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U IGITAL SIGNAL PROCESSING (DSP) APPLICA- 
tions often require computing speeds that cannot be achieved 
by standard signal processor implementations. In this case the 
use of customized dataflow processors is necessary to meet the 
given requirements. This requires a careful examination of al- 
gorithms in order to find an architecture appropriate for Very 
Large-scale Integration (VLSI) implementation. The vast in- 
crease in gate density and the ability to build increasingly larg- 
er chips not only enables the integration of whole systems on 
one Application Specific Integrated Circuit (ASIC) but also al- 
lows the implementation of massive parallel processors to 
achieve a speedup by orders of magnitude for high data rate ap- 
plications. 

To obtain a high-speed implementation of an algorithm 
first, the maximum inherent parallelism needs to be extracted. 
Then, the algorithm has to be mapped onto a parallel architec- 
ture, e.g., by standard signal-flow analysis or algebraic methods 

Generally, a high throughput-rate is achieved if the circuit 
has a very short critical path. The critical path of a synchro- 
nous circuit is that path between two buffers (e.g., flip-flops) 
that has the largest delay and hence, determines the maximum 
achievable clock frequency of the circuit. This shows the im- 
portance of the critical path for high-speed circuit design. The 
whole circuit therefore needs to be examined carefully to ob- 
tain a short critical path. If the critical path is in a feedforward 
section of the circuit, it often can be shortened substantially by 
introducing pipelining, i.e., by dividing the path by adding 
buffers according to rules [6] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]. In this case, a new critical 
path arises somewhere else in the circuit, which might be elimi- 
nated by the same means. 

By carrying out this procedure three points need to be kept 
in mind. First, it is desirable to design circuits such that all 
paths between two buffers are almost critical. In this case, high 
efficiency of the logic utilization is obtained. 

Second, the maximum achievable clock frequency is always 
upper bounded by physical constraints of the implementation 
technology used. This is especially important if fairly complex 
algorithms need to be implemented for high-speed applica- 
tions, since the complexity of the algorithm requires the use of 
very dense and power efficient technology like Complementa- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ry Metal Oxide Semiconductor (CMOS), that however, has a 
fairly low maximum clock frequency. A solution to this prob- 
lem is found if additional parallelism can be introduced to the 
algorithm such that it can be mapped onto a block processing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-51. 
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Fig. 1. Principle scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof block processing. Each block of data (of 
length M) is processed in parallel. 

scheme (see Figure 1). In a block processing scheme, the in- 
coming data is serial-to-parallel converted in blocks of length 
M.  Each block then is processed in parallel by the following cir- 
cuit. In this case, only the serial/parallel and parallel/serial con- 
verters need to be realized with high-speed technology such as 
Emitter Coupled Logic (ECL) or gallium arsenide (GaAs) 
whereas the complex algorithm can operate at a 1/M lower 
clock frequency, and therefore, can be implemented e.g., with 
CMOS circuits. 

Third, the critical path very often occurs in a feedback loop 
and cannot be made uncritical by introducing pipelining. In 
this case, it presents a bottleneck for high-speed implementa- 
tions that needs to be examined more closely to find transfor- 
mations that allow either an introduction of pipelining or the 
derivation of block-processing architectures. 

An example of a fairly complex algorithm that needs to be 
implemented for high-speed applications is the Viterbi Algo- 
rithm (VA). We want to show that even though the VA con- 
tains a nonlinear data-dependent feedback loop, additional 
parallelism can be introduced to derive efficient high-speed 
parallel architectures. Three levels exist to introduced parallel- 
ism, the bit-, word-, and algorithm-level [ 8 ] .  Recently solutions 
were found for the VA at all three levels. After recalling the VA 
and the state of the art of its implementation in the next sec- 
tion, Implementing the Viterbi Algorithm, it is shown how ad- 
ditional parallelism can be introduced at the bit-, word-, and 
algorithm-levels. An extensive presentation of the results dis- 
cussed here can be found in the book by G. Fettweis [9 ] .  
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b. Decoding the optimum path to node s ~ , ~ + ~  at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk+ 1 and 

paths showing that they merge when traced back D steps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 2. Examples of trellis and optirrum paths. 

Implementing the Viterbi Algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Dynamic programming is a well-established approach for a 

large variety of problems concerning multistage decision pro- 
cesses [ lo]. One specific application of dynamic programming 
is the search for the best path through a graph of weighted 
branches. These branch weights will hereafter be referred to as 
branch metrics. The path through the graph to be found, is the 
one with the maximum (or minimum) cost, i.e., the maximum 
value of accumulated branch metrics. An example of such a 
graph is the trellis (the state transition diagram) of a discrete- 
time finite state machine. The state sequence of the finite state 
machine marks a path through the trellis. If this path is to be es- 
timated with the help of noisy measurements of the output of 
the finite state machine, and if this is solved by dynamic pro- 
gramming, then in communications this is called the VA [ 1 1 ]. 
The VA was introduced in 1967 as a method to decode 
convolutional codes [12]. In the meantime the VA has found 
widespread applications in communications as e.g., in digital 
transmission, magnetic recording, and speech recognition. A 
comprehensive tutorial on the VA is given [ 131. A brief intro- 
duction to the VA will be discussed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Viterbi Algorithm 

Given: a discrete-time finite state machine with N states. 
Without loss of generality we assume that the transition dia- 
gram and the transition rate l /Tare constant in time. The trel- 
lis, which shows the transition dynamics, is a two-dimensional 
graph that is described in vertical direction by N states si and in 
horizontal direction by time instances kT(T= 1). The states of 
time instance, k, are connected with those of time k+ 1 by the 
branches of time interval (k,k+ 1). Below we refer to a specific 
state si at time instance k as node si The branch between two 
nodes corresponds to a possible state transition. A simple ex- 
ample of a trellis is given in Figure 2a for N =  2 states. The nota- 
tion used can be summarized as follows: 

9 N - number of states 

k - time instance 

9 si - i-th possible state, is  { l ,  ..., 
Si,k - node: i-th possible state of time instance k 

Now, the finite state machine chooses a path through the 
trellis and with the help ofthe observed state transitions (over a 
noisy channel) the branch metrics of time interval (k,k+ 1) are 
computed. 

Fig. 3. Block diagram of the Viterbi decoder 

The best path through the trellis is calculated recursively 
by the VA, where best can mean, e.g., the most likely. This is 
done recursively not by computing only one path for each 
time k, but N paths, i.e., the optimum path to each of the N 
nodes of time k. The N new optimum paths of time k+ 1 are 
computed with the help of the old paths and the branch 
metrics of time step (k,k+ 1). This should be explained for the 
simple trellis shown in Figure 2a. As indicated in Figure 2b, 
each of the optimum paths of time k, i.e., each node S, ,k ,  has a 
path metric Yi,k that is the accumulation of its branch metrics. 
Now, the new optimum path leading to node Sl , k+ l  is the 

metric leading to this node. Therefore, the new path metric 

Yl , k+  1 Of node Sl , k+  1 is 

Yl ,k+ 1 I , k + Y l , b  4 2 , k +  y2,k) 

and equivalently for node SZ,k+, 

Y2,k+ I =maximum(&l,k+ Y l , k  &2,k+y2,k) 

These N =  2 equations together form the Add-Compare-Select 
(ACS)-recursion of the VA. 

Since, with the help of the ACS-recursion, a set of N paths is 
decoded, the question that might arise now is, “How do we find 
the best path, which must be unique?” However, if all N paths 
are traced back in time, they merge into a unique path, and this 
is exactly the best one which is to be found. 

The number of time steps that have to be traced back for the 
paths to have merged with high probability is called the survi- 
vor depth, D. Therefore, in a practical implementation of the 
VA, the latency of decoding is at least D time steps. 

An implementation of the VA, referred to as Viterbi Decod- 
er (VD), can be divided into three basic units, as shown in Fig- 
ure 3. The input data (the noisy observations of the transitions 
of the finite state machine) is used in the Branch Metric Unit 
(BMU) to calculate the set of branch metrics A0.k for each new 
time step. These are then fed to the Add-Compare-Select Unit 
(ACSU) that accumulates the branch metrics recursively as 
path metrics according to the ACS-recursion. The Survivor 
Memory Unit (SMU) processes the decisions being made in 
the ACSU due to carrying out of the ACS-recursion and out- 
puts the estimated path, with a latency of at least D. 

a. Example of a state diagram with N=2 states 

ACS-Loop, Critical Path - --------------- - 
‘1 1.k ‘22.k 

‘12.k 3 l . k  

b. ACSU for the state diagram given 

Fig. 4. ACSU for a state diagram with N =  2 states. 
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a. The ACS-loop which comprises an addition and a maximum selection (MI. 

yk 

Critical Path 
1 -  _--_----_ 

b. A 3-bit implementation of the ACS-loop. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. ACS-loop at the word- and bit-levels, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As can easily be seen, the design of the ACSU depends only 
on the ACS-recursion, determined by the trellis. Also the path- 
decoding in the SMU depends only on the trellis and therefore, 
is independent of the application for which the VA is being 
used. The application specific computations are the calcula- 
tion of the branch metrics in the BMU and the interpretation 
of the decoded path into raw data at the output of the SMU. 
Since the application specific parts of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVD are mainly found 
at the input and output, major architectural investigations can 
be camed out which are generally applicable. 

High-speed Viterbi Decoders: State of the Art 
By viewing the block diagram of a VD shown in Figure 3, it 

can be seen that all three units need to operate at the data rate 
1/T. In some cases this problem can be solved by L-fold inter- 
leaving, allowing the use of L VDs at reduced speed, or by other 
manipulations of the data-stream [ 141 [ 151. However, if a high- 
speed VD needs to be realized, the problem of implementing 
all three units for high speed arises. Since the BMU, as well as 

To date many different architectures 
are already well known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the 
realization of VDs. To achieve medium 
throughput rates the path metric 
update of the ACS-recursion is carried 
out serially or in part serially. 

the SMU, are purely feedforward (without feedback), the 
throughput rate can easily be increased substantially by intro- 
ducing massive pipelining and/or a parallel implementation. 
However, this does not hold for the ACSU. 

In the following we will use a simple example of an N =  2 
state diagram of the finite state machine that is to be decoded 
by the VA. The state diagram is given in Figure 4a, showing 
possible transitions from state s1 to s2,  s ,  to sl,, s2 to sl, and s2 
to s2 (the trellis is shown in Figure 2a). According to these four 
branches, the BMU has to compute four branch metrics for 
each time step. Recall, we refer to A,,,k as being the branch 

metric of s, to s, and time step ( k ,  k+ 1). These branch metrics 
have to be accumulated to path metrics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, according to the 
ACS-rerursion. 

SI 
VI < 

a. Carry-ripple addition, b. Carry-save addition 

Fig. 6. Carry-ripple and carry-save additions. 

If this ACS-recursion is mapped onto hardware such that a 
high-speed realization is achieved, by exploiting the inherent 
parallelism, then each operation has to be implemented by a 
separate processing element. This leads to the block diagram of 
the ACSU as given in Figure 4b. By viewing this ACSU it can 
be noticed that it strongly resembles the state diagram of Fig- 
ure 4a. Two ACS-cells (shaded regions in Figure 4b) are con- 
nected with each other exactly as determined by the state dia- 
gram. This shows the strong interaction between the state 
diagram and the architecture, because the algorithm is deter- 
mined by the state diagram. 

A high-speed implementation requires the examination of 
the critical path. Since the ACSU is the implementation of a 
recursion, it contains a feedback loop. This loop, referred to as 
the ACS-loop, is indicated in Figure 4b. Because of the 
nonlinear and data-dependent maximum selection, it is the 
bottleneck of a VD for high-speed implementations [ 161. It 
therefore will be examined in detail in the Bit-, Word-. and 
Algorithm-Level Parallelization sections following. 

To date many different architectures are already well 
known for the realization of VDs. To achieve medium 
throughput rates the path metric update of the ACS-recursion 
is carried out serially or in part serially. In many cases the fact 
can be exploited that the trellis is a shuffle-exchange graph, 
equivalent to the graph known, e.g., from the Fast Fourier 
Transform (FFT) or from sorting [ 171. Then so-called “butter- 
fly” processor arrangements can be used, as known for FFT im- 
plementations [ 181 [ 191. 

To achieve high throughput rates at least the maximum in- 
herent parallelism of the VA has to be exploited, i.e., one ACS- 
cell needs to be implemented for each equation of the ACS- 
recursion as mentioned above and shown in Figure 4b [16] 
[20]. The complexity of the implementation thus depends at 
least linearly on the number of states. The high integration den- 

...- +&+ . ........ .. 

Critical Path 

Fig. 7. 4-bit ACS-loop with CS-arithmetic. 
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Table 1. High-speed Viterbi Decoders: State of the Art 

CMOS Chip Semi Custom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[32] [26] 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2n CMOS Chips Semi Custom [27] 1990/1991 

11 5 Mb/s 29 MHz 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2n.600 Mb/S 50 MHz 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

sity of CMOS enables the design of VDs with an ACSU for up 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64 states on one chip to date. However, the maximum 
achievable throughput rate depends on the technology used, 
since the critical path is a nonlinear feedback loop. No addi- 
tional parallelism can be introduced with standard means to 
obtain very high-speed VDs with massive parallel processing. 
Therefore, this is a bottleneck that leads to the fact that the fast- 
est CMOS VD to date that realizes this architecture only runs 
up to 25 Mb/s [21] [22]. to achieve higher throughput rates 
large ECL, hybrid, and analog circuits were realized [23-251. 
This very clearly shows the extremely large cost that has to be 
invested to cope with the ACS-bottleneck by technological 
means. 

Today's fastest VDs are given in Table I. We included two 
designs, one that has been and one being fabricated by imple- 
menting new parallel architectures that we derived for the VA 
[26] [27]. As can be seen very clearly, these architectures allow 
the implementation of VDs in CMOS for data rates that are 
otherwise not achievable (2n*600 Mb/s), or achievable only 
with very large ECL circuits (1 15 Mb/s). This should show the 
reason why it is very important to derive efficient parallel ar- 
chitectures for VDs, as will be pointed out in the following dis- 
cussion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Bit-Level Parallelization 

After outlining the three principal levels of introducing ad- 
ditional parallelism into an algorithm, we want to indicate a so- 
lution for the VA at the bit level. To do so, we need to examine 
the critical path, i.e., the ACS-loop, in more detail. Since the 
critical path is a feedback loop, it cannot be circumvented by 
introducing pipelining. 

The Bit Level Solution 
The ACS-loop, as shown in Figure 5a, comprises an addi- 

tion and a maximum selection. The conventional approach to 
obtain a very short critical path is to use very fast adders and 
maximum selectors (where the maximum selectors are usually 
realized by a comparator followed by a multiplexer). This can 
be achieved by using carry look-ahead adders and equivalent 
look-ahead comparators. However, even though the latency of 
the ACS-loop is shortened by this solution it still depends on 
the word length. Thus, a high-speed realization requires a short 
word length, whereas a good decoder performance (low decod- 
ing error rate) requires a fine quantization of the branch 
metrics and therefore a long word-length of the path metria.' 

'This is of importance especially if the VA is used for 
equalization or the decoding of multilevel coded modulation. 

In the following we want to point out a solution that not only 
eliminates this trade-off but also leads to an extremely short 
critical path. 

For closer analysis of the critical path it is not sufficient to 
examine the ACS-loop at the word level only, as given in Figure 
5a, but is needs to be examined at the bit level. A bit-level sig- 
nal flow diagram is given in Figure 5b for a W= 3 bit realiza- 
tion, where the W = 3  bit adder is realized with W 1-bit full 
adders, showing a carry ripple path from the Least Significant 
Bit (LSB) to the Most Significant Bit (MSB). The W-bit maxi- 
mum selection is also realized with bit-local processing ele- 
ments that only communicate with the neighboring bit-levels. 
As can easily be seen, a bit-local maximum selector that serially 
processes bit level after bit level without feedback can only op- 
erate when it starts at the MSB, gives out the MSB, and goes 
down to the LSB. If it started at the LSB it could not give out 

A high-speed realization requires a 
short word length, whereas a good 
decoder performance (low decoding 
error rate) requires a fine quantization 
of the branch metrics and therefore a 
long word-length of the path metrics. 

the correct LSB without knowing about the values of the higher 
bit levels. The flag-ripple of the decision finding of the maxi- 
mum selector thus goes from the MSB to the LSB. Therefore, 
the critical path of the ACS-loop starts at the LSB of the adder 
chain, runs along the carry-ripple to the MSB, down through 

Table II. 115 Mb/s Single-Chip Viterbi Decoder 

I 29MHz+115Mb!s I Frequency MaximumC~odc 
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Fig. 8. Layout of fabricated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA115 Mbh Viterbi decoder chip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4, 
2pC.WOS. 9K gates). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the flag-ripple of the maximum selector chain, and back to the 
LSB. In this case, it is linearly dependent on the world length. 

As mentioned above, since the critical path is a feedback 
loop it cannot be circumvented by pipelining. Thus there is a 
need for the elimination of the loop. This can only be obtained 
by either eliminating the carry-ripple of the adder or the flag- 
ripple of the maximum selector. Since the maximum selection 
is a nonlinear operation, it certainly is very difficult, if not im- 
possible, to find a solution without flag-ripple. However, the 
addition is a linear operation. 

Figure 6a shows part of a carry-ripple adder as used in Fig- 
ure 5b that calculates the sum 

Now if the carry bit c,, is not fed to the i-th bit level, but is 
saved as part of the result (Figure 6b), then the sum always has 
2 bits of weight 2', namely s, and c,, 

s =  '- ( s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ c 1 ) 2 ' =  v , 2 '  
- 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 1 

where vi=si+ci can take on the values vi& (0, 1, 21. Due to the 
different adder architecture these si and ci do not take on the 
same value as those shown in Figure 6a. As now the carry bits 
are saved and do not lead to the full adder of the next bit level, 
this adder architecture is called Carry-Save (CS) addition [33] 
[34]. The resulting sum will therefore be referred to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a CS- 
number. The resulting CS-number representation is redun- 
dant, since it is a binary number with ternary weights vi' There- 
fore, more than one representation exists for one value, e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 = (02),, = ( 1 o)cs, 

The big advantage of the CS-addition is that no carry-ripple 
exists, which is exactly what we want. So, if a CS-Maximum 
(CSM) selector can be built with a bit-local flag-ripple from 

50 May 1991 - IEEE Communications Magazine 

MSB to LSB, this would be a solution for the ACS-loop. Even 
though the CS-number representation is redundant and the 
maximum selection is a nonlinear operation, a very simple 
CSM was derived (30-40 gates) (351. This allows the imple- 
mentation of the ACS-loop with CS-arithmetic as given in Fig- 
ure 7. As can be seen, the critical path still runs along the flag 
ripple through all bit-levels, however, it is not a feedback loop. 
Therefore, in contrast to any conventional architecture, pipe- 
line stages can now be introduced according to the laws given 
[6] [7]. This results in a critical path that is very short, it runs 
only through two full adders plus two CSMs, and is indepen- 
dent of the word length W. These two features allow the real- 
ization of high-speed VDs with an achievable data rate that is 
independent of the implemented word length [26]. 

Implementation Example 
To apply the new carry-save architecture outlined above, we 

chose to realize a VD for the rate 213, 4-state, 2 x 8 Phase Shift 
Keying (PSK) trellis code given in [36]. The chosen code is es- 
pecially well suited for digital satellite (and microwave) com- 
munication due to its rotational phase invariance. Therefore 
the aim was to build a VD for this code which, by implement- 
ing the novel architecture, is applicable for the 100-1 50 Mbls 
digital satellite channels. 

Input 

'O+nM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U 

- '1 +nM 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 BMU 1 
2 

'3 + nM 

M-Step ACSU 
a. Tree Structure. 

Input 

'0 + nM 

'2 + nM 

"1 I -. 
Skewing- 

'3+nM Buffers 

b. Pipeline Structure. M-Step 

Fig. 9. After serial/parallel conversion and computation of the 
branch metrics, the M-fold matrix multiplication can principally be 
carried out either by a tree structure or pipeline structure of M-I 
matrix multipliers followed by the M-step ACSU that carries out the 
M-step ACS-recursion. 
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structure called a semi-ring [35] [37-391. Using these symbols 
we can write the ACS-recursion of Equation 1 as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 10. Layout of a cascadable VD-module for N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 states, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASO 
M b h  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZpCMOS, and 120K transistors (2SK logic, 13 RAMS). 

Some key facts about the fabricated chip are summarized in 
Table 11. 

As can be seen in Figure 8, the carry-save architecture al- 
lows a very efficient realization (only 8,800 gates) of a VD that 
conventionally required the implementation of very large 
ECGsystems [23-251. 

It can be shown that it is very easy to implement a self-test 
for VDs. The fabricated chip, shown in Figure 9, therefore, has 
an on-chip self-test (1% additional area) with static go/no-go 
signal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Word-Level Parallelization 

The bit-level parallelization of the VA presents a solution to 
design efficient high-speed VDs. However, since the critical 
path still cannot be made arbitrarily short, the throughput rate 
depends on the clock rate of the realization, and that is limited. 
To achieve even higher rates of decoding, block processing 
schemes need to be found that theoretically allow ultimate 
speedups. To do so the ACS-recursion has to be examined clos- 
er, which is the bottleneck of the VD. 

Algebraic Formulation of the VA 
On closer examination of the ACS-recursion it can be found 

that only two algebraic operations are present, addition (add) 
and maximum selection (max). If these two operations are 
viewed more closely, it can be seen that the distributive law 
holds such that 

max(a + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, b+ c) = max(a, b) + c (2) 

Hence algebraically, add corresponds to the multiplication 
and max to the addition, i.e., by using the symbols @ for add 
and @ for max we can rewrite Equation 2 as 

a € 3 c @ 6 € 3 c =  ( a @ h ) @ c  (3 1 

Based on the fact that the distributive law (see Equation 3) 
holds and that @ forms a commutative group, and @ a com- 
mutative semi-group, these two operations form an algebraic 

Thus Equation 4 looks just like a conventional linear alge- 
braic recursion. Two major facts now allow one to rewrite 
Equation 4 as a vector-matrix recursion, as known from linear 
algebra [35] [39]. First, @ and @ form a semi-ring over all 
N x  N matrices. Second, equations formed with semi-ring op- 
erations are linear. Hence, Equation 4 can be rewritten as 

I., + = Ak €3 I', (5 1 

where r k  is the vector of all N path metrics of time k 

rk: = (rl ,k ,..., YN,k)T 

and the transition matrix Ak comprises all N x  N branch 
metrics Lijk of time step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(k, k+ 1). The operations of vector- 
matrix multiplication are defined in an analogy to the well- 
known definitions of linear algebra, requiring the definition of 
two operations, namely @ and @ . Rewriting the ACS- 
recursion Equation 4 in the form of Equation 5 leads to 

Next to the simplified notation the real advantage of the 
semi-ring notation is that it shows that the ACS-recursion is 
linear. Therefore the ACSU of a VD is a linear system (i.e., the 
semi-ring notation linear superposition holds). This allows one 
to handle Equation 5 as a linear equation. Writing Equation 5 
for time instant k+ 2 and inserting Equation 5 into it leads to 

This is the breakthrough, since it can now be seen that r k  
can be calculated with the help of r, without knowing t i e  
value of r,+ Thus, now two time steps are available to carry 
out the recursion Equation 7 instead of only one time step as 

Uniquely Decoded Path N Decoded Paths 
Of The Survivor Depth I t 

Acquisition Depth 

E-D-D 
1 

r T 7 

Fig. 11. Scheme of decoded paths afer processing E steps. 
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Fig. 12. Layout zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a Viterbi decoder module for a ring architecture 
for acquisition method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 chips: 120 Mbh. 2pCM0.9, 9K gates). 

holds for Equation 5. Or, in general, by further transformation 
of the ACS-recursion the following M-step ACS-recursion re- 
sults [35] 

with the M-step transition matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAk defined as 

Therefore the ACS-recursion is not a bottleneck. With the 
help of semi-ring algebra it can be transformed to an M-step 
ACS-recursion Equation 8 with so-called look-ahead computa- 
tion Equation 9 that can take place outside of the recursion, in 
an analogy to the results known for conventional linear sys- 
tems [40-431. The possibility of an M-step word-level 
parallelization was first found by analysis of the trellis itself in- 
dependently by the author [44] [45], and Thapar [46] [47]. The 
possibility of an algebraic parallelization was independently 
pointed out zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[35] [37] [48]. 

Implementation Architectures 
To get an idea of how an M-fold speedup can be achieved by 

implementing the M-step ACS-recursion (see Equation 8), ar- 
chitectural examples shall be discussed. Notice that the M-step 
recursion transformation is well known to linear algebraic 
recursions. Since the ACS-recursion is a linear recursion, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall 
known M-step architectures for linear systems o f t  pe Equa- 

Generally, two principle methods exist to implement 
M-step recursions, i.e., block processing or pipeline interleav- 
ing. In the case of block processing the major idea is that the in- 
coming data stream is serial-to-parallel converted in blocks of 
length M ,  and the following circuit processes each complete 
block of data in parallel (see Figure 1). Thus, only the seriall 
parallel converter needs to operate at the high-speed 1/T 
whereas the actual computation is being carried out with a 

tion 5 can be applied for the M-step VA [38] [39]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz 

clock rate M times slower. In case of pipeline interleaving the 
processing circuit has to be clocked with the same high speed as 
the data rate 1/T and therefore, is limited by the maximum 
clock rate of the technology chosen. Hence, we will focus on the 
discussion of two simple block architectures for the ACSU. 

As can be seen by viewing Equation 8, next to carrying out 
the M-step ACS-recursion, the M-step transition matrix needs 
to be computed for each time step. This corresponds to an 
M-fold multiplication of transition matrices that can either be 
done in a tree-like or pipeline structure (see Figure 9). Also 
shown in Figure 9 is the serial/parallel converter followed by M 
parallel BMus to compute the M transition matrices of each 
block of data in parallel. These are then multiplied either in a 
tree (see Figure 9a) or pipeline (see Figure 9b) of matrix multi- 
pliers whose output is fed to the M-step ACSU that cames out 
the M-step ACS-recursion. More detailed architecture descrip- 
tions can be found in [9] [35]. 

We only want to point out here the major difference be- 
tween the two architecture principles that lie in latency, regu- 
larity, and complexity. As can easily be seen, the tree architec- 
ture, is not as regular as the pipeline, but has a short latency of 
O(logM), whereas the pipeline leads to a latency of O(M). How- 
ever, efficient multipliers can be derived for the pipeline and 
therefore, the complexity of one matrix multiplication is only 
of O(N3 compared to O(N3) for the tree [35]. Thus a trade-off 
exists between complexity and latency. 

Implementation Example 
To show the realizability of the VA with M-step ACS- 

recursion, referred to as the M-step VA, we want to present an 
implementation example we carried out for a 4-state 
convolutional code. As an architecture we chose the pipeline 
multiplication. The architecture can be arranged, such that it 
can be divided up into identical slices which can then be 
chained to achieve the desired M [35]. We implemented M= 4 

2E.g., digital filters, state-space systems, and carry look-ahead Fig. 13. Layout of the 600 Mbb minimized method Viterbi decoder 
chip, I.ZpCMOS, 75K gates, buffer RAMS (in fabrication). adders. 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111. 600 Mb/s Viterbi Decoder Chip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
50 MHz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 600 Mbls 

on one chip which, by the chaining of four chips, allows the re- 
alization of a 16-step VD. The complete design of the chip was 
camed out with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2p CMOS standard cells and Random Access 
Memories (RAMs) for the buffering, which totaled 120 mm2 
chip area (see Figure 10). With a clock frequency of 50 MHz 
(simulation) each chip achieves a rate of decoding of 50 MHz. 
Thus a 1 Gb/s (1 GHz) decoding rate could be achieved by cas- 
cading 20 chips. Assuming 1p technology, dynamic latches, 
and a full custom design of the CSM (which was used here to 
achieve high efficiency), this 1 Gb/s VD could be implemented 
on a single 200 mm2 chip, which certainly shows that this con- 
cept is realizable today (for a small number of states). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Algorithm-Level Parallelization 

Here we want to show how, by exploiting knowledge of as- 
ymptotic algorithmic behavior, the VA can be paralleled at the 
algorithm-level. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Asymptotic Algorithmic Properties 

If a VD starts decoding in the midstream of the data, i.e., 
somewhere in the middle of the trellis, a period of initial syn- 
chronization occurs until it decodes exactly as if it had been 
working from the beginning [49]. The important fact that has 
to be noticed is that the period of initial synchronization is lim- 
ited, i.e., after processing D steps of the trellis, acquisition has 
occurred with high probability. It can be shown that the period 
of D steps that has to be processed for acquisition (with high 
probability) is exactly as long as the survivor depth, D [50]. As 
mentioned above, if all N paths that are decoded by carrying 
out the ACS-recursion are traced back in time, they merge at 
time k-D. Therefore we can summarize the algorithm-level 
information in a scheme of decoded paths of the VA as shown 
in Figure 1 1. When a block of E steps has been processed (e.g., 
interval ( k -E ,  E)), the first D steps have to be discarded as 
being too unreliable due to initial synchronization. In the sec- 
tion of the last D steps the uniquely decoded path branches out 
to N paths, one leading to each state. Solely by exploiting this 
algorithmic knowledge new parallel VD architectures were de- 
rived [44] [50] [51]. 

We do not want to go into the details of the parallel VD solu- 
tions cited above, but want to give a feeling ofwhy the informa- 
tion about the decoded paths of a processed block of the trellis 
shown in Figure 1 1 can be exploited. Assume that a VD would 
only process a block of finite length of E steps of the trellis. 
Then, as can be seen in Figure 1 1, a section of E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2 0  steps of 
the path has been decoded. Thus, any block of the trellis can be 
decoded by processing an additional D preceding and D follow- 
ing steps. Hence, on this block level no feedback exists that can 
therefore be exploited to derive parallel VD architectures that 
we refer to as acquisition methods [44] [50] [51]. 

An especially efficient method of parallel Viterbi decoding 
that can be mapped onto very efficient architectures can be de- 
rived, ifthe algorithm-level knowledge is combined with the al- 
gebraic word-level transformation shown above. This is done 
by examining the M-step VA for M > D .  By exploiting the 
knowledge of the limited survivor depth it can be shown that 

In case of pipeline interleaving the 
processing circuit has to be clocked 
with the same high speed as the data 
rate U T  and therefore, is limited by 
the maximum clock rate of the 
tech nology chosen. 

the M-step transition matrix MAP than is linearly dependent, 
i.e., of rank one. (Hence computing one column and one row 
uniquely determines ,Ak). This allows a modification of the 
ACS-recursion to a purely feedforward expression, the basis of 
deriving the very efficient minimized method [27] [50] [52]. 

Implementation Examples 
To prove the feasibility of the acquisition methods we de- 

signed a VD-chip whose layout is given in Figure 12. This VD 
is a module of a ring architecture. It can be configured to a ring 
of modules where the total decoding rate is linearly dependent 
on the number of modules in the ring. The design was camed 
out such that a ring configuration of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 chips achieves a decod- 
ing rate of 120 Mbls for decoding 6-state 8 PSK trellis coded 
modulation [53]. Each chip is a 2p CMOS standard cell ASIC 
with 5 RAMs for the buffering and the SMU implementation. 
The relatively low clock rate of 15 MHz is due to the fact that 
the efficient high-speed carry-save ACSU was not yet derived 
at the point of this design. Hence, by designing the 100 Mb/s 
VD presented above as one VD-module, much higher decod- 
ing rates would be achievable. 

The extremely high efficiency of the minimized method 
mentioned above is demonstrated by the layout of the VD chip 
in Figure 13. This VD was designed for the same 4-state linear 

Table IV. Parallel Viterbi Decoder Architectures 

Cany-Save ACSU 
1 

All Three Levels Minimized Method 

*All architectures with equivalent trace-back SMU. 
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convolutional code (constraint length K =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) that underlines 
the chip design shown above (see Figure 9). The chip is de- 
signed with l .2p standard cells and 3 RAMS for buffering and 
consumes 170 mm2 chip area. Taking into account a minimum 
clock frequency of 50 MHz and the fact that a block of D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 12 
steps is decoded per chip in parallel, results in a decoding rate 
per chip of at least 600 Mb/s. This is already more than 20 
times the rate of the fastest commercial VD chip available to 
date [22] (see Table I). Some key facts of the chip which is cur- 
rently being sent to fabrication are given in Table 111. 

The minimum system configuration, which needs 2 chips, 
achieves 1.2 Gb/s, and multiples hereof are obtained by using 
more chips in parallel. 

Conclusions 
For very high throughput rates not only the inherent paral- 

lelism of an algorithm needs to be extracted, but additional 
parallelism has to be introduced. For this sake three levels 
exist, namely the bit-, word-, and algorithm-level. 

Even though the ACS-recursion presents a bottleneck for 
high-speed implementations of the Viterbi algorithm, addi- 
tional parallelism can be introduced at all three levels. At the 
bit-level the derivation of nonlinear carry-save arithmetic al- 
lows pipelining the ACS-recursion between the bit-levels, such 
that the critical path is extremely short and independent of the 
word-length. At the word-level the two operations of the ACS- 
recursion were identified to form an algebraic structure that al- 
lowed an algebraic transformation such that the bottleneck was 
eliminated. Finally, at the algorithm-level asymptotic behavior 
was exploited to derive parallel processing architectures. Fur- 
thermore, it was pointed out that by combining the word- and 
algorithm-level, a very efficient minimized method can be de- 
rived which, when the bit-level carry-save optimizations are 
used, allows the realization of Viterbi decoders up to the Gbls 
range on one chip in present-day technologies. 

The different solutions span a wide space, as is summarized 
in Table IV. To achieve an extremely small latency one has to 
pay by increased complexity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(N3) (tree architecture) 
whereas the combination of all three levels (minimized meth- 
od) is a good compromise between latency and complexity. 

The Viterbi algorithm is only one specific example of a large 
set of algorithms which is of interest to design parallel process- 
ing architectures. Therefore, it is important to derive metho- 
dologies and tools of how to introduce additional parallelism 
into algorithms. The basic tools applied here were CS- 
arithmetic at the bit-level, semi-ring algebra at the word-level, 
and exploiting acquisition properties at the algorithm-level. 
We believe that the generalizations of all three methods of 
finding solutions at each level are a step in this direction [9]. 
However, a lot of work remains to be done. 
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