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ABSTRACT

With the development of Holographic PIV (HPIV) and PIV Cinematography (PIVC), the need
for a computationally efficient algorithm capable of processing images at video rates has
emerged. This paper presents one such algorithm, sparse array image correlation. This
algorithm is based on the sparse format of image data - a format well suited to the storage of
highly segmented images. It utilizes an image compression scheme that retains pixel values in
high intensity gradient areas eliminating low information background regions. The remaining
pixels are stored in sparse format along with their relative locations encoded into 32 bit words.
The result is a highly reduced image data set that retains the original correlation information
of the image. Compression ratios of 30:1 using this method are typical. As a result, far fewer
memory calls and data entry comparisons are required to accurately determine tracer particle
movement. In addition, by utilizing an error correlation function, pixel comparisons are made
through single integer calculations eliminating time consuming multiplication and floating
point arithmetic. Thus, this algorithm typically results in much higher correlation speeds and
lower memory requirements than spectral and image shifting correlation algorithms.

This paper describes the methodology of sparse array correlation as well as the speed,
accuracy, and limitations of this unique algorithm. While the study presented here focuses on
the process of correlating images stored in sparse format, the details of an image compression
algorithm based on intensity gradient thresholding is presented and its effect on image

correlation is discussed to elucidate the limitations and applicability of compression based PIV

processing.
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NOMENCLATURE
() Correlation function
B Characteristic image pixel size]
A Correlation search lengtipikeld
As Imaged particle displacememtj
At Time between image exposursed.]
Ai,4j Difference in pixel imagegixeld
o Gradient operator
y Image compression ratio
% Flow velocity m/g
D Particle image diameten]

G Relative flow divergence

I Pixel intensity

] Image coordinategp[xeld

m,n  Data array indices

I Variable-length encoded data entry lengihx¢lg
M Image magnification

M, N Interrogation image diametepikeld

u,v Pixel displacement in x and y directions

X,y Pixel image coordinates

1. INTRODUCTION

until recently, Particle Image Velocimetry, PIV, has bémsited to applications in which two-
dimensional, instantaneous velocity measurements are of interest. Most flows, however, are
unsteady and three-dimensional in nature and thus, there has been a growing effort to develop
three-dimensional velocity measurement techniques and technigues to quantitatively resolve
unsteady flows. This effort has resulted in the development of Holographic PIV (HPIV) and PIV
Cinematography (PIVC). Both these techniques are highly computationally intensive often
requiring the determination of milions even tens of millions of vectors. With present software
processing speeds, a single experimental run using HPIV or PIVC can take several hours of
computer time to obtain results. Because of this, dedicated coprocessors areilatdnirut

these applications. These costly coprocessors, although significantly faster than present PC
software processing, are still slower than desired. Ideally, one would like to process HPIV and
PIVC images at a rate faster than they can be acquired. This negates the need to store the images
requiring only that the results be stored. It also allows an investigator to observe PIVC results in
near real-time and potentially use the information for system feedback control in much the same
way LDV systems are now being used in industry.

At present, electronic imaging systems operate with pixel transfer rates on the order of 10 million
pixels per second. At 8 bits per pixel, this is roughly twice the speed at which most PC’s can
stream uncompressed data to a hard disk. Even compressed by a factor of ten, more than one
megabyte of storage is needed for each second of video signal. A typical statistical correlation
with 64x64 pixel windows and 50% overlap requires more than 75 million multiplications and 225
million memory calls per second to process data at this rate - far faster than the capabilities of
present PC technology. Fourier correlation techniques require significantly fewer operations but
due to multiple memory calls and floating-point calculations, their processing requirements are
still well beyond present PC capabilities for real time PIVC or video rate processing of HPIV
images. Thus, if video rate PIV processing is to be achieved without the need for a dedicated
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coprocessor, an algorithm must be developed that significantly reduces the number of memory
calls and arithmetic operations. This paper introduces one such algorithm, sparse array image
correlation.

2. METHODOLOGY

Sparse array image correlation is based on storing and correlating a compressed data set that
retains the particle displacement information from the original PIV image. By reducing coding
and interpixel redundancy, far fewer memory calls and calculations must be made to correlate the
image. PIV images typically contain significant data redundancy. Compression ratios of 30:1 or
greater are normal. Thus, since the time required to correlate an image is proportional to the
square of the number of data entries, significant gains in processing speed are possible.

Background

The simplest form of data reduction that can be made to a PIV image is to eliminate the low
intensity pixels from the image file. Since the low intensity pixels contribute little to no
information about particle displacement, thdimmation has very little effect on theccuracy of

the image correlation. Several high-speed algorithms have been developed based on this type of
data reduction. The most recent of these algorithms is the one by Hatem and Aroussi (1995) in
which a probability histogram of possible particle dispiments is used to determine the velocity
vector. Unlike Hatem and Aroussi’s algorithm, sparse array image correlation relies on a true
correlation of the image - it is not a particle tracking type algorithm and it does not rely on the
binary (0,1) representation of particles. The relative intensity difference between pixels is
maintained despite the utilization of an image compression scheme. A more pertinent algorithm
to the present algorithm is the one by Landreth and Adrian (1987) in which each section of an
image is orthoganally compressed and the low intensity pixel combinations are eliminated from the
data before it is correlated. Like the present algorithm, Landreth and Adrian’s algorithm
processes the data in a sparse format. This is the basic scheme by which the present algorithm
correlates images. Unlike Landreth and Adrian’s algorithm, however, both coding redundancy
and interpixel redundancy are reduced during image preprocessing without decoupliagdiie
correlations. The two-dimensional spatial relationship and the relative intensity variation between
pixels are maintained. Significant speed is gained by encoding the remaining data specifically for
32-bit processing and utilizing an error correlation function to eliminate multiplication and
division operations.

As with all correlation schemes that require preprocessing of images, a tradeoff is made between
the time required to reduce the data set and the time required to correlate the reduced data set.
The original intent of the sparse array image correlation algorithm was to process PIV images at
video rates. Therefore, the algorithm presented here uses a relatively simple data compression
scheme to facilitate the processing of a video signal as it is being downloaded from a CCD
camera. This allows a data set from a previous frame to be analyzed at the same time the video
data from a camera is being compressed. It is desired to perform both preprocessing and
correlation of the images at roughly the same rate, 1/30 of a second. The result is an image
compression algorithm that is not necessarily optimized for data reduction but allows pipelining of
the original image data set to reduce image preprocessing time and data transfer latency.
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Image Compression

The first step in sparse array image correlation is to generate a data array that contains enough
information to determine the displacement of particles in a PIV image or between two images in
the case of cross-correlation. In order to facilitate processing, it is desired to retain the minimum
amount of data to obtain a specified resolution in the final results. Unfortunately, it is difficult to
determinea priori the exact information that is needed to achieve this. It can be shown, however,
from the statistical correlation function,

M N
Z Z[Im+Ai,n+Aj D]m,n]
m=1 n=1
M N M N
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m,n m+Ai,ntAj
m=1 n=1 m=1 n=1

that pixels with high intensity contribute more to the overall value of the correlation coefficient
than pixels of low intensity. This characteristic of the statistical correlation function adversely
affects the ability to determine the subpixel disgiment of tracer particles in a PIV image by
unduly weighting the significance of high-intensity pixels. Much of the information contained in a
PIV image that allows subpixel resolution of tracer particle movement resides in the intensity of
pixels representing the edges of the particle images. It is not the level of pixel intensity in a PIV
that allows the displacements to be determined through correlation. It is the &iaingein

intensity between the background and the tracer particle images that makes this possible. In much
the same way two blank pieces of paper are aligned on a desk, image correlation relies on the
change in intensity around the edges of the objects being aligned and not the featureless, low
intensity gradient, regions. Thus, in principle, all pixels in low intensity gradient regions can be
eliminated from a PIV image with only a slight loss in correlation information as long as the
relative positions and intensities of the remaining pixels are maintained. Except for a small
number of pixels representing tracer particles, PIV images are predominantly blank. Therefore,
the data size necessary to determine tracer particle movement within PIV images can be
significantly reduced with little or no loss in accuracy. This is the basis by which sparse array
image correlation works. Eliminating pixels that have little effect on the determinatioacef tr
particle movement reduces the data set representing a PIV image. The remaining pixel intensities
are recorded in sparse format along with their relative positions. This sparse data set is then used
to determine movements of the tracer particles in the fluid.

CDAi,Aj =

Segmentation

PIV images are strongly bimodal, composed of light particle images on a dark background, Figure
1. It is, therefore, relatively easy to eliminate low intensity, background, pixels from the data.
The simplest technique to accomplish this is to set a threshold level and retain only those pixels
with intensities above the threshold. A relatively robust and accurate technique for setting the
appropriate threshold level is to perform a histogram concavity analysis [Rosenfield and De La
Torre, 1982]. A simpler and somewhat faster technique is to generate an intensity distribution
curve that indicates the number of pixels with intensities above a specified level. Since the curve
is an accumulation of pixel numbers, it is piecewise smooth, at least to the resolution of the CCD
camera and thus, it is a simple matter to select a threshold level that corresponds to a specific
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slope on the curve. This technique is not as robust or accurate as the histogram concavity
analysis but, because the pixel intensities in PIV images are so strongly bimodal, the precise
threshold level is often not critical.

Figure 1. Typical 64x64 pixel region of a PIV image.

Several PIV and Particle Tracking Velocimetry (PTV) algorithms have been developed based on
the intensity thresholding of images [Hart 1996, Hatem and Aroussi, 1995.]. While at first this
appears to be a simple and robust way of reducing a PIV image, there are a number of difficulties
with this method that makes it inappropriate for poor quality images. Consider a double exposed
one-dimensional intensity plot of two tracer particles in a flow, Figuse 2{he intensity profile

of the particle images appear Gaussian with a spot diameter that depends on the, particle
diameter, image magnification, imaged wave length, pixel size, focal length, and aperture of the
camera recording the image. As illustrated\syandAs; in this figure, any gradient in the flow,

(v, over the observed region results in unequal displacements between the first and second
exposures of the tracer particles. (s -As) is small relative to the particle image spot

diameter,D, then the peak correlation of the sub-window is an average of the displacements
represented by the double exposure of the two partigles- As,)/2, Figure 2b). If, however

(As, —-As) is large relative toD, then there exists no clear peak correlation, Figu®. 2(

Although algorithms exist that are highly robust to large local velocity gradients in the flow such
as the spring model algorithm by Okamoto, Hassan, and Schmidl (1995), in general, large velocity
gradients result in an increase in spurious vectors. Thresholding an image has the effect of
reducing the spot diameter of the particle images as illustrated by the dotted line in FRagure 2(
Thus, thresholding can result in a loss in the information necessary to obtain average particle
displacement information. Furthermore, most PIV images suffer from an inconsistency in the
relative intensity between particle images. This is particularly true of images that are under
exposed. In these cases, the information lost by thresholding to obtain significant data reduction
can result in the loss of particle displacement information even for relatively small flow
divergence.
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Figure 2: Intensity plot of two tracer particle images, 2(a). The intensity profile of
each of the tracer particles is Gaussian with a spot diameter that depends on the pixel
dimensions, focal length, and aperture of the camera. A gradient in the flow results in
unequal spacing between exposurés;/As,z1. If the gradient is small, the
correlation of the image yields the average of the particle displacements, 2(b). If the
gradient is large, the average particle displacement can not be determined, 2(c).
Threshold intensity compression has the effect of reducing the image spot diameter as
shown by the dotted line in 2(a).
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A more robust, although slightly more computationally intensive, method of segmenting an image
is to rely on the magnitude of the gradient in intensity of the pixels in the image. To reduce
computational intensity, the magnitude of the intensity gradient is often approximated as the
absolute value of the gradients in thandy directions,|di| D|%|+|% . To first order, this can be

calculated as|oi|o An appropriate magnitude for the cutoff in the

'(i+1,j>_'a,i)|+rn+1>_| m|'
intensity gradient can then be selected in the same manner as it is done for intensity thresholding.
Pixel intensities in regions where the gradient is sufficiently high are retained and the rest are
discarded (assumed to have a value of zero). The result is the compression of an image where
only the pixels around the edges of tracer particles are retained. The center of the particle images
which have a low intensity gradient are discarded, Figure 3. Because of this, intensity gradient
segmentation of PIV images usually results in a smaller data set then images segmented by
intensity thresholding. The gradient method of segmentation is the method of choice for most
bimodal images [Gonzalez, Woods, 1993]. It is, however, particularly well suited to the
compression of images for correlation since it is the change in pixel intensities that allows subpixel
particle displacements to be determined by correlation and not the average intensity of the particle
images.
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Figure 3: Particle image intensity plot illustrating the effect of gradient pixel
segmentation.

Figure 4: Reconstructed image of Figure 1 after gradient level compression. This
image has been compressed to 1/30 of its original size. Sufficient correlation
information remains in this image to accurately determine particle movement even
after gradient level compressing this image by a factor of 200:1. Most PIV images
can be compressed 30:1 with very little loss in correlation information.

Data Encryption

Once an image is compressed it is stored with each pixel indices and intensity combined into a
single 32-bit word. This reduces the number of memory calls that must be made when
correlating. For examplés2, j=2, 1=254 is stored as 00000000001000000000001011111110
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binary = 2,097,918. By masking the bits, the valueg pfandl can be extracted from this single
entry in a few clock cycles of most processors.

Along with the sparse image array, an indices table is generated which contains the location in the
sparse image array of the first entry representing a pixel combination in the next line of a PIV
image. This line index array is used to jump to the next valuéndhe sparse image array when

a specified pixel separation is exceeded inithalirection. When correlating large images, this
index array significantly speeds processing.

Window Sorting

The reduction in the number of data entries in the PIV image data set by the elimination of pixels
in regions with a low intensity gradient and the encoding of the remaining data greatly improves
the speed at which correlation windows can be sorted from the data set. In addition, the line
index array reduces the number of multiple entries into the sparse image array that must be made
to extract the pixels located in a given correlation subwindow. Despite this, window sorting is a
slow memory intensive task that requires considerable processing time. The present algorithm
requires almost as much time to sort the correlation subwindows from the image data as it does to
correlate the subwindows once they have been sorted.

Correlation window sorting in sparse array format is considerably more difficult than it is in an
uncompressed format since the spacing of the data entries is image dependent. A simple block
transfer as is commonly done in an uncompressed format cannot be done in the sparse array
format. A solution to this is to generate the sparse array at the same time that the correlation
windows are being extracted from the image. This technique works well, as long as there is no
significant overlap of the correlation windows. If there is significant overlap, the number of
redundant memory calls greatly slows processing. The most computationally efficient technique is
to presort all of the correlation windows as the sparse array is generated. This technique requires
a significant increase in memory storage depending on the overlap in the correlation windows. A
50% overlap results in a four times increase in memory storage. The 32-bit sparse array data
encryption scheme, itself, requires four times the number of bits per pixel. Therefore, there is an
increase in memory storage requirement by a factor of sixteen. Image compression, however,
sufficiently reduces the number of data entries such that there is a net reduction in data storage by
roughly a factor of four compared with storing the entire image in memory at one time. In
addition, presorting the windows in this manner moves the processing time for window sorting
from the basic correlation algorithm into the image-preprocessing algorithm. This allows more
time for image correlation within the 1/30 of a second video framing speed. Presorting the
correlation subwindows at the same time the image is compressed is, therefore, the optimum
solution in the majority of applications.

Search Length Selection

Processing speed can be further increased while, at the same time, reducing the odds of obtaining
spurious correlation values by limiting the search for a maximum correlation. This is done by
allowing the user to specify a maximum changdiirand4j based on knowledge of the image

being correlated. An adaptive scheme can be used to narrow the correlation search - a scheme
that predicts the range of correlation values to calculate based on previous calculations from
subwindows of the same image. This procedure, however, is not particularly robust and can
result in spurious errors in obtaining the maximum correlation. Because the sparse array
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correlation process is inherently very fast, adaptive schemes generally do not gain enough
processing speed to warrant their use. It is sufficient to set a single value for the correlation range
for an entire image.

Subwindow Correlation

By using the error correlation function rather than a statistical correlation function, image
correlation can be carried out using integer addition and subtraction only. These are very fast
operations for most microprocessors requiring only a few clock cycles. It is far faster to perform
these calculations than to use a ‘look-up table’ scheme to avoid 8-bit or 4-bit pixel multiplication.
The use of the error correlation function, therefore, significantly improves processing speed over
the more commonly used statistical correlation function. A detailed analysis of the error
correlation function in comparison to the statistical correlation function is presented in a paper by
Roth, Hart, and Katz (1995). It was shown that the error correlation function produces
essentially the same results as the more computationally intensive statistical correlation function.

The error correlation function can be expressed as,
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The value of this correlation function ranges from 1 when the images are perfectly correlated to 0
when there is no correlation between the images. Because it relies on the difference in pixel
intensities, it does not unduly weight the significance of high-intensity pixels as does the statistical
correlation function. Aside from being faster to calculate than the statistical correlation function,
it has the added benefit of being easier to implement in hardware without the need for a
microprocessor. The error correlation function, therefore, has potential for use in hardware based
PIV systems.

Unlike the more common statistical correlation function, the error correlation function used in
sparse array image correlation is not computed one entry at a time. The entire correlation table is
constructed by summing entries as they are found while iterating through the sparse image array.
When auto-correlating subwindows, each entry in the sparse image array is compared with the
entries below it and a correlation approximation between the entries is added into the correct
location in the correlation table based on the differencaumj between the array entries. If the
location is out of range of the specified search length intlhdirection, the entry is ignored and
processing continues with the next entry specified in the line index array. If the location is out of
range in theth direction, the entry is ignored and a new series of iterations are made starting with
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the next sparse image array entry. Because the sparse array is correlated from the top down, only
the half of the correlation table representing the posjtidi#ection is calculated. The auto-
correlation of an image is symmetrical and thus, calculation of both halves of the correlation table
iS unnecessary.

Cross-correlation is accomplished by generating two sparse image arrays representing the two
images being correlated. The entries of one array are then compaiéadtohe entries of the

other array that are within the search length. Because the difference in array indices can be both
positive and negative in theand]j directions, the entire non-symmetrical correlation table is
calculated.
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Figure 5: Correlation table resulting from sparse array auto-correlation of the image
in Figure 4. In practice, the sparse array image data set is correlated from the top
down so that only half of the correlation table is calculated. Both halves of the
symmetrical correlation table are shown here for clarity. Note the steep correlation
peaks. These sharp peaks aid subpixel interpolation.

Once the correlation table is complete, the table is searched for the maximum correlation value. A
simple bilinear interpolation scheme is then used to determine the correlation maximum within
subpixel resolution. Bilinear interpolation is ideal in this application since reducing the data set by
image preprocessing and using the error correlation function results in a very steep, nearly linear,
correlation peak.

3. PROCESSING SPEED

Computational Intensity

The computational intensity of sparse array image correlation is comparable to the better known
statistical correlation technique except that the image data set is compressed in preprocessing. If
the data set is reduced to a fractignpf the original image data set, than the number of data
comparisons that must be made g (yN2-1)+yN? for sparse array auto-correlation agtgen?
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for cross-correlation. For PIV images where the particle seeding densities are high such that,
yN2>>1 andya >>1 theniya?(yNz-1)+yN? iS approximately equal ta,y2a?N2 . A typical PIV data

set can be reduced by a factor of 30 such yh@t3. Thus, a typical 6&4-pixel correlation
subwindow requires a little less than one thousand data comparisons to complete an auto-
correlation with a search window of XD pixels. During each comparison, three memory calls

are made, one to retrieve a data entry to be compared with the data entry already in the
processors register, one to retrieve the value of the correlation table entry, and one to place the
comparison result in memory. Memory calls require a great deal more processing time than
integer addition and subtraction so that the time for each data entry comparison is essentially the
time it takes to make these memory calls [Hennessy & Patterson 1990]. PCI based systems can
transfer over 6Blbytesof data per second or about two milion 32-bit data entries per second
over the bus. By ordering data entries sequentially when extracting the correlation subwindows
from the image data set, bus transfer rates of this speed can be achieved by block memory
transfers. Thus, correlation speeds of 2,080./secare theoretically possible for typical PIV
images under these conditions.

Speed Relative to Spectral FFT Correlation

FFT spectral correlation is known to be a computationally efficient method of PIV processing. It
is accomplished by taking the two-dimensional Fourier transform of an image and multiplying it
by the complex conjugate of the Fourier transform of another image (or the same image in the
case of auto-correlation) before taking the inverse transform. The computational intensity of this
method of image correlation N?log(N)+N2. It is thus, correctly referred to as ariog(N)

correlation algorithm. In comparison, sparse array image correlation i$ atydtithm for a
fixed correlation search length, It is, therefore, faster than FFT spectral correlation as long as
(Ay)is smaller thansiogiNy+1, Figure 6. At low compression ratioy, 0 , EFT spectral

correlation is far faster than sparse array correlation for any reasonable correlation search length.
At compression ratios greater thaxy/ 2, however, sparse array image correlation results in
significant computational savings, Figure 7.
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1
lo 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Compression Ratio

Figure 6. Sparse array cross-correlation processing computational intensity (solid
line) relative to spectral correlation (dotted line) as a function of image compression
ratio for a 64x64 pixel correlation subwindow. Note that this is a semi-log plot. The
computational intensity of sparse array cross-correlation for densely seeded images is
y?2N? where FFT spectral correlation i8SN2ogN + N? .
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Figure 7: Semi-log plot of the computational processing intensity of FFT spectral
correlation relative to sparse array correlation as a function of the compression ratio
divided by the search length. Plots of N=32, 64, and 128 are shown. Adiavef
about 0.25, spectral correlation is far more computationally intensive than sparse
array correlation.
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4. ACCURACY AND ROBUSTNESS

The process of correlating images in sparse format using the algorithm presented here is
independent of the method by which the image data set is generated. With no compression of the
image, sparse array image correlatioidentical to the more common statistical image shifting
correlation method except for the use of the error correlation function. A comprehensive study of
the error correlation function by Ro#t. al. showed that there exists no significant variation
between the results from the error correlation function and that of the statistical correlation
function [Roth, Hart, Katz, 1995.]. There is, thus, no reason to believe that the error correlation
function is any more or less accurate than statistical or spectral correlation techniques. Any
inaccuracy or lack of robustness in the present algorithm can be attributed entirely to the loss of
data from image compression. The speed of sparse array image correlation, however, is strongly
dependent on the reduction in the image data set through compression. Little is gained by using
this algorithm if the data set remains unchanged, Figure 6. It is therefore necessary to address the
problems associated with image compression to assess the limitations of the sparse array image
correlation algorithm.

Velocity Gradient Affects

A method of determining the probability that a particular correlation is valid is to perform a non-
parametric correlation and observe the peak correlation value relative to the mean. This can be
accomplished by ranking the pixels in an image before correlation. Pixels with the same intensity
are assigned an average of the rank they would receive if they had different values. In this
manner, non-parametric correlation provides a means by which the effects of image compression
can be assessed. Images with a poor rank correlation value relative to the mean are more likely to
produce spurious vectors and to lack information needed to obtain accurate subpixel resolution.
Thus, non-parametric correlation provides, in essence, a measure of the correlation signal to noise
ratio.

Relative Nonparametric Correlation Coefficient
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Figure 8: Relative non-parametric correlation coefficient plotted as a function of
intensity threshold image compression®r0, 1, and 2. The correlation coefficient

is based on non-parametric rank correlation and is normalized relative to the
uncompressed image. As the imaged flow divergence increases, the compression
ratio at which the correlation is lost, indicated by a zero relative non-parametric
correlation coefficient, decreases.
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As discussed in Section 2., the particle image diameters are important for resolving the average
particle displacement in flows where there exist large gradients in the flow velocity. This is the
factor which image compression affects the most. Other parameters such as seeding density,
average flow velocity and relative correlation window size that influence all PIV correlation
processing are unaffected. Using rank correlation, the effects of intensity threshold compression
are plotted in Figure 7 for several values of the ratio of the flow divergence to the particle image

M|0 @] NAt
D

diameter based on the correlation window diamélerg = Forideal PIV images

where there exists no divergence in the flgv~0, and no variation in peak image intensity, the

compression ratio has little effect on the relative correlation of the image until a significant portion
of the data of the tracer particle images dimimated. These images can be compressed to a
small fraction of their original size and retain enough correlation information to determine the
subpixel displacement of the tracer particles. As shown in Figure 8, images @vhdoes not

equal zero are affected to an increasingly greater extent by compressiomeisases.

Intensity Variation Effects

Variations in intensity resulting from poor illumination and/or variations in particle characteristics
severely affect the ability to extract particle dig@ment information from a PIV image using
correlation. This is particularly true of auto-correlation processing, as there often exists a
systematic intensity variation between the first and second exposures of the particle images. This
type of intensity variation adversely affects both spectral correlation and compressed image
correlation processing. It, however, limits the level to which an image can be compressed and
thus has a much more pronounced effect on the speed and accuracy of compressed image
correlation. Non-systematic intensity variations, which result from differences in tracer particle
characteristics and non-uniform illumination, affect both spectral correlation and compressed
image correlation to roughly the same degree.

Consider the Gaussian intensity profile of a tracer particle image. This profile can be
approximated by, Dloe'(“'g”D)2 wherel, is the peak intensity of a particle centeredxalyd)
andr is the distance from the center. The magnitude of the gradient in intensity is then equal to

37rl
o, | 0—2= Y P e “¥/°F wherep is the characteristic size of a single pixel in the image. The

maximum magnitude of the intensity gradient of a particle image occurs at a distBt& and
has a value*m 0, | 0seleP. If an intensity gradient threshold level is set above this value, all
=743 D

correlation information for this particle will be lost. Note, however, that the minimum particle
diameter is roughlp/2 as long as the intensity gradient threshold level is set heidvf . This
D

is not true of image segmentation based on intensity level thresholding where the particle image
diameter approaches zero as the threshold level is increased. If there are significant variations in
particle peak intensities within an image, however, then both methods of image segmentation
adversely affect correlation although intensity thresholding to a somewhat less extent for the same
compression ratio. This is illustrated in Figure 9 by plotting the non-parametric correlation peak
value obtained from Figure 1 as a function of compression ratio for both gradient level
compression and threshold compression. As illustrated in this figure, threshold intensity
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compression results in less information loss at low compression ratios. At higher compression
ratios, however, gradient intensity compression results in less information loss.

Relative Nonparametric Correlation Coefficient

O Il Il
0 50 100 150
Compression Ratio

Figure 9: Relative non-parametric correlation coefficient plotted as a function of
intensity gradient image compression (dotted line) and intensity threshold
compression (solid line) for the image in Figure 1. Intensity threshold image
compression results in less information at compression ratios below 40:1. At higher
compression ratios, gradient image compression results in less information loss
allowing the image to be compressed to less than 1/200 of its original size before
particle displacement information is lost. Threshold compression, however, losses the
particle displacement information at a compression ratio of less than 150:1.

In practice, exposure levels are difficult to control and image-recording devices have limited
intensity resolution. PIV images that have been over exposeddphat particle image intensity
profiles, Figure 10. While some information is lost because of this, these images often correlate
accurately for the same reason images compressed using intensity gradient thresholding correlate
accurately— it is the change in intensity at the edges of the particle images that hold the
information necessary for accurate correlation and not the low gradient regions near the center of
the particle images. PIV images that are slightly over exposed are often better suited to intensity
gradient compression rather than intensity threshold compression. This is because the saturated
intensity regions of the particle images that contain little correlation information and have a low
intensity gradient are eliminated from the dataecdise intensity gradient image compression is
more robust to variations in image exposure, it is generally a better choice for PIV image
compression even though it results in slightly more information loss at moderate compression
ratios.
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Figure 10: Tophat profile of a particle image which has reached the saturation level
of the image recording media. PIV images that contain particle images of this type
can be significantly compressed without losing correlation.

5. EXPERIMENTAL DEMONSTRATION

Variations in particle image intensity and size, correlated background noise, poor contrast,
insufficient illumination and optical aberrations are only a few of the many factors which effect the
quality of experimental images. For this reason, a comparison was made between spectral
correlation and sparse array correlation based on the processing of experimentally obtain PIVC
images taken of a highly unsteady vortical flow.

Images were used from the experimental measurement made of the flow inside a Cardio Assist
Device, CAD. This device is used to aid the flow of blood in patients with weakened hearts. The
flow in this device is highly unsteady and exhibits strong vortical flow formations [Htéarg,

Kamm 1997]. A frequency doubled Nd:YAG laser was useilutminate a 1@m x10cm area.

The flow was seeded with gfh florescent particles. A Pulnex, TM-9701 512x486 pixel CCD
camera, recorded PIVC images atH20 Typical images are shown in Figure 11. Because of the
curvature of the wall, all of the images exhibit significant variations in light intensity. These
images were specifically chosen for comparison with the spectral correlation method because they
exhibit features that are poorly suited to processing in sparse format. These features include
significant local variation in illumination, large gradients in the flow velocity, heavy seeding
densities, and very small tracer particle movement between images (less than 1 pixel on average)
requiring accurate subpixel interpolation to resolve flow structures. Because of these features, the
test images provide a means of illustrating the limitations of sparse array image correlation.

The experimental images were processed by cross-correlation ugé# Bxel subwindows that
overlapped by 50% in both theandy directions. When compressed 30:1 with a maximum
correlation search length of 32 pixels, the sparse array algorithm processed these images at
roughly 300vec./sec.on a Pentium 168@Hz computer with 1Mbytes of memory. This was

about sixty times faster than spectral correlation, which generateec.fsec.on the same
machine. An example of the output of both sparse array correlation and of spectral correlation of
the images in Figure 10 are shown in Figure 12. Sparse array correlation yielded results that were
typically within 0.05 pixels of spectral correlation. No significant variation between the two
correlation algorithms was observed with image compression ratios below 50:1. At higher
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compression ratios, 100:1, differences in the velocity profile in low velocity areas were observed,
Figure 13. These variations, on the order of 0.05 pixels, are the result of information loss due to
compression. At much higher compression ratios, 200:1 and higher, sparse array image
correlation generated significant spurious vectors near the wall of the test section and in other
regions where high velocity gradients exist, Figure 14. This behavior is consistent with the
analysis discussed in Section 4. At these extremely high compression ratios, each vector
represents the correlation of less than thirty pixels.

Figure 11: Typical pair of PIV images recorded from a Cardio Assist Device, CAD.
The light intensity in these images varies significantly due to the distortion caused by
the three-dimensional shape of the device. Such images that exhibit significant
changes in velocity and have high seeding densities are difficult to correlate in
compressed format. Because of this, these images were selected to illustrate the
limitations of sparse array image correlation processing.
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Figure 12: Vector map obtained from sparse array cross-correlation of the images in
Figure 10 with a 30:1 compression ratio (left) and by spectral correlation (right). The
longest vector in these plots represent a displacement of less than 2 pixels. The
majority of vectors shown represent displacements of tracer particle images of less
than 1 pixel. Thus, subpixel interpolation is critical to visually resolving flow
structures from these plots. Variations of less than 0.05 pixels are easily observed.
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Figure 13: Vector map obtained from sparse array cross-correlation of the images in
Figure 10 with a 100:1 compression ratio. Compare this figure to the plots in
Figure 11. Note the difference in areas where there exist low x and/or y velocities.

This is a result of information loss from image compression limiting subpixel
resolution.
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Figure 14: Vector map obtained from sparse array cross-correlation of the images in
Figure 10 using a 200:1 compression ratio. Note the spurious vectors near the wall
and in high velocity gradient regions. This is consistent with the processing
limitations discussed in Section 4. At this high compression ratio, each vector
represents a correlation of less than 30 pixels.

6. SUMMARY AND CONCLUSIONS

Sparse array image correlation is a technique by which PIV images can be accurately processed at
high-speeds. It is based on the compression of images in which the number of data set entries
containing tracer particle displacement information is reduced. Very high correlation speeds are

obtained by encrypting the reduced data set into 32-bit integers and correlating the data entries

using an error correlation function to eliminate multiplication, division and floating point
arithmetic.

The maximum correlation value associated with sparse array image correlation is characterized by
a steep peak that improves subpixel interpolation. The performance of this method of image
correlation, however, is largely dependent on the level to which an image can be compressed
without losing significant correlation information. Thus, its performance relative to the better
known spectral correlation method is image dependent.

Through an analysis of the affects of flow divergence, tracer particle image diameter, and intensity
variations, it was shown that typical PIV images can be highly compressed with no significant lose
in correlation information. Characteristic limitations of sparse array image correlation were
illustrated by comparing results from the spectral correlation of experimental images with the
results from the sparse array correlation of the same images at varying levels of compression from
30:1 to 200:1. For applications requiring extremely high correlation speeds such as holographic
particle image velocimetry (HPIV) and video rate particle image velocimetry cinematography
(PIVC), sparse array image correlation appears to be a viable processing technique.
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