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We demonstrate the feasibility of a 16x3.75 Gb/s (60 

Gb/s aggregate) Orthogonal frequency division 

multiplexing-Code division multiple access passive 

optical network (OFDM-CDMA PON) for next-generation 

access applications. 3.75 Gb/s PON channel transmission 

over 25 km SMF shows 0.1 dB dispersion and 0.9 dB 

crosstalk penalties. Advantages of the system include 

high capacity, enhanced spectral efficiency, coding gain, 

networking functions such as increased security and 

single wavelength operation.  
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The continuing expansion of bandwidth demand for optical access networks is growing exponentially due to the population of bandwidth-hungry services and applications, such as high-definition television (HDTV) and 3-D video telephony, online gaming and cloud computing in recent years  which demand optical transmission systems with higher spectral efficiency and higher channel data rates. Optical broadband access networks have emerged to address these challenges by supporting scalable and flexible bandwidths enabling multiple services. Next Generation Passive Optical Networks (NG-

PONs) are forecast to increase the global capacity of broadband access to well beyond 40 Gb/s downlink and 10 Gb/s uplink levels [1] to meet this need.  However, the computational requirements involved in electronic dispersion compensation for PONs using traditional modulation become very complex and power hungry as the data rate increases. OFDM based PONs are now regarded as promising solutions for future broadband access networks owing to their properties like the high transmission capacity and spectral efficiency, large chromatic and polarization mode dispersion tolerance, and flexible and dynamic bandwidth allocation. In practice, OFDM involves a parallel modulation implementation based on the Fast Fourier Transform (FFT), which enables modulation format variation on each low bandwidth OFDM subcarrier that can adapt to frequency dependent channel quality. This also makes possible simple single-tap equalization, significantly reducing the required bandwidth, complexity and cost of the electronics in the Optical Network Unit (ONU) side [2] [3]. Various OFDM PON configurations have been investigated recently. Time division multiplexing OFDM PONs (TDM-OFDM PONs) [4] which enable efficient and dynamic bandwidth allocation but have difficulties at higher transmission speeds and burst synchronization. They also suffer from low security and high interference between different ONUs and the upstream traffic needs a different wavelength assignment owing to the problem of beat noise. Wavelength division multiplexing OFDM PONs (WDM-OFDM PONs) [5] however can support very high data rates thanks to multiple wavelengths, but are relatively expensive and complex owing to the use of arrayed waveguide gratings  and 

 Fig. 1. The proposed architecture of OFDM-CDMA PON. 
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multiple high speed OFDM transceivers. They also do not allow flexible and dynamic resource allocation at different ONUs. CDMA technologies have many attractive features such as single wavelength operation, high power budget margins, a secure physical layer, low interference between users and low optical beat noise between different channels [6]. If the OFDM based transmitters and receivers are encoded and decoded with orthogonal codes, they can benefit from dense subcarrier spacing, ease of equalization, multiple access and crosstalk cancellation. Hence the combination of OFDM and CDMA has been shown to be a potential important evolution route for future low cost and high speed NG-PONs [7-8]. Building on this concept, we implement a system using an OFDM modulation scheme which then encounters CDMA encoding/decoding separately for each user for high aggregate data rates.  In addition the feasibility of a higher number of users is demonstrated. Fig. 1 shows the proposed OFDM-CDMA PON architecture. For the downlink direction, the optical line terminal (OLT) generates unique encoded OFDM data streams with orthogonal codes for different users and these are simultaneously transmitted to the ONUs. Each user has a corresponding unique CDMA modem which decodes its own data while the interference between multiple users can be eliminated through code auto- and cross-correlation process in decoding. The decoded data is then demodulated by an OFDM modem. A similar process can also be employed in the uplink to enable bidirectional transmission. This architecture provides several benefits including simple implementation, improved spectral efficiency and security. In particular, it is possible to use a single standard source and detector at the central office to support all users as they share a single wavelength which allows optimization of existing infrastructure and simplifies network management. The correlation properties of the decoding process in a CDMA system also have the potential to improve receiver sensitivity and increase power budgets due to coding gain. This may allow the CDMA signal to be transmitted over longer distances than required in access networks without amplification, thus making possible the integration of access systems with metropolitan area networks (MANs).  Walsh-Hadamard sequences are commonly used for CDMA networks due to their good auto- and cross-correlation properties [6]. For this OFDM-CDMA PON demonstration, a family of Walsh-Hadamard sequences with 16 chips is used. The Walsh-Hadamard codes are defined by the Hadamard matrices of dimension 2 j  for 
aj N∈ ( aN is positive integer) given by the recursive formula below: 
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for 2 aj N≤ ≤ , where ⊗ denotes the Kronecker product. The lowest order of Hadamard matrix of 2 forms the base matrix:  
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For CDMA encoding and decoding process, different codes (rows of the Walsh-Hadamard matrix) are assigned to different users, and single lth code from the Walsh-Hadamard matrix is expressed as follows:  
0 1 ... , 1,...,l l l
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 = = c 　   (3) where M denotes the length of the code. Digital OFDM symbols can be expressed as the output of the inverse FFT (IFFT) with the complex number: 
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where N is the size of IFFT. Different from [7][8], the signals are mapped into all the OFDM subcarriers and then the OFDM symbols in each user are spread and encoded using unique Walsh-Hadamard code rather than the reverse order. Now the nth CDMA encoded OFDM symbol can be written as: 
( )mod , /

,  0,1, 2,... 1l

q q M q M
y c x q MN  

= = − .    (6) Mod () and    denote the modulus after division and floor process in mathematics. Different users can be transmitted simultaneously and finally in the decoding process, the corresponding Walsh-Hadamard code is used to distinguish each other via auto- and cross-correlation properties. In the OFDM-CDMA PON experiments, the PRBS bits are mapped to Quadrature Amplitude Modulation (QAM) symbols and then input onto the OFDM subcarriers via a 512-size IFFT. The subcarriers are arranged so that the 2 subcarriers closest to the optical carrier are omitted. The remaining 510 subcarriers have Hermitian symmetry so that the IFFT output is real-valued for intensity modulation-direct detection (IM-DD), though at the cost of lower spectral efficiency. A cyclic prefix (CP) of 3 % is added in front of each OFDM symbol to mitigate the inter-symbol interference (ISI). The complete signal sequence comprises 340 OFDM frames (covering all the subcarriers) in which 40 frames are the training pilots for the estimation of channel subcarriers and phase equalization coefficients. 256 pseudo-noise (PN) bits are inserted in front of the OFDM symbols for automatic system timing synchronization utilizing their strong cross-correlation properties.  Each user is encoded with different 16-bit Walsh-Hadamard codes so that ideally 16 users can be transmitted simultaneously. Four typical 16-bit Walsh-Hadamard codes covering different spreading bandwidths are used in this proof-of-principle demonstration.   Code 3: {+1 +1 -1 -1 +1 +1 -1 -1 +1+1 -1 -1 +1 +1 -1 -1} Code 5: {+1 +1 +1 +1 -1 -1 -1 -1 +1+1 +1 +1 -1 -1 -1 -1} Code 6: {+1 -1 +1 -1 -1 +1 -1 +1 +1-1 +1 -1 -1 +1 -1 +1} Code 9: {+1 +1 +1 +1 +1 +1 +1 +1 -1-1 -1 -1 -1 -1 -1 -1}  The parameters for this OFDM-CDMA PON experiments are summarized in Table 1.  
Table 1. OFDM-CDMA PON Experimental Parameters  OFDM-CDMA PON parameters  Number of bits 179520 FFT size 512 Subcarrier bandwidth 39 MHz Single user data rate 3.75 Gb/s/ 2.5 Gb/sModulation 64 QAM/16 QAMSubcarriers 2-256 OFDM frames 300 Training frames 40 Synchronization 256-bit PN sequenceCP ratio 3 % CDMA 16-bit Walsh-Hadamard codes 
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