioned above) are taken into considera-
tion. Therefore, a small number of precomputational steps is preferred
even though the iteration bound may not be fully satisfied. In most
cases, one- or two-step precomputation is a good choice.

The above analysis also reveals that precomputation is not a good op-
tion for low-rate convolutional codes (rate of ����	 �� � �	 �	 
 
 
),
because it usually needs more than two steps to effectively reduce the
critical path (in that case, � � � in (4) and �� is � � �). However,
for TCM systems, where high-rate convolutional codes are always em-
ployed, two steps of precomputation could achieve the iteration bound
or make a big difference in terms of clock speed. In addition, the com-
putational overhead is small.

IV. LOW-POWER HIGH-SPEED VITERBI DECODER DESIGN

We still use the 4-D 8PSK TCM system described in [1] as the ex-
ample. The rate-3/4 convolutional code employed in the TCM system
is shown in Fig. 3. Preliminary BER performance and architecture de-
sign for the ACSU unit have been discussed in [9]. In this section, we
further address the SMU design issue. Later in the next section, we will
report ASIC implementation results that have not been obtained before.

BER performance of the VD employing 
 -algorithm with different
values of 
 over an additive white Gaussian noise channel is shown in
Fig. 4. The simulation is based on a 4-D 8PSK TCM system employing
the rate-3/4 code [10]. The overall coding rate is 11/12 after due to
other uncoded bits in TCM system. Compared with the ideal Viterbi
algorithm, the threshold “
��” can be lowered to 0.3 with less than 0.1
dB of performance loss, while the computational complexity could be
reduced by up to 90% [9] ideally. Since the precomputation algorithm
always finds the accurate optimal PM, its BER performance is the same
as that of the conventional 
 -algorithm.

A. ACSU Design

We have concluded that two-step precomputation is the optimal
choice for the rate-3/4 code VD. For convenience of discussion, we
define the left-most register in Fig. 3 as the most-significant-bit (MSB)
and the right-most register as the least-significant-bit (LSB). The 64

Fig. 4. BER performance of � -algorithm.

Fig. 5. VD with two-step precomputation � -algorithm.

Fig. 6. Architecture of TGU.

states and PMs are labeled from 0 to 63. The two-step precomputation
is expressed as (6) [9]
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Fig. 7. Architecture of 64-to-6 priority encoder.

TABLE I
TRUTH TABLE OF 64-TO-6 PRIORITY ENCODER

where
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The functional block diagram of the VD with two-step precompu-
tation � -algorithm is shown in Fig. 5. The minimum value of each
BM group (BMG) can be calculated in BMU or TMU and then passed
to the “Threshold Generator” unit (TGU) to calculate �
���� � � � �
�
���� �� � and the new PMs are then compared in the “Purge Unit”
(PU). The architecture of the TGU is shown in Fig. 6, which imple-
ments the key functions of the two-step precomputation scheme.

In Fig. 6, the “MIN 16” unit for finding the minimum value in each
cluster is constructed with two stages of four-input comparators. This
architecture has been optimized to meet the iteration bound [9]. Com-
pared with the conventional � -algorithm, the computational overhead
of this architecture is 12 addition operations and a comparison, which
is slightly more than the number obtained from the evaluation in (5).

B. SMU Design

In this section, we address an important issue regarding SMU design
when � -algorithm is employed. There are two different types of SMU
in the literature: register exchange (RE) and trace back (TB) schemes.
In the regular VD without any low-power schemes, SMU always out-
puts the decoded data from a fixed state (arbitrarily selected in advance)
if RE scheme is used, or traces back the survivor path from the fixed
state if TB scheme is used, for low-complexity purpose. For VD in-
corporated with � -algorithm, no state is guaranteed to be active at all

clock cycles. Thus it is impossible to appoint a fixed state for either out-
putting the decoded bit (RE scheme) or starting the trace-back process
(TB scheme). In the conventional implementation of � -algorithm, the
decoder can use the optimal state (state with 
����), which is al-
ways enabled, to output or trace back data. The process of searching
for 
���� can find out the index of the optimal state as a byproduct.
However, when the estimated 
���� is used [8], or in our case 
����

is calculated from PMs at the previous time slot, it is difficult to find
the index of the optimal state.

A practical method is to find the index of an enabled state through a
������-to-�� � �� priority encoder. Suppose that we have labeled the
states from 0 to 63. The output of the priority encoder would be the
unpurged state with the lowest index. Assuming the purged states have
the flag “0” and other states are assigned the flag “1”, the truth table of
such a priority encoder is shown in Table I, where “flag” is the input
and “index” is the output.

Implementation of such a table is not trivial. In our design, we em-
ploy an efficient architecture for the 64-to-6 priority encoder based on
three 4-to-2 priority encoders, as shown in Fig. 7. The 64 flags are first
divided into 4 groups, each of which contains 16 flags. The priority
encoder at level 1 detects which group contains at least one “1” and de-
termines “������� � � ”. Then MUX2 selects one group of flags based
on “������� � � ”. The input of the priority encoder at level 2 can be
computed from the output of MUX2 by “OR” operations. We can also
reuse the intermediate results by introducing another MUX (MUX1).
The output of the priority encoder at level 2 is “������ � � ”. Again,
“������ � � ” selects four flags (MUX3) as the input of the priority en-
coder at level 3. Finally, the last encoder will determine “������� � � ”.

Implementing the 4-to-2 priority encoder is much simpler than im-
plementing the 64-to-6 priority encoder. Its truth table is shown in
Table II and the corresponding logics are shown in (7) and (8)

��� 	 ��� � ���� � �� ���� � ��� �

	 ��� � ���� � �� � ��� �� (7)

��� 	 ��� � ��� � ���� � ��� �� �

	 ��� � ��� � ���� � �� �� (8)

V. IMPLEMENTATION RESULTS

The full-trellis VD, the VD with the two-step precomputation archi-
tecture and one with the conventional � -algorithm are modeled with
Verilog HDL code. The soft inputs of all VDs are quantized with 7 bits.
Each PM in all VDs is quantized as 12 bits. RE scheme with survival
length of 42 is used for SMU and the register arrays associated with
the purged states are clock-gated to reduce the power consumption in
SMU. For ASIC synthesis, we use TSMC 90-nm CMOS standard cell.
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TABLE II
TRUTH TABLE OF 4-TO-2 PRIORITY ENCODER

TABLE III
SYNTHESIS RESULTS FOR MAXIMUM CLOCK SPEED

TABLE IV
POWER ESTIMATION RESULTS

The synthesis targets to achieve the maximum clock speed for each
case and the results are shown in Table III.

Table III shows that the VD with two-step precomputation architec-
ture only decreases the clock speed by 11% compared with the full-
trellis VD. Meanwhile, the increase of the hardware area is about 17%.
The decrease of clock speed is inevitable since the iteration bound for
VD with � -algorithm is inherently longer than that of the full-trellis
VD. Also, any kinds of low-power scheme would introduce extra hard-
ware like the purge unit shown in Fig. 5 or the clock-gating module
in the SMU. Therefore, the hardware overhead of the proposed VD
is expected. On the other hand, the VD with conventional � -algo-
rithm cannot achieve half of the clock speed of the full trellis VD.
Therefore, for high-speed applications, it should not be considered. It is
worth to mention that the conventional � -algorithm VD takes slightly
more hardware than the proposed architecture, which is counterintu-
itive. This is because the former decoder has a much longer critical
path and the synthesis tool took extra measures to improve the clock
speed. It is clear that the conventional � -algorithm is not suitable for
high-speed applications. If the target throughput is moderately high,
the proposed architecture can operate at a lower supply voltage, which
will lead to quadratic power reduction compared to the conventional
scheme. Thus we next focus on the power comparison between the full
trellis VD and the proposed scheme.

We estimate the power consumption of these two designs with Syn-
opsys Prime Power under the clock speed of 200 Mb/s (power supply of

1.0 V, temperature of 300 K). A total of 1133 received symbols (12 000
bits) are simulated. The results are shown in Table IV.

With the finite word-length implementation, the threshold can only
be changed by a step of 0.125. Therefore, to maintain a good BER per-
formance, the minimum threshold we chose is 0.375. Table IV shows
that, as the threshold decreases, the power consumption of the pro-
posed VD is reduced accordingly. In order to achieve the same BER
performance, the proposed VD only consumes 30.8% the power of the
full-trellis VD.

VI. CONCLUSION

We have proposed a high-speed low-power VD design for TCM sys-
tems. The precomputation architecture that incorporates � -algorithm
efficiently reduces the power consumption of VDs without reducing
the decoding speed appreciably. We have also analyzed the precom-
putation algorithm, where the optimal precomputation steps are calcu-
lated and discussed. This algorithm is suitable for TCM systems which
always employ high-rate convolutional codes. Finally, we presented a
design case. Both the ACSU and SMU are modified to correctly de-
code the signal. ASIC synthesis and power estimation results show
that, compared with the full-trellis VD without a low-power scheme,
the precomputation VD could reduce the power consumption by 70%
with only 11% reduction of the maximum decoding speed.
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