
Real-Time Nonlinear Finite Element Analysis

for Surgical Simulation Using Graphics

Processing Units⋆

Zeike A. Taylor1,2, Mario Cheng1, and Sébastien Ourselin1

1 BioMedIA Lab, e-Health Research Centre, CSIRO ICT Centre, Level 20, 300
Adelaide St, Brisbane, QLD, 4000, Australia

2 Centre for Medical Image Computing, University College London, Gower St,
London, WC1E 6BT, UK

z.taylor@cs.ucl.ac.uk, {Mario.Cheng, Sebastien.Ourselin}@csiro.au

Abstract. Clinical employment of biomechanical modelling techniques
in areas of medical image analysis and surgical simulation is often
hindered by conflicting requirements for high fidelity in the modelling ap-
proach and high solution speeds. We report the development of
techniques for high-speed nonlinear finite element (FE) analysis for sur-
gical simulation. We employ a previously developed nonlinear total La-
grangian explicit FE formulation which offers significant computational
advantages for soft tissue simulation. However, the key contribution of
the work is the presentation of a fast graphics processing unit (GPU)
solution scheme for the FE equations. To the best of our knowledge this
represents the first GPU implementation of a nonlinear FE solver. We
show that the present explicit FE scheme is well-suited to solution via
highly parallel graphics hardware, and that even a midrange GPU allows
significant solution speed gains (up to 16.4×) compared with equivalent
CPU implementations. For the models tested the scheme allows real-
time solution of models with up to 16000 tetrahedral elements. The use
of GPUs for such purposes offers a cost-effective high-performance al-
ternative to expensive multi-CPU machines, and may have important
applications in medical image analysis and surgical simulation.

1 Introduction

The accurate simulation of tissue deformations arising during surgical proce-
dures presents a formidable modelling challenge [1]. The constitutive behaviour
of soft tissues is well known to be nonlinear and time-dependent [2], and the
ability of these tissues to undergo large deformations without damage means
that linear small strain kinematic formulations are not strictly valid. In many
applications, notably surgical simulation [3,4] and intraoperative non-rigid med-
ical image registration [5, 6, 7], there is a requirement for rigorous modelling of
nonlinear deformation. The most physically consistent procedure for estimat-
ing such deformations is to use differential equations of continuum mechanics,

⋆ This work was performed while the first author was with the BioMedIA Lab.

N. Ayache, S. Ourselin, A. Maeder (Eds.): MICCAI 2007, Part I, LNCS 4791, pp. 701–708, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



702 Z.A. Taylor, M. Cheng, and S. Ourselin

solved using a numerical technique such as the finite element (FE) method [8].
However a major drawback of such procedures, especially nonlinear ones, is the
significant computation times that may be required to solve large models. In
many cases successful employment of simulation results depends crucially on
the speed with which the results can be obtained. In the case of intraoperative
image registration, extended delays while a patient is in the operating position
are unacceptable, while interactive surgical simulations require solution at haptic
feedback rates (>500Hz).

An efficient total Lagrangian explicit dynamic (TLED) FE algorithm was
recently proposed for this purpose [9]. The main advantage of the formulation
was that spatial derivatives were referred to the initial configuration of the body
under analysis, and could therefore be precomputed. The use of explicit time
integration also allowed calculations to be performed in an element-wise fashion,
and so avoided the need for solution of large systems of algebraic equations, and
allowed for easy incorporation of elaborate constitutive models. As will be seen,
it is precisely this feature which renders the algorithm highly suitable for parallel
execution.

In recent years there has been a growing body of work concerned with use
of graphics processing units (GPUs) for general purpose computations [10]. By
appropriately abstracting the graphics computational pipeline and the data upon
which it operates, GPUs may be viewed as highly parallel computational engines.
As a result GPU implementations of a range of non-graphics algorithms have
been presented, for example including linear algebraic applications, ordinary and
partial differential equation solvers, image analysis applications, and others (see
review by Owens et al. [10]).

In this paper we present an efficient GPU implementation of the nonlinear
TLED algorithm, suitable for simulation of soft tissues. The algorithm accounts
for all geometric nonlinearities associated with the large deformations which
occur in a surgical scenario. Importantly, we achieve significant improvements
in solution speed compared with an equivalent CPU implementation, meaning
that models of a useful size may be solved in real-time1. The significance of the
results for purposes of surgical simulation and non-rigid image registration are
discussed.

2 Total Lagrangian Explicit Dynamic Framework

Our implementation is based on the TLED algorithm described in [9]. Further
details may be obtained from [8] also. The essential steps (from the point of view
of GPU implementation) of the algorithm are as follows.

1. Precompute element shape function derivatives ∂h and mass matrix M.
2. During each time step, n:

– Apply loads (displacements) and boundary conditions to relevant nodal
degrees of freedom.

1 In which solutions for a time step are obtained in less time the size of the step itself.



Real-Time Nonlinear FE Analysis for Surgical Simulation Using GPUs 703

– Loop over elements and compute the deformation gradient Xn, strain-
displacement matrix Bn

L, 2nd Piola-Kirchhoff stresses Sn, and element
nodal forces F̂n, and add these forces to the total nodal forces Fn.

– Loop over nodes and compute new displacements Un+1 using the central
difference method.

A detailed discussion of the formulation and computation of element matrices
for various element topologies is presented in [8].

3 GPU Implementation of the TLED Algorithm

As is apparent from Section 2 the TLED algorithm consists of a precomputa-
tion phase and a time-loop phase. Since the precomputation phase is performed
off-line and only once, our approach was to precompute relevant variables us-
ing standard CPU execution, load these variables into textures, and perform
all time-loop computations using the GPU. Textures are arrays of values stored
in GPU memory which are accessible by the fragment processors during a ren-
der pass. Individual texture elements are referred to as texels. Each texel may
store up to four floating point values, representing red, blue, and green pixel
colour values, plus a transparency value (RGBA). By maintaining all simula-
tion variables (displacements, forces, etc) on the GPU itself, we minimise the
amount of (time-consuming) CPU-GPU communication that takes place during
the simulation.

The time-loop is executed as two render passes (RP1 and RP2), correspond-
ing to the element- and node-loops described in Section 2. Computations are
performed on the GPU’s fragment processors. Loading is applied by prescribing
displacements of loaded nodes.

We use a linear tetrahedral element formulation [8]. While these elements are
known to produce inferior results when used for simulation of nearly incompress-
ible materials [11], from a data structure point of view they provide significant
advantages for GPU implementation. Since each element comprises four nodes,
and each node posseses three degrees of freedom, all element matrices have di-
mensions which are multiples of these values, and are therefore very convenient
for storage in four channel (RGBA) texels. Other element topologies such as hex-
ahedra could be implemented in the same way, but all element matrices would
be doubled in size and require twice as many texture reads. Additionally, recent
efforts have produced 4-node tetrahedron formulations which overcome the lock-
ing phenomenon to a large extent [12]. For these reasons we do not feel that use
of linear tetrahedra significantly diminishes the contributions of this first GPU
development.

Material constitutive response is modelled using a Neo-Hookean model [8].

3.1 Render Pass 1: Element Loop

The purpose of RP1 is to compute element nodal force contributions F̂n. All
precomputed element data are stored in 2D textures on the GPU prior to com-
mencement. The dimensions of the textures are calculated such that the number



704 Z.A. Taylor, M. Cheng, and S. Ourselin

of texels equals the number of elements. At each time step, prior to execution of
RP1, the GPU viewport is reset to these dimensions also to ensure the correct
number of pixels are rendered. As the GPU renders the viewport the coordi-
nates for each pixel are generated by the rasterizer and passed to the fragment
processors [13]. By maintaining the same scale for rendered pixels and element-
associated textures the coordinates of a pixel can be directly used to reference
any data relevant to the corresponding element. This is known as 1:1 mapping
and is commonly used in general purpose GPU applications.

Computation of element nodal forces requires the element nodal displace-
ments, shape function derivatives, and volume. The latter two may be accessed
from textures directly using the generated pixel coordinates. Displacements are
accessed via a lookup texture, in which each texel contains the four node indices
(from which displacement texture coordinates may be computed) for the current
element. With these data retrieved the element nodal forces may be computed
using the procedure decribed in [9].

For each element 12 force values are produced at each time step. The force
contributions from each element must be summed to obtain the total forces
on each node. Ideally, the computed forces would be added to a global nodal
force vector as they are computed, but this would involve random texture writes
(so-called scatter operations) which are currently prohibited. Therefore, force
values computed in RP1 are written to textures, which are subsequently read
and summed during the second render pass (node loop). The scatter operation is
therefore reformulated as a gather. Four force textures are attached to the frame
buffer to accommodate the four nodal force vectors produced by each element.

3.2 Render Pass 2: Node Loop

In RP2 the element nodal forces computed in RP1 are summed and used to
compute new nodal displacements Un+1. The next set of imposed displacements
on contacted nodes are also applied. The viewport is reformatted to dimensions
equivalent to the number of nodes in the system in order to achieve a 1:1 mapping
with the node-associated textures attached during this pass. Additionally, the
four force textures rendered during RP1 are reattached as an array of input
textures for RP2.

The major task of the fragment program for RP2 is the gathering of the ele-
ment nodal force contributions for the current node. The locations and numbers
of the relevant force values in the four force textures are determined via two
lookup textures, labelled NodeElCrds and FCrds. The latter contains lists of
force texture coordinates for each node in the system. Since node valencies are
not constant, it is not possible (or is very inefficient) to structure this texture
with a fixed mapping to the viewport dimensions. Therefore texture NodeElCrds
(which does have the dimensions of the viewport), is used to provide the location
of the first force texture coordinate in FCrds for the current node, and also the
valence of this node. The fragment program then fetches and sums the required
number of force values from the force textures using a dynamic loop structure.
It then remains to compute Un+1, as mentioned.



Real-Time Nonlinear FE Analysis for Surgical Simulation Using GPUs 705

4 Performance of the Algorithm

In order to assess the performance of the GPU implementation, we analysed two
configurations: a cube model undergoing stretching and a brain model subject
to indentation (see Fig. 1). The first served to illustrate the relative speed im-
provement achieved with the GPU, while the second constituted an example of
relevance to both interactive surgical simulation and non-rigid image registra-
tion. In both cases we compared the solution times per time step for the GPU
implementation with that of an equivalent CPU implementation. The GPU ver-
sion was coded using Cg [14] and OpenGL [13], while the CPU version was
written using C++. The test machine included a single 3.2GHz Intel P4 CPU
and 2GB of RAM. An NVIDIA GeForce 7900GT GPU (550MHz clock speed,
512MB RAM) was used. Solution times were obtained for a range of mesh densi-
ties for each model. In each case five simulations were run, and the mean solution
times are reported.

)b()a(

Fig. 1. (a) Cube model (82944 elements) after stretching by 20%. (b) Overlaid images
of the undeformed (wire-frame) and deformed (surface) brain model (46655 elements).
Anchor nodes near the brain stem are identified by spheres. Locations of displaced
nodes and their displacement directions are indicated by arrows. Computation times
for these mesh densities were 4.88ms/time step and 3.46ms/time step, respectively.

4.1 Stretching of a Cube Model

A series of cube models with edge lengths of 0.1m were constructed. Meshes
with from 6000 to 82944 elements were used. The models were used to simulate
stretching (by 20%) of a cube in which the displaced face and its opposing face
were assumed to be fixed to loading platens. Lamé parameters were λ = 49329Pa
and µ = 1007Pa, chosen to correspond to a generally accepted stiffness value for
brain tissue of E = 3000Pa, with a Poisson ratio of ν = 0.49 (approximating
incompressibility) [9]. Mass density was assumed to be that of water, i.e. ρ =
1000kg/m3. It should be noted that the critical time step size for explicit analyses



706 Z.A. Taylor, M. Cheng, and S. Ourselin

such as these is dependent on the material parameters used and the minimum
characteristic element length in the mesh [8]. For this reason we report the
solution times per time step, which are independent of these.

The GPU-computed deformed shape is shown in Fig. 1(a). The CPU and
GPU solution results were identical in all respects. The mean solution times
and ratios of solution times for each model size are plotted in Figs. 2(a) and
(b), respectively. The solution times scaled approximately linearly with model
size for both CPU and GPU implementations, which may be expected since the
main computational effort of the algorithm is the element-wise computation of
nodal forces F̂n. A decisive speed improvement (up to approximately 16.4×) was
achieved with the GPU implementation, as shown in Fig. 2(b).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Model size (x1000 elements)

S
o
lu

ti
o
n
 t
im

e
 (

m
s
)

GPU

CPU

0 20 40 60 80 100
8

9

10

11

12

13

14

15

16

17

Model size (x1000 elements)

R
a
ti
o
 o

f 
s
o
lu

ti
o
n
 t
im

e
s
 (

C
P

U
/G

P
U

)

(a) (b)

Fig. 2. (a) Mean solution times, and (b) ratios of CPU to GPU solution times for a
single time step for stretching of a cube model, plotted against model size

4.2 Indentation of a Brain Model

The next set of tests involved simulation of the indentation of a brain model.
The brain geometry was obtained from segmented magnetic resonance images
used in the study by Clatz et al. [15]. Three meshes were generated from these
data, with 11168, 25017, and 46655 elements, respectively. Material parameters
were as used in the cube models. Anchor nodes (with all finite element degrees of
freedom fixed) were selected from near the brain stem, while displaced nodes were
selected from around the frontal lobes (see Fig. 1(b)). Displacements of 0.01m
were applied. This configuration was not intended to represent any particular
surgical scenario, but was presented as a generic example of “neurosurgical-type”
deformations.

The undeformed (wire-frame) and GPU-computed deformed (surface) shapes
are superimposed in Fig. 1(b). Again, CPU and GPU results were identical.
The solution times, and ratios of solution times are plotted in Figs. 3(a) and
(b), respectively. Again, significant speed improvements were observed (though
somewhat less than for equivalent sized cube models), with a peak value of
approximately 14×.



Real-Time Nonlinear FE Analysis for Surgical Simulation Using GPUs 707

10 20 30 40 50
0

10

20

30

40

50

Model size (x1000 elements)

S
o
lu

ti
o
n
 t
im

e
 (

m
s
)

GPU

CPU

10 20 30 40 50
8

9

10

11

12

13

14

15

Model size (x1000 elements)

R
a
ti
o
 o

f 
s
o
lu

ti
o
n
 t
im

e
s
 (

C
P

U
/G

P
U

)

(a) (b)

Fig. 3. (a) Mean solution times, and (b) ratios of CPU to GPU solution times for a
single time step for indentation of a brain model, plotted against model size

5 Discussion and Conclusions

A novel GPU implementation of an efficient nonlinear FE algorithm suitable for
soft tissue deformation simulation has been presented. It was shown that the al-
gorithm employed was well suited to parallel execution, meaning solution speed
improvements compared with an equivalent CPU implementation of greater than
an order of magnitude were achieved. The largest achieved speed improvement
was 16.4×, and we were able to achieve real-time solution of models of up to
approximately 16000 tetrahedral elements. To the best of our knowledge this
represents the first attempt to port a fully nonlinear FE algorithm to the GPU.
Since the algorithm includes both kinematic and constitutive nonlinearities it
is suitable for simulation of soft tissue deformation, for example in applications
such as interactive surgical simulation and intra-operative non-rigid medical im-
age registration. In view of the substantial speed gains achieved with this first
GPU implementation we feel the present development is of great significance to
such time-critical applications as these.

Use of biomechanical modelling in surgical simulation and image-guided ther-
apy applications is becoming increasingly widespread. The large body of knowl-
edge and techniques developed by the biomechanics community over many
decades provide a powerful basis for addressing many problems in these areas.
In many such applications there is a fundamental difficulty in reconciling con-
flicting requirements for modelling fidelity and expeditious solution. The rapid
development of GPU technology has raised the possibility of an entirely new
paradigm in high performance computing. The present contribution of a nonlin-
ear FE algorithm implemented for GPU execution shows that this computing
model provides a low cost means for performing realistic biomechanical simu-
lations at speeds at or near real-time. We feel that this development has many
applications in the areas mentioned.



708 Z.A. Taylor, M. Cheng, and S. Ourselin

Acknowledgements

The authors thank P. Raniga for helpful discussions and assistance with GPU
programming, and B. Joshi for providing brain meshes. They also thank K. Miller
and G. Joldes for much assistance with details of the TLED algorithm.

References

1. Miller, K., Taylor, Z., Nowinski, W.L.: Towards computing brain deformations
for diagnosis, prognosis and neurosurgical simulation. Journal of Mechanics in
Medicine and Biology 5(1), 105–121 (2005)

2. Taylor, Z.A., Miller, K.: Constitutive modelling of cartilaginous tissues: A review.
Journal of Applied Biomechanics 22(3), 212–229 (2006)

3. Szekely, G., Brechbühler, C., Hutter, R., Rhomberg, A., Ironmonger, N., Schmid,
P.: Modelling of soft tissue simulation for laparscopic surgery simulation. Medical
Image Analysis 4, 57–66 (2000)

4. Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-
time surgery simulation. Graphical Models 65, 305–321 (2003)

5. Carter, T.J., Sermesant, M., Cash, D.M., Barratt, D.C., Tanner, C., Hawkes, D.J.:
Application of soft tissue modelling to image-guided surgery. Medical Engineering
& Physics 27(10), 893–909 (2005)

6. Wittek, A., Miller, K., Kikinis, R., Warfield, S.K.: Patient-specific model of brain
deformation: Application to medical image registration. Journal of Biomechan-
ics 40(4), 919–929 (2007)

7. Tanner, C., Schnabel, J.A., Hill, D.L.G., Hawkes, D.J., Leach, M.O., Hose,
D.R.: Factors influencing the accuracy of biomechanical breast models. Medical
Physics 33(6), 1758–1769 (2006)

8. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River, N.J
(1996)

9. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total lagrangian explicit dynamics
finite element algorithm for computing soft tissue deformation. Communications
in Numerical Methods in Engineering 23(2), 121–134 (2007)

10. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.J.: A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1), 80–113 (2007)

11. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite
Element Analyses. Prentice-Hall, Inc. Englewood Cliffs, NJ (1987)

12. Bonet, J., Marriott, H., Hassan, O.: An averaged nodal deformation gradient linear
tetrahedral element for large strain explicit dynamic applications. Communications
in Numerical Methods in Engineering 17(8), 551–561 (2001)

13. Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 2, 5th edn. Addison-Wesley, Upper
Saddle River, NJ (2006)

14. Fernando, R., Kilgard, M.J.: The Cg Tutorial: The Definitive Guide to Pro-
grammable Real-Time Graphics. Addison-Wesley Professional, Castleton, New
York (2003)

15. Clatz, O., Delingette, H., Bardinet, E., Dormont, D., Ayache, N.: Patient-specific
biomechanical model of the brain: application to parkinson’s disease procedure.
In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 321–331.
Springer, Heidelberg (2003)


	Real-Time Nonlinear Finite Element Analysis for Surgical Simulation Using Graphics Processing Units
	Introduction
	Total Lagrangian Explicit Dynamic Framework
	GPU Implementation of the TLED Algorithm
	Render Pass 1: Element Loop
	Render Pass 2: Node Loop

	Performance of the Algorithm
	Stretching of a Cube Model
	Indentation of a Brain Model

	Discussion and Conclusions


