(2015) .

45(6), pp.837-855,

This is the accepted version of Softw. Pract. Exper.

https://doi.org/10.1002/spe.2257

SOFTWARE—PRACTICE AND EXPERIENCE
Sdtw. Pract. Exper2013;00:1-18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

High-Speed Parallel Implementations of the Rainbow Method
Based on Perfect Tables in a Heterogeneous System

Jung Woo Kim, Jungjoo Seb Jin Hond, Kunsoo Park‘and Sung-Ryul Kim

IDepartment of Computer Science and Engineering and Institute of Computer Technology, Seoul National University,
Seoul 151-747, Korea
2Department of Mathematical Sciences and ISaC, Seoul National University, Seoul 151-747, Korea
3Division of Internet and Media, Konkuk University, Seoul 143-701, Korea

SUMMARY

The computing power of graphics processing units (GPU) has increased rapidly, and there has been extensive
research on general-purpose computing on GPU (GPGPU) for cryptographic algorithms such as RSA, ECC,
NTRU, and AES. With the rise of GPGPU, commodity computers have become complex heterogeneous
GPU+CPU systems. This new architecture poses new challenges and opportunities in high-performance
computing. In this paper, we present high-speed parallel implementations of the rainbow method based
on perfect tables, which is known as the most efficient time-memory tradeoff, in the heterogeneous
GPU+CPU system. We give a complete analysis of the effect of multiple checkpoints on reducing the
cost of false alarms, and take advantage of it for load balancing between GPU and CPU. For GTX460,
our implementation is about 1.86 and 3.25 times faster than other GPU-accelerated implementations,
RainbowCrack and Cryptohaze, respectively, and for GTX580, 1.53 and 2.40 times faster. Cagyright
2013 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: GPGPU; CUDA; Heterogeneous Computing; Cryptanalysis; Cryptanalytic Time-
Memory Tradeoff; Rainbow Method

1. INTRODUCTION

With the GPU's rapid evolution from a graphics processor to a programmable parallel processor,
GPU is a many-core multi-threaded multiprocessor that excels at not only graphics but also
computing applications. Today’s GPUs have hundreds of parallel processor cores executing tens of
thousands of parallel threads. Using a large number of processors, GPUs are used for accelerating
the performance of mathematical and scientific works. General-purpose computing on GPUs
(GPGPU) was first introduced in 2006 by unveiling CUDA by NVIDIA [2]. CUDA enables
programmers to easily control GPUs by writing programs similar to C.

Recently, researchers and developers have enthusiastically adopted CUDA and GPU computing
for cryptographic algorithms. In 2007, Manavski et al. efficiently implemented the Advanced
Encryption Standard (AES) algorithm using CUDA [3]. In 2008, Szerwinski and Guineysu made
use of CUDA for GPGPU processing of asymmetric cryptosystems (RSA, DSA, ECC) [4]. In
2009, Bernstein et al. showed that GPU can be used for cryptanalysis as well as implementation of

*Correspondence to: Kunsoo Park, Department of Computer Science and Engineering and Institute of Computer
Technology, Seoul National University, Seoul 151-747, Korea. E-mail: kpark@theory.snu.ac.kr

TThis article shares much of its material with our previous work [1], presented at INDOCRYPT 2012. However, this
work treats the perfect table case, whereas the previous work covered the non-perfect table case.

Copyright© 2013 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls [Version: 2010/05/13 v3.00]

2 J.W. KIM ET AL.

cryptographic algorithms [5]. They implemented the eldgturve method for integer factorization
on GPUs. In 2010, NTRU cryptosystem was implemented on CUPpA&mans et al. [6].

One-way functions are fundamental tools for cryptogramg it is a hard problem to invert
them. There are three generic approaches to invert themsimygest approach is an exhaustive
search. An attacker tries all possible values until theiprage is found; however, it needs a lot
of time. Another simple approach is a table lookup, in whinhattacker precomputes the images
of a one-way function for all possible pre-images and sttnes in a table. The attack can be
carried out quickly, but a large amount of memory is neededttoe all precomputed values.
Cryptanalytic time-memory tradeoffs [7, 8, 9, 10, 11, 12, 13, 15] are compromise solutions
between time and memory. Cryptanalytic time-memory tréfideas introduced by Hellman in
1980 [16]. Rivest proposed to appdystinguished point§l7] to Hellman’s method which reduce
the number of table lookup operations. Borst et al. sugddasteise gerfecttable [18] where no
merging chain exists. It is more efficient time-memory ti@tithan the non-perfect table, although
more precomputation effort is required. In 2003, a new mebthuich is referred to as thainbow
method was suggested by Oechslin [19]. The rainbow method savastarfof two in the worst
case time complexity compared to Hellman’s method. Up mati, the rainbow method is the most
efficient time-memory tradeoff. Avoine et al. introduceceahnique detecting false alarms, called
checkpoint$20]. Using the technique, the cost of false alarms is redwgigh a minute amount of
memory.

The rainbow method has been used widely in practice for angcgasswords, and there are
some executable files publicly available [21, 22, 23]. Amdhgse, RainbowCrack [23] and
Cryptohaze [21] provide GPU-accelerated implementatadrthie rainbow method, and they are
significantly faster than any other implementations on CPU.

With the rise of GPGPU, commaodity computers are complexrbgeneous GPU +CPU systems
that provide high computational power [24, 25]. The GPU aiUCan execute in parallel and
have their own independent memory systems connected thrinegPCle bus. The GPU+CPU
co-processing and data transfers use the bidirectionad B@. This new architecture poses new
challenges and opportunities in high-performance comguti

In this paper, we propose high-speed parallel implememntatdf the rainbow method based
on perfect tables in the heterogeneous GPU+CPU systemgihrtihe analysis of the behavior
of time-memory tradeoffs. We give a complete analysis ofdffect of multiple checkpoints on
reducing the cost of false alarms for the perfect rainbovietadind take advantage of it for load
balancing between GPU and CPU. We compare the performarme ahplementation with those
of RainbowCrack and Cryptohaze in two platforms (GTX460 &iX580). For GTX460, the
proposed implementation is about 1.86 and 3.25 times fést@r RainbowCrack and Cryptohaze,
respectively, and for GTX580, 1.53 and 2.40 times fasteth&best of our knowledge, this is the
fastest implementation of the rainbow method so far.

The rest of the paper is organized as follows. We begin wigipinaries including an overview
of modern GPUs and a brief review of the rainbow method iniSe@. In Section 3, we analyze
the checkpoint technique. In Section 4, we describe ourifiaglementations in a heterogeneous
GPU+CPU system. Finally, Section 5 compares our implentientavith other implementations on
GPU, and Section 6 concludes the paper.

2. PRELIMINARIES

2.1. GPGPU and CUDA

While traditional GPUs were used for graphical applicasiomany modern GPUs can deal with
general parallel programs which had been performed noymallCPUs. CUDA [2] is NVIDIAs
software and hardware architecture that enables GPUs todgeammed with a variety of high-
level programming languages, and it is a parallel compuairafpitecture that is used to improve
computing performance by exploiting the power of GPU. N\A}ias released several improved

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 3

GPU [SM 16

M2
SM1

Corel||Core?2| --- |Core 32
| Register file (32,768 x 32-bit) |

| 64KB shared memory/L1 cachl
A
Y

‘ L2 cache ‘
v1

| Memory controller |
[4
Y |

‘ DRAM (global memory) ‘

Figure 1. Fermi architecture

versions of architectures since its first architecture, @8@ the newest one is called Fermi [26],
which was introduced in 2009.

One of the most attractive features of GPUs is that it hasgelaumber of processor cores.
Basically, GPUs consist of a number of streaming multipssoes (SM), and each SM contains
multiple processor cores. The clock rate of each core isivelg lower than that of a CPU core.
For example, the GeForce GTX580 accommodates 16 SMs, eadhiaf consists of 32 processor
cores operating in the clock rate 1,544 MHz, as presentedguré 1. Hence, the total number of
processor cores is 512.

One can program the GPU with a high-level programming laggu@/e write programs in CUDA
C that supports the CUDA programming with a minimal set oastons to the C language. In the
rest of this section, we will describe the key features ofGfDA that we must take into account
for programming.

Thread Hierarchy One of the key abstractions of the CUDA is a hierarchy of ttisedy this
abstraction, we can divide the whole problem into coarséngd subproblemblocks which
can be solved independently in parallel. A block can be arrfartitioned into fine-grained
subproblems that can also be solved in parallel within tbelblThis fine-grained subproblem
unit is called ahread CUDA's hierarchy of threads maps to a hierarchy of processn the
GPU. An SM executes one or more blocks, and CUDA cores in thegddute threads.

Scheduling & Branch The way threads are scheduled in GPUs is somewhat diffex@mtthat in
CPUs. The unit of thread scheduling in SMs iwarp which is a collection of 32 threads.

Basically, all the threads within a single warp execute #maesinstruction at the same time.
However, multiple threads of the same warp may executellseiidhen they meet any flow
control instruction such ag A else B, they could take different execution paths. Then,
different execution paths within a warp are serializeds Italledwarp serialization[27, 2],
which will slow down the overall performance.

Memory The physically separated place where CUDA threads are te@:referred to adevice
which includes the GPU. Thieostis where the C program runs, and this includes the CPU.
The host and device have their own memory address spacealdtde processed are firstly
loaded on the host memory and then copied to the device meswmtigat threads running on
the GPU can access the data. The processed data on the desitssta be copied back to the
host memory after the execution.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

4 J.W. KIM ET AL.

t

Figure 2. A rainbow table

The device memory has a hierarchy and it consists of registbared memory, caches and
global memory. Registers are the fastest on-chip memornytlend>TX580 contains about
32K registers for each stream multiprocessor. The global mgmesides in the off-chip
DRAM on the graphics board. It has the longest access latautdyas the largest space.

2.2. Rainbow Method

In this section, we summarize the rainbow method [19].4.be a one-way function fron\/ to H
and R; be a reduction function fror to /. The functionf;, defined byf;(z) = R;(g(z)), maps
N into NV, where| /| = N.

The rainbow method consists of two phases: precomputatiah @nline phases. In the
precomputation phase, we randomly chopsstart points inV, labeledSP,, SP, ..., SP,_1.
For each) < i < m, we set

Zi,0 = SPF;,

and compute
zij = fi—1(2ij-1),1 <j <t

recursively. In other wordsy chains of lengtht are produced starting froriP; (0 < i < m) as
shown in Figure 2. The last element; for eachi-th chain is called an end poinE®;). The pairs

of the start and end point&$ P;, EP;), are stored in a table, and they are sorted with respect to the
end points. Note that all intermediate points are discatdeegduce memory requirements. To make
the tableperfect only one chain among the chains that have same end poirtterésisthe rest of
chains are removed. In a perfect table, therefore, all eimitgpare distinct.

In the online phase, given an image= g(x), we try to invert the one-way functiof-) to find
the pre-image:q, by generating online chains that start frgm

At the first iteration, the online chain of length one is gated by computing; = R:—1(yo) =
fit—1(x0), and we check whether it is an end point on the table by comtyet binary search. If
11 = EP; for somei, which is referred to as aalarm, it means that is next toEP; in Figure 2
or EP; has more than one inverse images. The latter case is referesdafalse alarm Therefore,
we regenerate a chain starting fro§1; to computez; ;_;, and check whether it is a false alarm
or not by computingy(z; 1—1) = yo. If g(zi—1) = yo, We find the pre-image,, which is equal
to z;,—1, and the online phase stops.if # EP; or a false alarm occurred, then we compute
y2 = fi—1(R:—2(yo)), the online chain of length two, and check whether it is an poiit. The
above process is repeated untjlis found or allt online chains fail to invert the given imagg.

The online phase of the rainbow method can be divided ingetpartsonline chainlookupand
regenerating chainFor1 < k < ¢, theonline chainprocedure generates the online chain of lerigth
Thelookupprocedure checks whether each of these is an end point jalarmugh a binary search
in the rainbow table. Thesgenerating chairprocedure regenerates the chains of length k),
starting from start points for resolving alarms. Becaubéetibokup time through a binary search is

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 5

Rainbow Table t—vy t—yg¢ t—oc t

A A
I
Wl
~
v
&
2 I B
) _/<
= 5
L i
L, &
S i
W
N _____ -
e A e m e e = ||

Figure 3. Sizes of the pre-images of end points afthe~)-th column

negligible in comparison to the one-way function invocatione, the one-way function invocation
is the dominant factor in the overall cost of the rainbow rdth

Note that the rainbow method is a probabilistic algorithrhaflis, success is not guaranteed
and the success probability depends on the time and memogatdd for cryptanalysis. If the
pre-imager, that we want to find exists in the rainbow table, the rainbovitroe will succeed in
finding it; Otherwise, it will fail. The success probabilign be computed by the equation presented
in [28, 19]. In the case of failure, the online phase gensratmline chains, and it carries out
lookups. Also, it regenerates some chains starting from gtants whenever alarms occur in the
lookup procedure. On the other hand, if the rainbow methedeeds in finding the pre-imags,
it immediately stops in the middle of the online phase.

3. CHECKPOINTS

By using checkpoints [20], we can reduce the time for themeggging chain procedure. We store not
only the start and end points of the chains in the table botthks information of some intermediate
points, i.e.checkpointsThe least significant bits of the intermediate points atelig stored. Using
the information, we can detect false alarms in advance witfegenerating the chains starting from
start points. If alarms occur, we compare the informationest in the table with those of the online
chain for each checkpoint. If they differ at least for onedatpmint, we know for certain that this
is a false alarm. In [20], Avoine et al. analyzed the effectloéckpoints for thenaximalperfect
rainbow table. Hong [29] took an approach different front tfa[20]. In [29], the effect of multiple
checkpoints is analyzed for Hellman’s table, but for thalpaiw table only a single checkpoint is
analyzed. In this section, we extend the analysis of [29] multiple checkpoints for the perfect
rainbow table. We also analyze the performance improvesifenthree cases in terms of the order
of online chain generation. These results are used forefiinplementations in Section 4.

The set of elements in thjeth column of the rainbow table is denoted BY;, whose size is: for
all 1 <j <tinthe perfecttable. Let;,cs,...,c, (c1 < ca < --- < ¢,) be the positions of 1-bit
checkpoints. That is; checkpoints are located @t— c;)-th columns of the table fof = 1,...,n.
If an online chain of length is generated such that< ¢;, the checkpoints cannot filter out false
alarms. Thus, we assume that an alarm is observed when are @hlain of lengthy is generated
such thate; < v < ¢;yq for j =1,...,n, wherec,41 = t. This means that the pre-imagg is in
[+ 7(RTy), wheref, is function f; whose indexj is not explicitly specified ang, " (RT;) is the

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

6 J.W. KIM ET AL.

S‘P c‘j...cu‘Jrl C‘uc‘lE_‘P SP‘ C‘j"'cu‘+1 C‘u"'C‘IEP SP‘ c‘j...cu‘Jrl C‘u"'c‘lE_‘P
x@»/‘ I /

Y v Y

Figure 4. Merge before; ~ Figure 5. Merge between Figure 6. Merge aftet;
cu @ndey 41

set of pre-images undgf (= f« o --- o f,) of the end pointf27;. As can be seen in Figure 3, the
following relations hold:

RT, . C fr ""NRT,_.,) C -~ C fr "")N(RT,_.,) C f77(RT)).

Lemma 1
Let 20, = |fx " (RT})| and z; ., = |f§(”*“j)(RTt_cj)| for j =1,...,n. The expected decreasing
number of false alarms due to checkpoints when an onlineafaéngthy such that; < v < ¢;41
is generated is
j—1
. 1 1 — 1
D(j,v) = N{(l ~ 57)%0y > mzu+1,7}7

u=0
wherezg , ~ m(1+v)(1 — §x) andz, , ~ m(1 +v — ¢cy) + W#*‘Q){m ¢y +2NIn(1 —
).
Proof

We compute the cost of false alarms when checkpoints are &setfz, € ff”_cj)(RTt,cj) \
RT, . (Figure 4), a false alarm always occurs. It is because th&@rdhain starting from
xo is merged with an precomputed chain in the rainbow table rbefoe (¢t — ¢;)-th column,
and j checkpoints are thus useless in detecting false alarms.VEpE f*_”_c“')(RTt,Cu)\
f{”‘C”“)(RTt_CW) for 1 <u < j — 1 (Figure 5), this means that the online chain is merged
with an chain in the table betweepandc, 1. Hence, a false alarm occurs with probabilifjz/ —
by (j — u) 1-bit checkpoints, i.e.¢,+1,...,c;. Finally, for Voo € fi 7 (RT}) \ f*_”_“)(RTt,CI)
(Figure 6), a false alarm occurs with probability2-.

We now compute the improvement in the numberfofapplications due to checkpoints. The
expected number of false alarms without checkpoints wihen ff(%“j)(RTt_cj) \ RT;_~ is

1

~| T (R \ BT,

1
= N(Zjﬂ - m)?

whereN is the size of\/. In this case, a false alarm always occurs. The expected ewoilfalse
alarms without checkpoints when € f, 7~ (RT,)\ f "~ “*(RTy_.,.,) is

1

N

1

ORI e)\ FE T (R e,)| = 55 (s — Zu).

In this case, thé; — u) checkpoints cannot filter out false alarms with probabilif2g’—. The
expected number false alarms without checkpoints whea ;7 (RTy) \ f» 7~ (RT,_,,) is

1

NI RTINSO (BT)

1
= N(ZOKY — 21,9)

In this case, the checkpoints cannot filter out false alarms with probabiliA2’. Therefore,
the expected number of false alarms when an online chainngfthey is generated such that

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 7

¢; <v<e¢jy1 (j=1,...,n)can be written as
1 |
N{(Zjﬁ — T)’L) + Z 2j——u(zu=7 — ZquLA/)}. (1)
u=0

Also, the expected number of false alarms without checkpaiten an online chain of lengthis

generated is
1
N (20,4 —m). (2)

Hence, the expected decreasing number of false alarms dwbeitkpoints when an online
chain of lengthy is generated i§2) — (1), which simplifies to the claimed value. In addition,
according to Propositions 4 and 5 in [2%., ~ m(1 +7)(1 — 23), 2y & m(L+7 — ¢y) +

OeadGeatB {m - ¢y + 2N In(1 — e)} O

Now, we analyze the performance improvement for three castsms of the order of online
chain generation: at thieth iteration,(i) the online chain of lengtk is generated, i.e., the online
chains are generated from shortest to londésthe online chain of lengttt — & + 1) is generated,
i.e., the online chains are generated from longest to sétoi®) for a fixed1 < a <t, if k < a,
the online chain of lengthk is generated; otherwise, the online chain of len@gth £ + o+ 1) is
generated, i.e., the third case is a hybridip&nd(ii).

Theorem ZFrom shortest to longest online chains)
Assume that the online chain of lengths generated at thieth iteration. The expected number of
/+ applications that can be removed through-bit checkpoints is

Z{ S -kt D(j,k)-(l—%)kil},

Jj=1 cj <k<(,1+1
wherec,, 11 = t.

Proof

At the k-th iteration, the online chain of lengthis generated, i.ey = k. Hence, forc; < v =
k < ¢j4+1, the expected decreasing number of false alarms due to pbietk isD(j, k) and the
number of f, applications for checking false alarmstis- k + 1f. The probability that the:-th
iteration is processed is equal to the probability to fatilthe (¢ — 1)-th iteration. This probability

is (1— ;(;)k ' Therefore, we obtain the claimed value. O

Theorem 3From longest to shortest online chains)
Assume that the online chain of length— & + 1) is generated at the-th iteration. The expected
number off, applications that can be removed through-bit checkpoints is

n

Z{ > k-D(j,t—k+1)-(1—%)k71}.

j=1 t4+l—cj1<k<t+1l-—c;

Proof

At the k-th iteration, the online chain of length— & + 1) is generated, i.eqy =t — k + 1. Hence,
for ¢; <v<e¢jq1 e, t+1—cip1 <k<t+1-—c;, the expected decreasing number of false
alarms due to checkpoints i3(j,¢ — k + 1) and the number of, applications for checking false

alarms isk. The probability that thé-th iteration is processed (- %)k_l. Therefore, we obtain
the claimed value. O

TStrictly speaking, one extr@application follows(t — k) number off, applications in order to check false alarms.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

8 J.W. KIM ET AL.

Theorem 4Hybrid)

Assume that, for a fixetl < o < ¢, the online chain of length is generated if < « and otherwise
that of length(t — k£ + « + 1) at thek-th iteration. The expected number fifapplications that can
be removed through 1-bit checkpoints is

n

Z{ Z (t*k+1)-D(jvk).(1,%)k’l+

Jj=1 cj<k<cjii

1<k<a
m k—1
3 (k;—a)-D(j,t—i—a—i—l—k)-(l—N) }
t+at+l—c;p1<k<t+a+l-—c;
a+1<k<t

Proof

At the k-th iteration such that < k < a, the expected number of, applications that can be
removed through 1-bit checkpoints is the same as the first case (from shdddsingtest). At
the k-th iteration such that + 1 < k < ¢, the online chain of lengtft + o + 1 — k) is generated,
i.e.,y=t+a+1—k. Hence,folc; <y <c¢jpr,i.e,fort+a+1—cjpi <k<t+a+l-cg,
the expected decreasing number of false alarms due to obietkp D(j,¢t + o« + 1 — k) and the
number off, applications for checking false alarmskis- a. The probability that thé-th iteration

is processed iél — %)k_l. Therefore, we obtain the claimed value. O

Tables | and Il show the performance improvement due to tleelghoints and the optimal
positions of those for three cases (from shortest to long@ste chains, from longest to shortest,
and a hybrid witha = 15, 360), where N = 3.58 x 102, m = 80, 530, 636, andt = 71, 535. The
optimal positions represent the ratio from the rightmoduiem of the table. One way to find
the optimal positions of checkpoints is to test all possitenbinations of the checkpoints and
choose the positions that maximize the improvement dueetotieckpoints. However, it is too time
consuming to test al(fl) combinations. We make use of an approximate algorithm. Atfifst
stage, we globally find an approximate solution. ket 5,000 be an initial interval, and we test
all n-combinations of{i - s +1:¢=0,...,14}, i.e., the set of points in [1..71,535] starting from
1 with intervals of 5,000. Lep; for i = 1,...,n be the points we obtain from the first stage. We
repeatedly find a more accurate solution ng& by reducing the interval. At the next stage, the
interval is setta; (s < 5), and we testthe poinjs + j - sfori = 1,...,nandj = 0,1,2, and then
updatep;’s to the values that maximize the improvement. This protesspeated while > 10.
We used our CUDA C program to calculate the improvements mallgh We verified that the
approximate solution was the same as the exact solutionui@thpy all possible combinations for
n=12,...,7 (andt = 71, 535).

The number off, applications in the regenerating chain procedure withbetkpoints for the
first case (from shortest to longest) can be calculated friieolem 2 of [29], and those for the
other cases (from longest to shortest and hybrid) can beleséd from the following theorems.
These theorems can be easily obtained in a way similar toréhea of [29].

Theorem §From longest to shortest online chains)
Assume that the online chain of lendith— & + 1) is generated at thie-th iteration. The number of
f+ applications in the regenerating chain procedure withbatkpoints is

Zt m m(t—k+1) m k-1
k:lk'ﬁ(t_kJrz){l_T}'(l_N) '
Theorem GHybrid)

Assume that, for a fixetl < o < t, the online chain of length is generated if < o and otherwise

¥The reason that is set asi5, 360 will be explained in Section 4.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 9

Table I. Expected numbers ¢f applications (unitt?) in the regenerating chain procedure and performance
improvement due to checkpoints at the optimal positionEL($om shortest to longest online chains, LTS:
from longest to shortest online chains)

of checkpoints Il 1] 2] 3] 4] 5] 67
of f, applications
without checkpointg 0.1062
(1)

Reduced # of f,
applications with|/0.0198 0.0327/0.0419 0.0490 0.0545 0.0591 0.0628
checkpoints (2)
STL Improvement ((2)/(1)) || 18.6%)] 30.8%| 39.5%| 46.1%]| 51.3%)| 55.6%| 59.1%
Optimal positions 0.24120.18090.14720.1250 0.10910.0970 0.0874
0.31880.24710.2048 0.1760 0.1548 0.1384
0.37670.2998 0.25250.2193 0.1944
0.42240.34330.2929 0.2566

0.45990.3800 0.3275
0.49150.4114
0.5184
of f, applications
without checkpointg 0.0981

3)

Reduced # of f,
applications with||0.0210 0.03420.0433 0.0501 0.0553 0.0594 0.0628
checkpoints (4)
LTS Improvement ((4)/(3)) || 21.4%| 34.9%| 44.1%| 51.1%) 56.4%| 60.6%| 64.0%
Optimal positions 0.39940.31650.26470.22840.2013 0.1804/0.1635
0.4902 0.4036 0.34590.3038 0.2715 0.2457
0.55220.4669 0.40770.36320.3280
0.59800.51570.4567 0.4113
0.63350.5546 0.4967

0.66210.5865
0.6855
of f, applications
without checkpointg 0.0882
(5)

Reduced # of f,
applications with|[0.01490.0249 0.0328 0.0384 0.0434 0.0470 0.0505
checkpoints (6)

Hybrid Improvement ((6)/(5)) || 16.9%| 28.2%| 37.2%| 43.5%)| 49.2%| 53.3%| 57.3%
(e = 15,360)| Optimal positions 0.39940.14430.13160.1036 0.0974 0.0812 0.0777
0.43890.35830.1662 0.15570.1279 0.1221
0.5199 0.3856 0.33520.1786 0.1702
0.53950.45870.3552 0.3197
0.59200.47440.4208
0.6034 0.5262
0.6412

that of length't — k + « + 1) at thek-th iteration. The number of, applications in the regenerating

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

10 J.W. KIM ET AL.

Table II. Reduced numbers ¢f applications (unitt?) in the regenerating chain procedure when 22 1-bit
checkpoints are used.

| Reduced # Improvement| Optimal positions

0.0363, 0.0555, 0.0754, 0.0957, 0.1167,0.1385,
0.1609, 0.1843, 0.2084, 0.2334, 0.2596, 0.2871,
0.3159, 0.3463, 0.3785, 0.4128, 0.4496, 0.4895,
0.5334, 0.5826, 0.6396, 0.7102
0.0692, 0.1036, 0.1379, 0.1719, 0.2058, 0.2396,
0.2733, 0.3070, 0.3406, 0.3743, 0.4081, 0.4421,
0.4763, 0.5109, 0.5459, 0.5816, 0.6180, 0.6555,
0.6946, 0.7359, 0.7804, 0.8308
0.0318, 0.0483, 0.0655, 0.0830, 0.1011, 0.1195,
Hybrid 0.0707 80.2% 0.1385, 0.1580, 0.1782, 0.1990, 0.2661, 0.3102,
(o = 15, 360) ' ' 0.3542, 0.3985, 0.4430, 0.4880, 0.5338, 0.5808,
0.6293, 0.6801, 0.7346, 0.7961

STL 0.0861 81.1%

LTS 0.0826 84.2%

chain procedure without checkpoints is

(03

Sk guenn-fo- (o)

kzz(;l(k—a)-%(t—k—l—a—i—@{l_m(tlz;a+2)}.(1_%>k—1.

Note that the required numbers 6f applications in the regenerating chain procedure without
checkpoints vary with the orders of online chain generati@ecording to Table 1,0.1062¢2,
0.0981¢%, and 0.0882t% for STL, LTS, and hybrid, respectively) Also, the effect dfeckpoints
are similar regardless of the orders of online chain gemeratAs a result, for LTS and
hybrid, the expected total lengths of the chains generatetthé regenerating chain procedure

with 22 checkpoints are reduced by about 23% {:1062=0-0861)—(0.0981-0.0826)y 5 1304

(0.1062—0.0861)
(0.1062—0.0861)—(0.0882—0.0707) :
(0.1062-0.0861)), respectively, compared to STL.

Table Il shows the effects of LTS and Hybrid over STL in thgeperating chain procedure
without checkpoints. The effects are measured for variailses ofm and N. For hybrid, we select
the optimala that maximizes the improvement. The ratio of the optimalitpws of « from the
rightmost column is 0.1676 for all values of and N that we testetd As can be seen from the
table, the effects do not depend@nandN. The cost of LTS and Hybrid in the regenerating chain
procedure are reduced by about 7.6% and 17.6% compared tdd®all m and NV, respectively.
Therefore, changing the order would be effective fomalhnd V.

4. IMPLEMENTATION IN A HETEROGENEOUS GPU+CPU SYSTEM

In this section, we describe our implementations of theqmtrfainbow method in a heterogeneous
GPU+CPU system. Using both GPU and CPU, we implement thbaairmethod in parallel. The
key factors for achieving good performance dieeliminating the warp serialization by splitting the
online phase of the rainbow methdd) load balancing between GPU and CPU using checkpoints,
(iiif) changing the order of the online chain generation,(@ndully parallelizing the rainbow method

by reinvoking GPU for resolving false alarms.

§The value ofa can be easily computed by using Maple [30].

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 11

Table Ill. Effects of LTS and Hybrid over STL in the regenangtchain procedure without checkpoints for
variousm and N, wheremg = 80, 530, 636.

m Order 50 515 2];70 555 560
LTS 7.656% 7.656% 7.656% 7.656% 7.656%
Hybrid || 17.612% 17.612% 17.612% 17.612% 17.612%
LTS 7.656% 7.656% 7.656% 7.656% 7.656%
Mo Hybrid || 17.612% 17.612% 17.612% 17.612% 17.612%
Am LTS 7.656% 7.656% 7.656% 7.656% 7.656%
0 Hybrid || 17.612% 17.612% 17.612% 17.612% 17.612%
8m LTS 7.656% 7.656% 7.656% 7.656% 7.656%
0 Hybrid || 17.612% 17.612% 17.612% 17.612% 17.612%

mo / 4

Before explaining our implementations, we first present thigle used in our experiment.
Cryptographic hash algorithm SHA-1 was used as the one-wagtibn. We assumed that our
table is used for cracking passwords which consist of loasgcuppercase alphabets (a-z, A-Z) and
numbers (0-9), and their lengths are shorter than or eqalfbat is,NV = 62 4+ 622 + - - - + 627 =~
3.58 x 10'2 ~ 2417, We intend to create a single perfect rainbow table with 80&6ess probability
with m = 80,530,636 and¢ = 71,535. According to [31], we can make such a table witly =
412,383, 272 precomputed chains. After removing the chains, except ongy that have same end
points in the precomputation phase, 529, 164 chains among the:, chains actually remained. As
aresult, we used a perfect tablerof= 80, 529, 164 andt = 71, 535 in our experiment. For reasons
of efficient memory access, a start point [d6g, mo] = 29 bits is stored in a 32-bit data type,
uint32_t, and an end point oflog, N = 42 bits? is stored in a 64-bit data typejnt64_t. Thus,
the total size of the table is aboutd GB. Throughout this section, we conducted our experiments
on two Intel Xeon E5506 2.13GHz quad-core CPUs (8 cores #l)tand a GTX580 1544MHz
512-core GPU. We used Microsoft Visual Studio 2008 envirenton Window 7.

The naive implementation of the parallel rainbow methodhiat teach thread generates the
corresponding online chain in parallel. That is, thth thread { < i <t) generates the online
chain of lengthi (the online chain procedure), and it checks whether an atecurs (the lookup
procedure). If an alarm occurs, theh thread regenerates the chain of length- i) and it
checks whether the element in tfie- 7)-th column isz, or a false alarm (the regenerating chain
procedure). We created 640 threads per SM, i.e., tlidlx 16 = 10, 240 threads. Thus, at first,
threads generate the online chains whose lengths are betwaed 10,240, and some of them in
which alarms occur regenerate the chains and check whedbhrad these is a success or a false
alarm. If some SM finishes its workload, the next 640 onlinaick, whose lengths are between
10,241 and 10,880, are assigned to the SM. We call this ingrdationthe Naive GPU

Table IV shows the execution time when it fails to find a prexg®. The second row represents the
time for executing all three procedures, and the third rqwesents the time for executing the online
chain and the lookup procedures excluding the regeneratiagn procedure. The third column in
the table represents the total length of the chains genkiatthe online chain and regenerating
chain procedures.

Table IV. Time of the online phase when it fails

procedures | time | chainlength
online chain+lookup+regenerating chdin96.6 sec| 3.6 x 10°
online chain+lookup 5.6sec| 2.6 x 10°

TFor the simple implementation, efficient storage techréd@&] such as the index file and the end point truncation were
not considered.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

12 J.W. KIM ET AL.

Device Host

Stream Multiprocessors (SMs)

Memory CPU cores

1. Online Chain

Start point

i table

General_flon - 3. Regenerating
0 Chain
SP,
3. Alarm copy
2. Table Lookup
Global Memory PCle bus Alarm table
Checkpoint (CP) & end point table alarm, 1. Alarm polling

CP, EP, alarm,

CP, EP,

2. Read alarm info.

Figure 7. Implementation in a heterogeneous GPU+CPU system

Generally, the sum of the chain lengths in the regeneratiingprocedure is smaller than that
of the lengths in the online chain procedure, because alagusr only in some of the online
chains. [29] As can be seen in Table 1V, the sum of chain lengthithe online chain procedure
(2.6 x 10°) is larger than that in the regenerating chdim (x 10°). However, the regenerating chain
procedure takes much more time than the online chain proeédthe Naive GPU. This is because
of warp serialization Since alarms occur in some of the 32 threads within a watp tbase threads
regenerate chains for resolving alarms. Thus, the otheatls within a warp should wait until
the threads finish the regenerating chain procedure. Wddletiminate the warp serialization to
improve the performance.

GPU+CPU. To solve this problem (warp serialization), we split theioalphase of the rainbow
method into the online chain+lookup procedur&s&nd the regenerating chain procedBg A is
processed in the GPU, ailis processed in the CPU, as in Figure 7. Each thread in the @PU
generates the online chain assigned to itself@hdhecks whether it is an end point (alarri)) If

an alarm occurs, the number and the length of the correspgmtiain are copied to the alarm table
in the host memory. At the same tim@, the threads in the CPU check whether the values copied
from the GPU exist in the alarm tabl@i) If so, they read the copied values afiii) regenerate
chains for resolving alarms. By doing this, we can elimirthewarp serialization that occurred in
the Naive GPU. We call this implementatitre GPU+CPU

Table V. Time of the online phase when it fails

online chain+lookup (GPU) regenerating chain (CPU) total
5.6 sec 52 sec 52 sec

The execution time of the GPU+CPU is shown in Table V. The GRidgsse\ in 5.6 seconds,
whereas on the CPU it taka2 seconds to proce& While the workload on the GPU is heavier than
that on the CPU, the computing power of the GPU is much bditer that of the CPU. Therefore,
it is necessary to reduce the workload on the CPU for the efficsPU+CPU implementation.

L oad Balancing Through Checkpoints. We take advantage of checkpoints [20] for load balancing
between GPU and CPU. By decreasing the number of false alaithsheckpoints, we can reduce
the workload on the CPU. The more checkpoints we use, thaeiaddoad the CPU have to process.
We made use of 22 1-bit checkpoints. Becalyse- 3.58 x 10'? ~ 2417, we useduint64._t, which

is the data type of 64 bits, to store an end point, as mentiabede. An end point was stored in
the lower 42 bits, and 22 1-bit checkpoints were stored irughger 22 bits which remained empty.
Therefore, no additional memory is needed to store the guiots. When the online chains are

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 13

1 .

S e .

B0 [S I -

Time (sec)

40 | LR i —

20 [PRXS S e .

CPU Naive GPU GPU+CPU GPU+CPU
with checkpoints

Figure 8. Timings of searching for a pre-image. Each baresgnts the average time for the whole 50
experiments.

generated from shortest to longest, the 22 checkpointsxgected to decrease the numberfof
applications due to false alarms by about 81.1% and theimappositions are in Table II.

So far, we introduced three different kinds of implememtasi using the GPU: naive GPU,
GPU+CPU and GPU+CPU with checkpoints. Figure 8 also shoeexiperimental results using
the CPU, as well as those of the three implementations piecsém this paper. In the case of the
CPU, thei-th thread generates the online chain of leng#nd regenerates the chain of length
(t — 1) from a start point if an alarm occurs, as in the naive GPU. VW&l ug/o Intel Xeon E5506
CPUs for our experiment. Every experiment was carried outrBs, and numerical values in the
figure represent the average times for searching a pre-indegean be seen from the figure, the
GPU+CPU with checkpoints is 17 times faster than the CPU a8difies faster than the naive
GPU. Also, the GPU+CPU with checkpoints is 4.5 times fagtanthe GPU+CPU.

Order of Online Chain Generation. We can further improve the performance by changing the
order of online chain generation. Generally, it is efficiengenerate the online chains from shortest
to longest. However, it is not true in the GPU+CPU implemgotes. Because the computing power
of the CPU is much worse than that of the GPU, it is importaméthuce the workload on the CPU,
i.e., the number of, applications in the regenerating chain procedure.

Figure 9 shows the expected numberfofapplications in the regenerating chain procedure with
respect to the length of an online chain when 22 1-bit cheiciktpare applied. The cost of the
regenerating chain procedure(ig (1 + ~)(1 — 7¢) — D(4,7)} - (t — v + 1) when the online chain
of length~ such thaic; < v < ¢;41 is generated. In Figure 9, some decreasing steps occur at the
positions of checkpoints, and there is a clear trend of desing cost as the length of the online chain
increases. Therefore, in order to reduce the expectediafgthains created in the regenerating
chain procedure, it should generate the online chains framgdst to shortest. As explained in
Section 3, the expected total length of the chains genenaték regenerating chain procedure is
reduced by about 23%, compared to STL.

Figure 10 shows the average times of the GPU+CPU with chectgto search for a pre-image in
three cases in terms of the order of online chain generdfiogry case uses its optimal checkpoints
calculated in Table Il. The first and the second bars reptabenaverage times only for success
and failure cases, respectively. The third bar represétsaaverage time for all 50 experiments.
Contrary to our expectations, the GPU+CPU with checkpdirds longest to shortest online

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

14 J.W. KIM ET AL.

8000 T T T T T T T

7000

6000

5000

4000

Cost

3000

2000

- & ~

0 10000 20000 30000 40000 50000 60000 70000
Length of Online Chain

1000

Figure 9. The expected number ¢f applications in the regenerating chain procedure when & 1-
checkpoints for LTS are applied.

14 T : ;
13.087 success KX XX
% failure somem
NP
12 - Sl
10
)
3]
N2
s 8F
£
= 3
6 s
%?g
OIS
R
4o S35
S
255
X OIX
2 S
STL LTS Hybrid
(a = 15,360)

Figure 10. Average time of the GPU+CPU with 22 1-bit chechkfwito search for a pre-image in 50
experiments. (STL: from shortest to longest online chdifs;: from longest to shortest online chains)

chains is slightly slower than that from shortest to longadine chains. It is owing to the long

start-up time of the regenerating chain procedure on the @GRU the time until the first alarm

occurs and the alarm information is copied to the alarm tablie host memory). In the case
that online chains are generated from longest to shortettkés long time to generate the first
online chain. However, if we generate online chains fromrigsb to longest, a large number of
online chains are quickly generated at the same time in thé, @Rd a sufficient number of alarms
occur not to make the CPU idle. In GPU, thousands of onlinéshzould be generated in parallel.
Therefore, the implementation from longest to shortesherdhains takes longer start-up time than

Softw. Pract. Expe(2013)

Copyright© 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/spe

Prepared usingpeauth.cls

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 15

that from shortest to longest online chains. We can infenftoe average times of the failure case in
Figure 10 that the start-up time of the implementation fronglest to shortest online chains is about
13.087 — 10.254 = 2.833 seconds longer than that of the implementation from shiottelongest
online chains.

The best solution (hybrid) is to combine the two ordering svalgove in order to reduce both the
start-up time and the workload on the CPU. At thh iteration, ifk < o for a fixed1 < a < t,
we generate online chains from shortest to longest in oeeduce the start-up time of CPU;
otherwise, we generate online chains from longest to séioirteorder to reduce the workload on
CPU. That is, ifk < «a, the online chain of lengthk is generated; otherwise, the online chain of
length(t — k + o+ 1) is generated. By settingas a large integer, we can reduce the start-up time,
but the workload on CPU increases. Hence, it is importanhtmse appropriate valueto balance
the start-up time and the workload on CPU. We empiricallynboute = 15, 360 to minimize the
average time of searching for a pre-image. As explained ati@e3, the expected total length of
the chains generated in the regenerating chain procedwedused by about3%, compared with
the implementation from shortest to longest online chaiigure 10 shows that the hybrid with
a = 15,360 improves the performance of the GPU+CPU with checkpoinstnutl 3% by simply
changing the order of online chain generation.

Reinvoking GPU. In the GPU+CPU, the GPU generates online chains and delikieis alarm
information to the CPU; the CPU regenerates chains usingléven information received from the
GPU. Hence, the GPU usually finishes earlier than the CPUeNtshows the average time of the
GPU+CPU with checkpoints in the hybrid order. As can be seam fTable VI, the GPU finishes
1.174 seconds earlier than the CPU on average, and the GRlhbsddle for this time. Therefore,
to achieve the best performance, it is required to fully eitpphe computation power of the GPU.

Table VI. Average time of the online phase for 50 experimg@fybrid with o = 15, 360)

online chain+lookup (GPU) regenerating chain (CPU) total
4.019 sec 5.193 sec 5.193 sec

We reinvoke the GPU for resolving false alarms, i.e., the Gid the CPU could regenerate
chains together. If the regenerating chain procedure o€Blg is not finished yet after the online
chain+lookup procedure on the GPU is finished, the GPU rdaglsalarm information from the
alarm table and regenerates chains for resolving falsenala8ince the CPU is also regenerating
chains at this moment, the GPU reads the alarm table in tieesewrder of the CPU. Each thread
in the GPU first reads each of the last 3,840 entries of thenalable and regenerates chains for
resolving false alarms with the threads in the CPU.

Table VII shows the average time of the implementationuaiimg GPU. From the table, we can
see that the time for the regenerating chain procedure igestby about 10%, and so is the total
time.

5. COMPARISON

In this section, we compare the performance of ours with éhok other GPU-accelerated
implementations. There are several implementations ofraéivebow method publicly available
now [21, 22, 23]. Ophcrack [22] provides only a CPU-accettaimplementation, whereas
RainbowCrack [23] and Cryptohaze [21] provide not only a C&delerated implementation
but also a GPU-accelerated one. As the implementations od & much faster than the

Table VII. Average time of online phase for 50 experimentsi{Roking GPU)

online chain+lookup| regenerating chain total
4.059 sec 4.665 sec 4.665 sec

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

16 J.W. KIM ET AL.

implementations on CPU, we compare ours with only GPU-acatdd ones of RainbowCrack and
Cryptohaze. The source codes of RainbowCrack and Crypeoligznot publicly available (only
their executable files are available), and thus we can justhreir executable files for making the
perfect tables and cracking the target images.

Table VIII. Tradeoff parameters and size (GB) of the pertabtes

RainbowCrack Cryptohaze Ours
mo 412,383,272 562,383,272 412,383,272
m 80,532,743 80,555,916 80,529,164
t 71,535 71,535 71,535
Size (GB) 1.2 1.6 0.9
Success Prob. 80.00% 80.01% 80.00%

We created the perfect rainbow tables for each implememafRainbowCrack, Cryptohaze,
and ours. Table VIII shows the tradeoff parameters and thée taize in GB. To make the
perfect table of 80% success probability far = 3.58 x 102, in which m = 80,530,636 and
t =71,535, we createdn, precomputed chains of lengti, 535 for the three implementations,
where my = 412,383,272 for RainbowCrack and ours buty = 562,383,272 for Cryptohaze.
About 1.4 times more precomputed chains for Cryptohaze generated to make the perfect table
with m distinct end points, i.e., the cost of the precomputatioasghof Cryptohaze is 1.4 times
larger than those of RainbowCrack and ours. The succesalpitities of the three perfect tables are
approximately equal to 80%. The size of the perfect tablergp@haze is the biggest among the
three implementations. The checkpoint technique is ndlteda in RainbowCrack and Cryptohaze,
and our implementation uses the table of 0.9 GB includingkpeints as explained in Section 4.

Table IX. Specifications of GTX460 and GTX580

GTX460 GTX580
Clock rate (Mhz)| 1,430 1,544

of SM 7 16
of cores per SM 48 32
Total # of cores 336 512

We tested the three implementations using two different @ R&ITX460 and GTX580. The
specifications of these GPUs are shown in Table IX. For exantpk GTX580 accommodates
16 SMs, each of which consists of 32 cores operating in thekalate 1,544 MHz. The GTX580
has better performance than the GTX460. With each of thet¢sGMe used two Intel Xeon E5506
2.13 GHz quad-core CPUs.

Table X shows the timings of RainbowCrack, Cryptohaze and ofisearching for a pre-image.
We randomly generated 200 input images and executed the ihmglementations using these
input images. The 80.5%, 80.5% and 80.0% out of the input @sagere actually succeeded for
RainbowCrack, Cryptohaze and ours, respectively. Thengimivere measured as an average value
over 200 trials. The second to the fourth rows representithegs over two Xeon CPUs and
GTX460. The fifth to the seventh rows represent the timings éwo Xeon CPUs and GTX580.
RainbowCrack and Cryptohaze regenerate chains on GPUsiolvieg false alarms after the online
chain and lookup procedures are finished, whereas the ocitiaim+lookup procedures and the
regenerating chain procedure are simultaneously exegut@BU and CPU in our implementation.
Hence, the total time of RainbowCrack and Cryptohaze is tire of the times for the online
chain+lookup and the regenerating chain procedures, butotal time is equal to the maximum
of the two. As a result, for GTX460, our implementation is abb.86 and 3.25 times faster than
RainbowCrack and Cryptohaze, respectively, and for GTX3883 and 2.40 times faster. Our
implementation fully exploits GPU and CPU but the otherstaklvantage of only GPU. Hence,
the better the relative performance of CPU to GPU is, theeb&tour implementation, compared

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 17

Table X. Timings of searching for a pre-image. (sec)

GPU implementation|| online chain+lookup regenerating chain total
RainbowCrack 11.181 2.027 (0.383) | 13.208 (11.564)
GTX460 | Cryptohaze 10.505 12.525 (2.367) | 23.030(12.872)
Ours 6.602 7.091 7.091
RainbowCrack 6.268 1.118 (0.211) 7.386 (6.479)
GTX580 Cryptohaze 5.445 6.170 (1.166) 11.615 (6.611)
Ours 4.238 4.832 4.832

to the others. The values in parentheses are hypothetiegswf RainbowCrack and Cryptohaze,
assuming that the 22 checkpoints for STL are applied andttieisost for the regenerating chain
procedure is reduced by 81.1%. Our implementation wouldsttebthan the other implementations
even under this assumption (for GTX460, 1.63 and 1.82 timetebthan RainbowCrack and
Cryptohaze, respectively).

6. CONCLUSION

In this paper, we proposed the parallel implementationhefrainbow method based on perfect
tables in a GPU+CPU heterogeneous system. For achievirlgp8igerformance, we first split the
online phase into two procedures: the online chain+lookggdure and the regenerating chain
procedure. Second, we gave a complete analysis of the effeutltiple checkpoints for the perfect
rainbow table, and we made use of it for load balancing betv@&eU and CPU. Third, we changed
the order of the online chain generation for the heterogemegstem. Finally, we fully exploited a
GPU+CPU heterogeneous system by reinvoking GPU for respli@lse alarms. According to our
experimental result, our implementation is faster thanathgr implementations on GPU.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundafiéforea (NRF) grant funded by the Korea
government (MEST) (No. 20120006492) and the Basic Sciemse&ch Program through NRF funded by
MEST (2012R1A1B4003379).

REFERENCES

=

. Kim JW, Seo J, Hong J, Park K, Kim SR. High-speed parallgll@mentations of the rainbow method in a
heterogeneous systefNDOCRYPT 2012; 303-316.

. Nvidia, CUDA C programming guide 2012.

. Manavski SA. CUDA compatible GPU as an efficient hardwaeekerator for AES cryptographfCSPGC 2007.

. Szerwinski R, Guneysu T. Exploiting the power of GPUsdsymmetric cryptographfzHES 2008; 79-99.

. Bernstein DJ, Chen TR, Cheng CM, Lange T, Yang BY. ECM oplgizs cardsEUROCRYPT2009; 483-501.

. Hermans J, Vercauteren F, Preneel B. Speed records foUNTRRSA2010; 73-88.

Barkan E, Biham E, Shamir A. Rigorous bounds on cryptditaiyne/memory tradeoffSCRYPTQ2006; 1-21.

. Biryukov A, Mukhopadhyay S, Sarkar P. Improved time-megntoade-offs with multiple dataSelected Areas in

Cryptography 2005; 110-127.

. Fiat A, Naor M. Rigorous time/space trade-offs for iniegtfunctions.SIAM J. Comput1999;29(3):790-803.

. Kusuda K, Matsumoto T. Optimization of time-memory &aff cryptanalysis and its application to DES, FEAL-
32 and SkipjacklEICE Transactions on Fundamentals of Electronics, Comipaiions and Computer Sciences
1996;E79-A(1):35-48.

11. Standaert FX, Rouvroy G, Quisquater JJ, Legat JD. A tmeesory tradeoff using distinguished points: New

analysis & FPGA resultsCHES 2002; 593-609.

12. Hong J, Sarkar P. New applications of time memory datiebtis. ASIACRYPT2005; 353-372.

13. Mukhopadhyay S, Sarkar P. Application of LFSRs in timestmory trade-off cryptanalysi®VISA 2006; 25-37.

14. Wang W, Lin D, Li Z, Wang T. Improvement and analysis of VBiethod in time/memory tradeoff applications.

ICICS, 2011; 282-296.

15. Hong J, Lee GW, Ma D. Analysis of the parallel distingedipoint tradeoffINDOCRYPT 2011; 161-180.

16. Hellman M. A cryptanalytic time-memory trade-dffformation Theory, IEEE Transactions daol 1980;26(4):401

— 406, doi:10.1109/TIT.1980.1056220.

OO ONOUAWN

=

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

18 J.W. KIM ET AL.

17. Denning DECryptography and Data Securitpddison-Wesley, 1982. P.100.

18. Borst J, Preneel B, Vandewalle J. On the time-memoryetfidbetween exhaustive key search and table
precomputationProc. of the 19th Symposium in Information Theory in the Beqé&VIC 1998; 111-118.

19. Oechslin P. Making a faster cryptanalytic time-memeageé-off. CRYPTQ2003; 617-630.

20. Avoine G, Junod P, Oechslin P. Characterization andawgment of time-memory trade-off based on perfect tables.
ACM Trans. Inf. Syst. Sec2008;11(4).

21. Cryptohaze gpu rainbow crackat,t ps: / / ww. cr ypt ohaze. com [25 January 2013].

22. Ophcrackht t p: / / ophcr ack. sour cef or ge. net . [25 January 2013].

23. RainbowCrack Projecht t p: / / pr oj ect - rai nbowcr ack. com [25 January 2013].

24. Nickolls J, Dally WJ. The GPU computing efBEE Micro 2010;30(2):56—69.

25. Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Stora&D. State-of-the-art in heterogeneous computing.
Scientific Programming010;18(1):1-33.

26. Nvidia, Nvidia's next generation CUDA compute architge: Fermi 2009.

27. Nvidia, CUDA best practices guide 2012.

28. Hong J, Moon S. A comparison of cryptanalytic tradeoffosithms.Journal of Cryptology2012; doi:10.1007/
s00145-012-9128-3.

29. Hong J. The cost of false alarms in Hellman and rainbodewés.Des. Codes Cryptograpt010;57(3):293-327.

30. Maplesoft, Maple 12 user manual 2007.

31. Lee GW, Hong J. A comparison of perfect table cryptaimalyadeoff algorithmsTechnical ReportCryptology
ePrint Archive, Report 2012/540 2012.

32. Warren HSHacker's Delight (2nd Edition)chap. Integer division by constants. Addison-Wesley,3200

A. OPTIMIZED DIVISION & MODULAR ARITHMETIC

The iterating functiory; in our implementation consists of miscellaneous procedaueh as the reduction
function R;. In such procedures other than the one-way functipa number of division and modular
arithmetic operations on 64-bit integers are executedsd&lneo operations cause significant performance
degradation since their costs are much more expensive lieasttier simple primitive instructions such as
addition and logical operations.

Table XI. Timings of searching for a pre-image in 50 experitse

Reinvoking GPU| Reinvoking GPU
w/0 optimization| w/ optimization
Time 6.599 sec 6.211 sec 4.665 sec

Previous version [1]

In our current implementation throughout this paper, ths@in and the modular arithmetic operations
are replaced by a couple of operations that consist of addithd logical shift operations. Table XII shows
the optimized procedure that performs the division and tlelutar arithmetic operations for a constant
divisor to compute quotient and remainder on dividenda. In our implementation, the division and the
modular arithmetic operations with divisor 62 are freqlyensed when the points, which are represented as
integers between 0 andl — 1, are converted to their corresponding passwords, whers Bizinumber of
symbols (a-z, A-Z, and 0-9). We refer to [32] for the detaitegblanation of the optimized procedure. The
performance improvement on GTX580 is shown in Table XI. Thme perfect table of ours was used, and
the average times of searching for a pre-image on the sardemaimages of Section 4 were measured. The
second column represents the time of GPU+CPU with checkgpainhybrid order without optimization.
The third and fourth columns represent the time of reinigkBPU with checkpoints in hybrid order. The
optimized procedure reduces the time by about 25%.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)
Prepared usingpeauth.cls DOI: 10.1002/spe

PARALLEL IMPLEMENTATIONS OF RAINBOW METHOD 19

Table XII. Optimized integer division and modular arithmet

Previous version [1] Optimized one
q=a/62 qg=(a>>5)
r = a%62 qg=(g>>5)+q
q=(g>>10)+gq
q=(g>>20)+gq
q=(¢>>20)+¢
r=(((((((g << +g) << 1) +q) << 1) +4q) << 1) +q) << 1
r=a-—r
if (r>=124)
{
g+ =2
r— =124
¥
else if(r >= 62)
{
q++
r— =062
}
Copyright© 2013 John Wiley & Sons, Ltd. Softw. Pract. Expe(2013)

Prepared usingpeauth.cls DOI: 10.1002/spe

