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ABSTRACT  

Fraunhofer IPMS has developed a one-dimensional high-speed spatial light modulator in cooperation with Micronic 

Mydata AB. This SLM is the core element of the Swedish company’s new LDI 5sp series of Laser-Direct-Imaging 

systems optimized for processing of advanced substrates for semiconductor packaging. This paper reports on design, 

technology, characterization and application results of the new SLM. With a resolution of 8192 pixels that can be 

modulated in the MHz range and the capability to generate intensity gray-levels instantly without time multiplexing, the 

SLM is applicable also in many other fields, wherever modulation of ultraviolet light needs to be combined with high 

throughput and high precision.  

 

Keywords: Laser Direct Imaging (LDI), Printed Circuit Boards (PCB), Spatial Light Modulator (SLM), Micro Mirror 

Array (MMA), gray-scale lithography, semiconductor packaging, semi-additive processing, substrate 

 

1 INTRODUCTION 

1.1 Laser direct imaging for advanced substrates in semiconductor packaging 

Modern electronics packaging increasingly utilizes high-end forms of printed circuit boards called ‘substrates’ and 

‘interposers’. The first provide a mechanical support and an electrical interface between integrated circuits and the 

outside world, the latter act as an intermediate layer used for interconnection routing and as a ground/power plane. 

Advanced packages require substrates with a high density of interconnects with minimum interconnect line widths and 

spaces of about 10 µm, in few years even less. Such high density substrates are processed in form of large panels (e.g. 

510 mm x 515 mm). To form the interconnect layers, the ‘semi-additive metallization’ process [1] is used (Figure 1): On 

a copper seed layer, a layer of dry film resist (DFR) is laminated (1). Next, the whole panel is exposed by ultraviolet 

(UV) light (2), in order to enable patterning of the DFR (3). The spaces in the patterned DFR act as template for the 

deposition of copper by electroplating (4). The removal of DFR (5) is followed by a flash etch to remove the Cu seed 

layer (6). As feature size decreases, several wiring layers and their vertical connections (vias) have to be aligned within 

smaller tolerances to avoid functional errors. Compared to mask-based steppers an exposure by Laser Direct Imaging 

(LDI) offers higher flexibility. LDI techniques utilize a programmable micromechanical element, a so-called ‘spatial 

light modulator’ (SLM) to print dose-patterns into the resist and have the potential to combine high resolution, high 

precision of alignment and high throughput. Small variations in the pitch of existing structures induced by strain in the 

substrates can be measured for each panel and compensated by appropriate algorithms, such that new layers perfectly 

match the preceding ones. Micronic Mydata AB has developed a novel LDI5sp laser direct imaging system optimized 

for this field of application. As a cooperation partner, Fraunhofer IPMS contributed to this system a novel fast one-

dimensional diffractive spatial light modulator (SLM), which shall be discussed in the present article.  
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Figure 9: Image of completed product wafer  

 

Figure 10: DIC microscopy image of pixel area after 

sacrificial layer etch. Minimal and homogeneous tilt of idle 

mirrors. 

 

 

 

Figure 11: Close-up onto the wire bonds on one side of the 

SLM. 

 

Figure 12: Close-up image of the assembled SLM unit 

showing the wire bonds connecting SLM and FIA boards. 

 

 

4 SLM CHARACTERIZATION 

4.1 Fundamental resonance of mirror tilt movement 

For a current spring design the resonance frequency has been measured at ambient pressure using a MSV-300 

Microscope Scanning Vibrometer (Polytec) by modulating the data-voltage with a rectangular voltage function. The 

resonance frequency has been determined to be higher than 1.3 MHz. 

 

4.2 Planarity of chip within pixel area 

An imperfect planarity of the SLM within the pixel area will lead to errors of the generated SLM image. The imaging 

system and software of an LDI system may compensate or correct for certain errors of SLM shape: e.g. a cylindrical bow 

of the MMA can be compensated by the imaging optics. Planarity specifications therefore have to be considered with 

respect to the specific imaging system. The planarity within the large pixel area is measured using a Wyko® NT9800 

optical profiler. Single measurements covering an area of 1.2 mm x 1.6 mm sampled with 4.7 µm resolution are stitched 

together to cover the whole pixel area. Figure 13 shows a typical height map of the pixel area after subtraction of bow. 
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Table 1: Summary of SLM parameters.  

 

LDI SLM Parameter  Value 

Chip dimensions [mm] 15 x 88 

Dimensions of pixel area [mm]  4 x 82 

Fill grade of active area [%] > 90 

Number of pixels 8192 

Mirrors per pixel 268 

Mirror shape hexagonal 

Mirror material Al-alloy 

Operating wavelength [nm] 355 

Mirror reflectance at 355nm [%] > 85 

Max. mirror deflection [nm] > 110 

Pixel resonance frequency [MHz] > 1.3 

Achieved contrast Up to 1000 

Mirror RMS planarity [nm] < 7 

 

4.5 Deflection test of assembled SLM-unit 

The functionality of the completely assembled and wire bonded SLM-units is verified by a deflection test using a 

Wyko® NT9800 optical profiler. Herein the SLM unit is addressed through the FIA boards to include FIAs and wire 

bonds in the test. All pixels are addressed with the same voltages to check for non-working pixels. The lateral resolution 

for the interferometric measurement is chosen such that the deflection amplitude of each individual mirror can be 

determined. The pixel area is covered by stitching a set of subsequent measurements.  

Figure 16, a plot of mean pixel deflection vs. pixel number, illustrates a typical result. All pixels are functioning. Due to 

design-related systematic differences in the routing of data electrodes, the observed deflection values vary slightly with 

pixel number in a systematic way. Irregular features, like the one at pixel 3072, are attributed to small variations in hinge 

width caused by small tolerances of lithography.  

Before the SLM is finally used in a LDI system, the mentioned systematic effects are compensated by a calibration 

procedure. After calibration for all individual pixels the voltages required to reach certain deflection values can be 

retrieved from look-up tables.  

A two-dimensional representation of the same data, i.e. a map of deflection for each individual mirror of the SLM (inset 

in Figure 16) can be used to check for possible non-working mirrors and to retrieve their positions. 

 

 

5 SLM PERFORMANCE IN LDI EXPOSURE SYSTEM  

5.1 Description of exposure system 

Figure 17 is a schematic of the LDI5sp system developed by Micronic Mydata AB. The coherent light source of the 

exposure system is a high-power, 355 nm diode-pumped solid state laser. The SLM is illuminated by the rectangular 

laser beam. Light reflected into the 0th diffraction order passes the aperture in the Fourier plane of the optical system, 

while the higher diffraction orders of the SLM are blocked. Behind the lens system, the beam is reflected via a rotating 

prism into one of four imaging arms rotating in synch with the prism before it is imaged onto the substrate.  

During exposure the intensity modulated line focus is laterally scanned in an arc across the substrate panel, always 

keeping the same orientation similar to a windscreen wiper. After it has passed the panel edge, the laser beam hits the 

next facet of the prism and is directed into the next imaging arm to expose the next arc. Since at the same time the panel 

is steadily moved, subsequently exposed arcs are seamlessly stitched together until the whole panel has been exposed.  

To maximize throughput, the twin table system aligns the next panel already while the preceding panel is being exposed. 

After exposure, the aligned panel is briefly flipped upwards to enable the passage and unloading of the already exposed 

panel. The tool exposes dry film resist on substrate panels with dimensions up to 510 x 612 mm² at a resolution better 

than 10 µm L/S. 

The constant-speed operation of both rotor arms and panel stage contribute to a highly precise pattern placement. Feature 

edges can be smoothly shifted laterally utilizing the gray-leveling capability of the presented SLM. An adjustment of 

exposure dose is possible by tuning the speed of rotation for the imaging arms. Based on the high SLM modulation rate 

and high optical efficiency of the SLM, a high write speed and efficient use of laser power are achieved.  
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5.2 Exposure results 

Examples of patterned substrates are shown to illustrate the successful utilization of the presented SLM in Micronic 

Mydata’s LDI5sp Laser Direct Imaging systems. Figure 18 shows a 15 µm high dry film resist on a copper seed layer 

patterned with 6 µm minimum line/space dimensions. Figure 19 shows a 25 µm high dry film resist on a copper seed 

layer structured with a pattern typical for the routing of interconnects around a pad. The minimum line/space dimensions 

in this image are 10 µm. Using the presented new SLM, contrast values (here defined as ratio of maximum and minimum 

intensity at the exposed substrate) of up to 1000 have been measured. 

 

 

Figure 17: Schematic of  Micronic Mydata’s LDI5sp system  

 

 

 

Figure 18: 15 um DFR on Cu seed layer, patterned with a 

micro-VIA interconnect test pattern. Minimum line/space 

feature size is 6 um. 

 

Figure 19: 25 um DFR on Cu seed layer, patterned with a 

structure typically used in the pad region of a substrate. 

Minimum line/space feature size is 10 µm.  
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6 SUMMARY 

Fraunhofer IPMS has developed  a fast one-dimensional analog spatial light modulator (SLM) in collaboration with 

Micronic Mydata AB. The SLM supports a pixel rate of  >10 billion grayscale-pixels per second and handles tens of 

Watt of laser power at a wavelength of 355 nm. 

 

The SLM has successfully passed all performance tests and is now utilized in Micronic Mydata’s novel LDI5sp series of 

Laser Direct Imaging systems optimized for the processing of advanced substrates for semiconductor packaging. A first 

Micronic-Mydata LDI5sp tool equipped with the IPMS-SLM has reached acceptance status at a final customer.  
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